[1] Thaller B. The Dirac Equation, Texts and Monographs in Physics. Berlin: Springer, 1992
[2] Bartsch T, Ding Y H. Deformation theorems on non-metrizable vector spaces and applications to critical point theory. Math Nach, 2006, 279: 1267–1288
[3] Bartsch T, Ding Y H. Solutions of nonlinear Dirac equations. J Differential Equations, 2006, 226: 210–249
[4] Ding Y H, Ruf B. Solutions of a nonlinear Dirac equation with external fields. Arch Rational Mech Anal, 2008, 190: 57–82
[5] Ding Y H, Ruf B. Existence and concentration of semi-classical solutions for Dirac equations with critical nonlinearites. SIAM J Math Anal, 2012, 44: 3755–3785
[6] Ding Y H, Wei J C. Stationary states of nonlinear Dirac equations with general potentials. Rev Math Phys, 2008, 20: 1007–1032
[7] Ding Y H. Semi-classical ground states concentrating on the nonlinear potential for a Dirac equation. J Differential Equations, 2010, 249: 1015–1034
[8] Ding Y H, Liu X Y. Semi-classical limits of ground states of a nonlinear Dirac equation. J Differential Equations, 2012, 252: 4962–4987
[9] Ding Y H, Liu X Y. On Semiclassical ground states of a nonlinear Dirac equation. Rev Math Phys, 2012, 24: 1250029
[10] Ding Y H. Variational Methods for Strongly Indefinite Problems. World Scientific Press, 2008
[11] Balabane M, Cazenave T, Douady A, Merle F. Existence of excited states for a nonlinear Dirac field. Comm Math Phys, 1998, 41: 153–176
[12] Balabane M, Cazenave T, Vazquez L. Existence of standing waves for Dirac fields with singular nonlinearities. Comm Math Phys, 1990, 133: 53–74
[13] Cazenave T, Vazquez L. Existence of local solutins of a classical nonlinear Dirac field. Comm Math Phys, 1986, 105: 35–47
[14] Merle F. Existence of stationary states for nonlinear Dirac equations. J Different Equations, 1988, 74: 50-68
[15] Esteban M J, S´er´e E. Stationary states of nonlinear Dirac equations: A variational approach. Comm Math Phys, 1995, 171: 323–350
[16] Esteban M J, S´er´e E. An overview on linear and nonlinear Dirac equations. Discrete Cotin Dyn Syst, 2002, 8: 281–397
[17] Zhang J, Qin W P, Zhao F K. Multiple solutions for a class of nonperiodic Dirac equations with vector potentials. Nonlinear Anal, 2012, 75: 5589–5600
[18] Zhang J, Tang X H, Zhang W. Ground state solutions for nonperiodic Dirac equation with superquadratic nonlinearity. J Math Phys, 2013, 54: 101502
[19] Zhao F K, Ding Y H. Infinitely many solutions for a class of nonlinear Dirac equations without symmetry. Nonlinear Anal, 2009, 70: 921–935
[20] Zhao F K, Zhao L G, Ding Y H. Multiple solution for a superlinear and periodic ellipic system on RN. Z Angew Math Phys, 2011, 62: 495–511
[21] Zhang J, Tang X H, Zhang W. Ground-state solutions for superquadratic Hamiltonian elliptic systems with gradient terms. Nonlinear Anal, 2014, 95: 1–10
[22] Yang M B, Ding Y H. Stationary states for nonlinear Dirac equations with superlinear nonlinearities. Topol Meth Nonl Anal, 2012, 39: 175–188
[23] Yang M B, Chen W X, Ding Y H. Solutions for periodic Schr¨odinger equation with spectrum zero and general superlinear nonlinearities. J. Math Anal Appl, 2010, 364: 404–413
[24] Yang M B. Ground state solutions for a periodic Schr¨oinger equation with superlinear nonlinearities. Nonlinear Anal, 2010, 72: 2620–2627
[25] Finkelstein F, Fronsdal C F, Kaus P. Nonlinear spinor field theory. Phys Rev, 1956, 103: 1571–1579
[26] Chen G W, Ma S W. Homoclinic orbits of superquadratic Hamiltonian system. Proc Amer Math Soc, 2011, 139: 3973–3983
[27] Chen G W, Ma S W. Periodic solutions for Hamiltonian systems without Ambrosetti-Rabinowitz condition and spectrum 0. J Math Anal Appl, 2011, 379: 842–851
[28] Pankov A. Periodic nonlinear Schr¨odinger equation with application to photonic crystals. Milan J Math, 2005, 73: 259–287
[29] Szulkin A, Weth T. Ground state solutions for some indefinite problems. J Funct Anal, 2009, 257: 3802–3822
[30] Szulkin A, Weth T. The method of Nehari manifold//Handbook of nonconvex analysis and applications. Somerville: Int Press, 2010: 597–632
[31] Ackermann N. A superposition principle and multibump solutions of periodic Schr¨odinger equations. J Funct Anal, 2006, 234: 277–320
[32] Schechter M, Zou W M. Weak linking theorems and Schr¨odinger equations with critical Sobolev exponent. ESAIM Control Optim Calc Var, 2003, 9: 601–619
[33] Willem M, Zou W M. On a Schr¨odinger Equation with periodic potential and spectrum point zero. Indiana Univ Math J, 2003, 52: 109–132
[34] Willem M. Minimax Theorems. Berlin: Birkh¨auser, 1996 |