[1] Acerbi E, Fusco N. Regularity for minimizers of nonquadratic functionals:the case 1< p < 2. J Math Anal Appl, 1989, 140(1):115-135 [2] Allard W K. On the first variation of a varifold. Annals of Math, 1972, 95:225-254 [3] Agmon S, Douglis A, Nirenberg L. Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Comm Pure Appl Math, 1964, 17:35-92 [4] Campanato, S. Equazioni paraboliche del secondo ordine e spazi L2,θ(Ω, δ). Ann Mat Pura Appl, 1966, 73(4):55-102 [5] Carozza M, Fusco N, Mingione G. Partial regularity of minimizers of quasiconvex integrals with subquadratic growth. Ann Mat Pura Appl, 1998, 175(4):141-164 [6] Chen S, Tan Z. The method of A-harmonic approximation and optimal interior partial regularity for nonlinear elliptic systems under the controllable growth condition. J Math Anal Appl, 2007, 335(1):20-42 [7] Chen S, Tan Z. Partial regularity for weak solutions of stationary Navier-Stokes systems. Acta Mathematica Scientia, 2008, 28(4):877-894 [8] Chen S, Tan Z. Optimal partial regularity for nonlinear sub-elliptic systems. J Math Anal Appl, 2012, 387(1):166-180 [9] Da Prato G. Spazi Lp,ϑ(Ω, δ) e loro proprietà. Ann Mat Pura Appl, 1965, 69:383-392 [10] Dai Y, Tan Z, Chen S. Partial regularity for subquadratic parabolic systems under controllable growth conditions. J Math Anal Appl, 2016, 439:481-513 [11] De Giorgi E. Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960-61. Editrice Tecnico Scientifica, Pisa, 1961 [12] Douglis A, Nirenberg L. Interior estimates for elliptic systems of partial differential equations. Comm Pure Appl Math, 1955, 8:503-538 [13] Duzaar F, Grotouski J F. Optimal interior partial regularity for nonlinear elliptic systems:The method of A-harmonic approximation. Manuscripta Math, 2000, 103(3):267-298 [14] Duzaar F, Grotowski J F, Kronz M. Regularity of almost minimizers of quasi-convex variational integrals with subquadratic growth. Ann Mat Pura Appl, 2005, 184(4):421-448 [15] Duzaar F, Kristensen J, Mingione G. The existence of regular boundary points for non-linear elliptic systems. J Reine Angew Math, 2007, 602:17-58 [16] Duzaar F, Mingione, G. Harmonic type approximation lemmas. J Math Anal Appl, 2009, 352(1):301-335 [17] Galdi G P. An introduction to the mathematical theory of the Navier-Stokes equations, Steady-state problems. Springer Monographs in Mathematics. New York:Springer, 2011 [18] Giaquinta M, Modica G. Nonlinear systems of the type of the stationary Navier-Stokes system. J Reine Angew Math, 1982, 330:173-214 [19] Giaquinta M. Multiple integrals in the calculus of variations and nonlinear elliptic systems. Annals of Mathematics Studies, 1983, 105 [20] Heywood J G. The Navier-Stokes equations:On the existence, regularity and decay of solutions. Indiana Univ Math J, 1980, 29(5):639-681 [21] Ladyzhenskay O. A. The Mathematical Theory of Viscous Incompressible Flow. New York:Gordon and Breach, 1969 [22] Mingione G. The singular set of solutions to non-differentiable elliptic systems. Arch Rat Mech Anal, 2003, 166:287-301 [23] Temam R. Navier-Stokes Equations and Nonlinear Functional Analysis. Philadelphia, Pennsylvania:Society for Industrial and Applied Mathematics, 1995 [24] Simon L. Lectures on Geometric Measure Theory. Canberra:Australian National University Press, 1983 [25] Simon L. Theorems on Regularity and Singularity of Energy Minimizing Maps. Basel, Boston, Berlin:Birkhauser, 1996 [26] Schoen R, Uhlenbeck K. A regularity theorem for harmonic maps. J Differential Geom, 1982, 17(2):307-335 [27] He L H, Tan Z. Partial regularity of stationary Naiver-Stokes systems under natural growth condition. Acta Mathematica Scientia, 2019, 39B(1):94-110 |