[1] Ambrosetti A, Coti Zelati V. Solutions with Minimal Period for Hamiltonian Systems in a Potential Well. Ann Inst H Poincar Anal Non linéaire, 1987, 4:275-296 [2] Ambrosetti A, Manchini G. Solutions of minimal period for a class of convex Hamiltonian systems. Math Ann, 1981, 255:405-421 [3] Bahri A, Lions P L. Morse Index of Min-Max Critical Points I. Applications to Multiplicity Results. Comm Pure Appl Math, 1988, 41(8):1027-1037 [4] Benci V, Rabinowitz P H. Critical point theorems for indefinite functionals. Invent Math, 1979, 52(3):241-273 [5] Calković L, Shu J L, Willem M. A note on Palais-Smale condition and convexity. Differential Integral Equations, 1990, 3:799-800 [6] Dong Y, Long Y. Closed characteristics on partially symmetric compact convex hyper surfaces in R2n. J Differential Equations, 2004, 196:226-248 [7] Ekeland I. On the variational principle. J Math Anal Appl, 1974, 47:324-354 [8] Ekeland I, Hoffer H. Periodic Solutions with Prescribed Period for Autonomous Hamiltonian Systems. Invent Math, 1985, 81:155-188 [9] Girardi M, Matzeu M. Some results on solutions of minimal period to superquadratic hamiltonian equations. Nonlinear Anal TMA, 1983, 7:475-482 [10] Girardi M, Matzeu M. Solutions of Minimal Period for a Class of Nonconvex Hamiltonian Systems and Applications to the Fixed Energy Problem. Nonlinear Anal TMA, 1986, 10:371-383 [11] Liu C, Zhang D. Multiple brake orbits on compact convex symmetric reversible hypersurfaces in R2n. arXiv:1111.0722v1[math.DS] 3 November (2011) [12] Long Y. The minimal period problem of periodic solutions for autonomous second order Hamiltonian systems. J Differential Equations, 1994, 111:147-171 [13] Long Y, Zhang D, Zhu C. Multiple brake orbits in bounded convex symmetric domains. Adv Math, 2006, 203:568-635 [14] Mawhin J, Willem M. Critical Point Theory and Hamiltonian Systems//Applied Mathematical Sciences. New York:Springer-Verlag, 1989, 74 [15] Rabinowitz P H. Minimax Methods in Critical Point Theory with Applications to Differential Equations. Providence, RI:CBMS Reg Conf Ser in Math Amer Math Soc, 1986, 65 [16] Rabinowitz P H. Periodic solutions of Hamiltonian systems. Comm Pure Appl Math, 1978, 31:157-184 [17] Struwe M. Variational Methods. Berlin:Springer-Verlag, 1990, 65 [18] Szulkin A, Weth T. The method of Nehari manifold//Gao D Y, Motreanu D. Handbook of Nonconvex Analysis and Applications. Boston, Mass, USA:International Press, 2010:597-632 [19] Szulkin A. The method of Nehari manifold revisited. RIMS Kokyuroku, 2011, 1740:89-102 [20] Souissi C. Orbits with Minimal Period for a class of Autonomous Second Order One-dimensional Hamiltonian System. Georgian Math J. DOI:https://doi.org/10.1515/gmj-2016-0054 [21] Souissi C. Generalized Ambrosetti-Rabinowitz condition for minimal period solutions of autonomous hamiltonian system. Arch Math, 2017, 109:73-82 |