[1] Giaquinta M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems. New Jersey:Princetion University Press, 1983 [2] Giaquinta M. Nonlinear systems of the type of the stationary Navier-Stoke system. J Rein Angew Math, 1982, 330:173-214 [3] Heywood J G. The Navier-Stokes equtions:on the existence, regularity and decay of solutions. Indiana Univ Math J, 1980, 29:639-68 [4] Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. 2nd ed. New York:Gordon and Breach, Science Publishers, 1969 [5] Simon L. Lectures on Geometric Measure Theory. Canberra:Australian National University Press, 1983 [6] Allard W K. On the first variation of a varifold. Ann Math, 1972, 95:225-25 [7] Duzaar F, Grotouski J F. Optimal interior partial regularity for nonlinear ellpitic systems:the mathod of A-harmonic approximation. Manuscripta Math, 2000, 103:267-298 [8] Duzaar F, Gastel A. Nonlinear elliptic systems with Dini continuous coefficients. Arch Math, 2002, 78:58-73 [9] Duzaar F, Steffen K. Optimal interior and boudary regularity for almost minimizers to elliptic variational integrals. J Reine Angew Math, 2002, 546:73-138 [10] Chen S H, Tan Z. Partial regulrity for weak solution of stationary Navier-Stokes system. Acta Math Sci, 2008, 28B(4):877-894 [11] Dai Y C, Tan Z, Chen S H. Partial reguarity for subquadratic parabolic systems under controllable growth conditions. J Math Anal Appl, 2016, 439:481-513 [12] Duzaar F, Mingione G. Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann Inst H Poincaré Anal Non Linéaire, 2005, 22:705-751; unctionals:the case 1< p < 2. J Math Anal Appl, 1989, 140(1):115-135 [13] Chen S H, Tan Z. The method of A-harmonic approximation and boundary regularity for nonlinear elliptic systems under the natural growth condition. Acta Math Sin-English Serie, 2009, 25(1):133-156 [14] Chen S H, Tan Z. Optimal partial regularity for nonlinear sub-elliptic systems. J Math Anal Appl, 2012, 387:166-18 [15] Tan Z, Wang Y Z, Chen S H. Partial regularity in the interior for discontinuous inhomogeneous elliptic system with VMO-coefficients. Ann Mat Pura Appl, 2017, 196(4):85-105 [16] Temam R. Navier-Stokes Equations. Amsterdam:North-Holland, 1977 [17] Gilbarg D, Trudinger N. Ellpitic Partial Differential Equations of Second Order. 2nd ed. Berlin, Heidelberg, New York, Tokyo:Springer, 1983 [18] Campanato S. Equazioni ellittiche del Ⅱ deg ordine espazi L2,λ. Ann Mat Pura Appl, 1965, 69:321-38 [19] Bogovskii M E. Rescenie pervoî kraevoî zadaci dlia uravnenia nerazrivnosti nesjimaemoî sredi. Dokl Akad Dauk SSSR, 1979, 248:1037-1040 [20] Giaquinta M. Partial regularity of minimisers of quasiconvex integrals. Ann Inst Poincare Anal Nonlinear, 1986, 3:185-208 |