[1] Kato T. Trotter's product formula for an arbitrary pair of self-adjoint contraction semigroups//Gohberg I, Kac M. Topics in Functional Analysis. New York:Academic Press, 1978:185-195 [2] Trotter H. On the product of semigroups of operators. P Am Math Soc, 1959, 10:545-551 [3] Hiai F. Log-majorizations and norm inequalities for exponential operators//Janas J, Szafraniec F H, Zemánek J. Linear Operators. Banach Center Publications, 1997:119-181 [4] Kubo F, Ando T. Means of positive linear operators. Math Ann, 1980, 246:205-224 [5] Audenaert K M R, Datta N. α-z-relative Rényi entropies. J Math Phys, 2015, 56:59-85 [6] Audenaert K M R, Hiai F. Reciprocal Lie-Trotter formula. Linear Multilinear A, 2016, 64:1220-1235 [7] Ando T, Hiai F. Log majorization and complementary Golden-Thompson type inequalities. Linear Algebra Appl, 1994, 197:113-131 [8] Schur I. Bemerkungen zur theorie der beschränkten bilinearformen mit unendlich vielen veränderlichen. J Reine Angew Math, 1911, 140:1-28 [9] Ando T. Majorization relations for Hadamard products. Linear Algebra Appl, 1995, 223/224:57-64 [10] Visick G. Majorizations of Hadamard products of matrix powers. Linear Algebra Appl, 1998, 269:233-240 [11] Bhatia R. Matrix Analysis. New York:Springer, 1997 [12] Bhatia R. Positive Definite Matrices. Princeton and Oxford:Princeton University Press, 2007 [13] Hall B. Lie groups, Lie algebras, and Representations:An elementary introduction. New York:Springer, 2003 [14] Moalla N. A characterization of schechter's, essential spectrum by mean of measure of non-strictsingularity and application to matrix operator. Acta Mathematica Scientia, 2012, 32B(6):2329-2340 [15] Zhang F. Matrix Theory:Basic results and techniques. New York:Springer, 1999 [16] Johnson C R. Hadamard products of matrices. Linear Multilinear A, 1974, 1:295-307 [17] Vargas L G. Analysis of sensitivity of reciprocal matrices. Appl Math Comput, 1983, 12:301-320 [18] Marcus M, Minc H. A Survey of Matrix Theory and Matrix Inequalities. Boston:Allyn and Bacon, 1963 [19] Marcus M, Khan N A. A note on the Hadamard product. Canad Math Bull, 1959, 2:81-83 [20] Visick G. A quantitative version of the observation that the Hadamard product is a principal submatrix of the Kronecker product. Linear Algebra Appl, 2000, 304:45-68 [21] Ando T, Zhan X. Norm inequalities related to operator monotone functions. Math Ann, 1999, 315:771-780 [22] Donogue W. Monotone Matrix Functions and Analytic Continuation. New York:Springer, 1974 [23] Ando T. Concavity of certain maps on positive definite matrices and applications to Hadamard products. Linear Algebra Appl, 1979, 26:203-241 |