[1] Aiemsomboon L, Sintunavarat W. A note on the generalised hyperstability of the general linear equation. Bull Aust Math Soc, 2017, 96:263-273 [2] Aiemsomboon L, Sintunavarat W. On a new type of stability of a radical quadratic functional equation using Brzdȩk's fixed point theorem. Acta Math Hungar, 2017, 151(1):35-46 [3] Aiemsomboon L, Sintunavarat W. On generalized hyperstability of a general linear equation. Acta Math Hungar, 2016, 149(1):413-422 [4] Aoki T. On the stability of the linear transformation in Banach spaces. J Math Soc Jpn, 1950, 2:64-66 [5] Brzdȩk J, Pietrzyk A. A note on stability of the general linear equation. Aequationes Math, 2008, 75:267-270 [6] Brzdȩk J. Stability of additivity and fixed point methods. J Fixed Point Theory Appl, 2013, 2013:285 [7] Brzdȩk J, Ciepliński K. Hyperstability and Superstability. Abstr Appl Anal, Vol 2013. Article ID 401756, 13 pages. http://dx.doi.org/10.1155/2013/401756 [8] Brzdȩk J, Ciepliński K. On a fixed point theorem in 2-Banach spaces and some of its applications. Acta Mathematica Scientia, 2018, 38B(2):377-390 [9] Gajda Z. On stability of additive mappings. Int J Math Math Sci, 1991, 14(3):431-434 [10] Gähler S. Lineare 2-normierte Räume. Math Nachr, 1964, 28:1-43(in German) [11] Gähler S. Ber 2-normed-Räume. Math Nachr, 1969, 42:335-347(in German) [12] Gǎvruţa P. A generalization of the Hyers-Ulam-Rassias stability of approximately additive mapping. J Math Anal Appl, 1994, 184:431-436 [13] Hyers D H. On the stability of the linear functional equation. Proc Natl Acad Sci USA, 1941, 27:222-224 [14] Hyers D H, Isac G, Rassias Th M. Stability of Functional Equations in Several Variables. Berlin:Birkhäuser, 1998 [15] Piszczek M. Remark on hyperstability of the general linear equation. Aequat Math, 2014, 88:163-168 [16] Piszczek M. Hyperstability of the general linear functional equation. Bull Korean Math Soc, 2015, 52:1827-1838 [17] Rassias T M. On the stability of the linear mapping in Banach spaces. Proc Am Math Soc, 1978, 72:297-300 [18] Rassias T M. On a modified Hyers-Ulam sequence. J Math Anal Appl, 1991, 158:106-113 [19] Ulam S M. A collection of mathematical problems. New York:Interscience, 1960 [20] White A. 2-normed spaces. Math Nachr, 1969, 42:43-60 |