[1] Azmoodeh E, Morlanes I. Drift parameter estimation for fractional Ornstein-Uhlenbeck process of the Second Kind. Statistics:A Journal of Theoretical and Applied Statistics, 2013. DOI:10.1080/02331888.2013.863888 [2] Azmoodeh E, Viitasaari L. Parameter estimation based on discrete observations of fractional OrnsteinUhlenbeck process of the second kind. Statistical Inference for Stochastic Processes, 2015, 18(3):205-227 [3] Basawa I V, Scott D J. Asymptotic Optimal Inference for Non-ergodic Models. Lecture Notes in Statist. 17. New York:Springer-Verlag, 1983 [4] Belfadli R, Es-Sebaiy K, Ouknine Y. Parameter Estimation for Fractional Ornstein-Uhlenbeck Processes:Non-Ergodic Case. Frontiers in Science and Engineering (An International Journal Edited by Hassan Ⅱ Academy of Science and Technology), 2011, 1(1):1-16 [5] Dietz H M, Kutoyants Y A. Parameter estimation for some non-recurrent solutions of SDE. Statistics and Decisions, 2003, 21(1):29-46 [6] Douissi S, Es-Sebaiy K, Viens F. Berry-Esséen bounds for parameter estimation of general Gaussian processes. Preprint, 2017. https://arxiv.org/abs/1706.02420 [7] El Machkouri M, Es-Sebaiy K, Ouknine Y. Least squares estimator for non-ergodic OrnsteinUhlenbeck processes driven by Gaussian processes. Journal of the Korean Statistical Society, 2016, 45:329-341 [8] El Onsy B, Es-Sebaiy K, Ndiaye D. Parameter estimation for discretely observed non-ergodic fractional Ornstein-Uhlenbeck processes of the second kind. Brazilian Journal of Probability and Statistics, 2018, 32(3):545-558 [9] El Onsy B, Es-Sebaiy K, Tudor C. Statistical analysis of the non-ergodic fractional Ornstein-Uhlenbeck process of the second kind. Commun Stoch Anal, 2017, 11(2):119-136 [10] El Onsy B, Es-Sebaiy K, Viens F. Parameter estimation for a partially observed Ornstein-Uhlenbeck process with long-memory noise. Stochastics, 2017, 89(2):431-468 [11] Es-Sebaiy K, Ndiaye D. On drift estimation for discretely observed non-ergodic fractional Ornstein Uhlenbeck processes with discrete observations. Afr Stat, 2014, 9:615-625 [12] Es-Sebaiy K, Nourdin I. Parameter estimation for α-fractional bridges. Springer Proceedings in Mathematics and Statistics, 2013, 34:385-412 [13] Es-Sebaiy K, Viens F. Optimal rates for parameter estimation of stationary Gaussian processes. Stochastic Processes and their Applications, 2018, in press. https://doi.org/10.1016/j.spa.2018.08.010 [14] Hu Y, Nualart D. Parameter estimation for fractional Ornstein Uhlenbeck processes. Statistics and Probability Letters, 2010, 80:1030-1038 [15] Jacod J. Parametric inference for discretely observed non-ergodic diffusions. Bernoulli, 2006, 12(3):383-401 [16] Kloeden P, Neuenkirch A. The pathwise convergence of approximation schemes for stochastic differential equations. LMS J Comp Math, 2007, 10:235-253 [17] Kleptsyna M, Le Breton A. Statistical analysis of the fractional Ornstein-Uhlenbeck type process. Statistical Inference for Stochastic Processes, 2002, 5(3):229-248 [18] Nourdin I. Selected aspects of fractional Brownian motion. Bocconi & Springer Series 4. Milan:Springer, Bocconi University Press, 2012 [19] Shimizu Y. Notes on drift estimation for certain non-recurrent diffusion from sampled data. Statistics and Probability Letters, 2009, 79:2200-2207 [20] Tanaka K. Maximum likelihood estimation for the non-ergodic fractional Ornstein-Uhlenbeck process. Statistical Inference for Stochastic Processes, 2015, 18(3):315-332 [21] Young L C. An inequality of the Hölder type connected with Stieltjes integration. Acta Math, 1936, 67:251-282 |