[1] Alvarez F. On the minimizing property of a second order dissipative system in Hilbert space. SIAM J Control Optim, 2000, 38(4): 1102–1119
[2] Attouch H,Goudou X,Redont P.Theheavy ballwith frictionmethod, I.The continuous dynamical system: global exploration of the local minima of a real-valued function asymptotic by analysis of a dissipative dynamical system. Commun Contemp Math, 2000, 2: 1–34
[3] Baillon J B, Haraux A. Comportement `a l’infini pour les ′equations d’′evolution avec forcing p′eriodique. Arch Ration Mech Anal, 1977, 67(1): 101–109
[4] Br′ezis H. Op′erateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert. North-Holland Mathematics Studies, No 5. Notas de Matematica (50). Amsterdam-London, New York:
North-Holland Publishing Co, 1973
[5] Bruck R. Asymptotic convergence of nonlinear contraction semigroups in Hilbert space. J Funct Anal, 1975, 18: 15–26
[6] Chill R, Jendoubi M A. Convergence to steady states in asymptotically autonomous semilinear evolution
equations. Nonlinear Anal, 2000, 53(7/8): 1017–1039
[7] Haraux A. Equations d’′evolution non lin′eaires: solutions born′ees et p′eriodiques. Ann Inst Fourier (Greno-ble), 1978, 28(2): 201–220
[8] Haraux A. Nonlinear evolution equations-global behavior of solutions//Lecture Notes in Mathematics, 841. Berlin-New York: Springer-Verlag, 1981
[9] Opial Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull
Amer Math Soc, 1967, 73: 591–597
[10] Schatzman M. Le syst`eme diff′erentiel (d2u/dt 2)+∂φ(u) ξ f avec conditions initiales. (English summary)
C R Acad Sci Paris A-B, 1977, 284(11): A603–A606 |