Loading [MathJax]/jax/element/mml/optable/SuppMathOperators.js

数学物理学报, 2025, 45(2): 534-553

四元数分析中光滑曲面上的 Poincaré-Bertrand 公式

周宇杰,1,*, 罗纬宇,2, 汪玉峰,3, 张忠祥,3

1澳门大学科技学院 澳门 999078

2广西师范大学数学与统计学院 广西桂林 541004

3武汉大学数学与统计学院 武汉 430079

Poincaré-Bertrand Formula on Smooth Surfaces in Quaternion Analysis

Zhou Yujie,1,*, Luo Weiyu,2, Wang Yufeng,3, Zhang Zhongxiang,3

1Faculty of Science and Technology,University of Macau, Macau 999078

2School of Mathematics and Statistics, Guangxi Normal University, Guangxi Guilin 541004

3School of Mathematics and Statistics, Wuhan University, Wuhan 430079

通讯作者: * 周宇杰,E-mail:651397389@qq.com

收稿日期: 2024-02-16   修回日期: 2024-09-24  

基金资助: 国家自然科学基金(11223344)

Received: 2024-02-16   Revised: 2024-09-24  

Fund supported: NSFC(11223344)

作者简介 About authors

罗纬宇,E-mail:luoweiyu18@163.com;

汪玉峰,E-mail:wh_yfwang@163.com;

张忠祥,E-mail:zhxzhang.math@whu.edu.cn

摘要

四元数代数是一种满足结合律但不满足交换律的代数结构, 对于研究高维空间中的方程和算子具有重要的理论意义和应用价值. 通过先证明四元数分析中的含参变量的 Privalov 定理, 再证明非主值积分的换序公式, 最后采用数学分析方法两边同时取极限证明了光滑曲面上的 Poincaré-Bertrand 公式.

关键词: 四元数分析; Cauchy 型奇异积分; Poincaré-Bertrand 公式

Abstract

Quaternion algebra is an algebraic structure that satisfies the associative law but not the commutative law. It has important theoretical significance and application value for studying equations and operators in high-dimensional spaces. By first proving the Privalov theorem with parameter variables in quaternion analysis, then proving the commutation formula of non principal value products, and finally using mathematical analysis methods to take limits on both sides, the Poincaré-Bertrand formula on smooth surfaces is proved.

Keywords: quaternion analysis; Cauchy type singular integral; Poincaré-Bertrand formula

PDF (628KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

周宇杰, 罗纬宇, 汪玉峰, 张忠祥. 四元数分析中光滑曲面上的 Poincaré-Bertrand 公式[J]. 数学物理学报, 2025, 45(2): 534-553

Zhou Yujie, Luo Weiyu, Wang Yufeng, Zhang Zhongxiang. Poincaré-Bertrand Formula on Smooth Surfaces in Quaternion Analysis[J]. Acta Mathematica Scientia, 2025, 45(2): 534-553

1 引言

四元数[1]是爱尔兰数学家 Hamilton 于 1843 年发现的, 它的发现是 19 世纪代数学中最重要的事件之一, 推动了平面复数系统的结构. 四元数是历史上第一个不满足乘法交换律的数系统, 为弱化、放弃和替代普通代数中的不同法则和公理提供了一个很好的例子 (如乘法交换律等). 这对代数的发展至关重要, 为许多代数系统的研究开辟了新的道路. 1982 年, Brackx, Delanghe 和 Sommen[2] 建立了 Clifford 分析的理论基础, 并在 Dirac 算子的基础上提出了正则函数, 其中四元数分析中的全纯函数是 Clifford 分析中当 n=3 时的正则函数. 路见可[3] 详细地叙述了单复变中的 Poincaré-Bertrand 公式, 1992 年 Kandmanov 给出多复变的 P-B 公式一个新的证明[4]. 黄沙[5]在此基础上, 通过直接证明主值积分换序证明了 Clifford 分析中奇异积分的 Poincaré-Bertrand 公式. 本文受文献 [5],[6],[7] 的启发, 采用了路见可[3]的思路, 通过引入不同于文献 [5] 奇异积分的新定义, 最终得到了最接近经典的 Poincaré-Bertrand 换序公式[3], 本文的创新点还有: (1) 恰当应用并创建了曲面积分的一系列不等式估计, 把曲面的几何性质充分运用到积分的不等式估计, 这些估计式在证明光滑曲面上的 Poincaré-Bertrand 换序公式中起到了十分重要的作用; (2) 建立并证明了四元数分析中的含参变量积分的 Privalov 定理, 并首次运用于换序公式的证明, 这是对经典 Poincaré-Bertrand 换序公式的证明方法的突破; (3) 证明的整体思想来源于经典复分析中的证明方法, 结合精细的不等式估计, 克服了缺乏弦弧不等式这一重要工具和四元数非交换性带来的困难, 使 Poincaré-Bertrand 换序公式的最后结果简洁优美.

2 预备知识

2.1 四元数及其运算

CR 分别表示复数域和实数域. 设 Q 是一个以 1,i,jk 为基元的四维实向量空间. 其中, 基元 1 是单位元, 而 i,j,k 满足关系

i2=j2=k2=1,ij=ji=k,jk=kj=i,ki=ik=j.
(2.1)

Q 中元

x=x1+ix2+jx3+kx4
(2.2)

称为实四元数, 简称四元数. 其中, x1,x2,x3,x4 称为四元数 x 的实系数,记

Q={x=x1+ix2+jx3+kx4x1,x2,x3,x4R}.
(2.3)

对任意 x=x1+ix2+jx3+kx4Q, 我们称 x1x 的实部或数量部分, 记为 Rex= x1; 称 ix2+jx3+kx4x 的虚部或向量部分, 记为 Imx=ix2+jx3+kx4. 对于 Q 中任两个四元数 x=x1+ix2+jx3+kx4,y=y1+iy2+jy3+ky4, 由向量空间的加法与数乘, 有

x+y=(x1+y1)+i(x2+y2)+j(x3+y3)+k(x4+y4),
(2.4)
ax=ax1+iax2+jax3+kax4,aR.
(2.5)

两个四元数的乘积可按分配律得出

xy=x1y1x2y2x3y3x4y4+i(x1y2+x2y1+x3y4x4y3)+j(x1y3+x3y1+x4y2x2y4)+k(x1y4+x4y1+x2y3x3y2).
(2.6)

四元数的乘法不满足交换律, 一般情况下, xyyx. 称

ˉx=x1ix2jx3kx4
(2.7)

x 的共轭四元数. 称 (x21+x22+x23+x24)12x 的模, 记为

|x|=(x21+x22+x23+x24)12.
(2.8)

2.2 四元数函数

HCl3 中的一个区域, 而 Cl3 中元记为 ω=x+iy+jz,

F:HQ,F=f0+if1+jf2+kf3,

其中, fi(x,y,z),i=0,1,2,3 是定义在 H 上的四元实函数, 则称 F 是定义 在 H 上的四元数函数.

定义2.1 定义微分算子

D=x+iy+jz,
(2.9)

其共轭算子

ˉD=xiyjz.
(2.10)

显然

DˉD=ˉDD=2x2+2y2+2z2=Δ,
(2.11)

其中, Δ 即四维空间中的 Laplace 算子. 若四元数函数 F(ω)C1(H), 且满足方程

DF=0.
(2.12)

则称 F(ω)H 内的左正则函数. 而若四元数函数 F(ω)C1(H), 且满足方程

FD=0.
(2.13)

则称 F(ω)D 内的右正则函数. 左正则函数将被简称为正则函数.

2.3 外代数

Mn 维可定向流形, ˉMΩ0Rn. 令 Vn 为由基 {dx1,dx2,,dxn} 张成的向量空间. 记定义在 Vn 上的 Grassman 代数为 G(Vn), 则 G(Vn) 的基为 {dxA,APN}. 定义 G(Vn) 上的外乘为

{dxAdxB=(1)P(A,B)dxAB,A,BPN,AB=,dxAdxB=0,A,BPN,AB,ηV=ABηAVBdxAdxB,η=AηAdxA,V=BVBdxB.

定义 Cn(R) 值的 n1 次型为 dσx=ni=1(1)i1eidˆxi, 其中

dˆxi=dx1dx2dxi1dxi+1dxn,i=1,2,,n.

如果设 dS 为面积微元, n=ni=1eini 为曲面上的外法向量, 则有 dσx=ndS, 且体积微元为

dxn=dx1dx2dxn.

在本文中, 我们主要考虑 n=3 时的情形.

3 相关定义与引理

先证明一些引理

引理3.1ζ=(ζ1,ζ2,ζ3)R3 中的笛卡尔坐标, ΓR3 是紧 C1 曲面. 则存在 Γ 的有限开覆盖 Γ1,,Γl 使得

(1) 每个 Γi 有圆盘参数域的显式表示, 也就是, Γi 是某个 C1 函数 fi:DiR 的图像, 其中 Diˆζ=(ζ1,ζαi1,ζαi+1,ζ3) 平面中的以某点 pi=(ζi1,ζiαi1,ζiαi+1,ζi3) 为中心以 2di 为半径的圆盘, 这里 αi 是某个整数, αi=1,2,3;

(2) 令 Γi={(ˆζ,fi(ˆζ));|ˆζpi|<di}, 则 {Γi}li=1 覆盖 Γ;

(3) 存在某个数 K>0 使得对于 i=1,,l,

[1+(fiζ1)2+(fiζ2)2]1/2
(3.1)
{|\zeta-t| \leqslant K\left|\hat{\zeta}-\hat{t}\right| \text { 对 } \zeta, t \in \Gamma_i ;}
(3.2)

(4) 存在正数 d 使得

B(t, d) \cap \Gamma=B(t, d) \cap \Gamma_i, \quad \text { 对 } t \in \Gamma_i^{\prime},
(3.3)

也就是, 对于 t \in \Gamma_i^{\prime}, B(t, d) \cap\left(\Gamma \backslash \Gamma_i\right)=\emptyset.

由于 \GammaC^1 光滑曲面, 由逆映射定理我们知道对于每点 p \in \Gamma 存在 p\mathbb{R}^{3} 中的邻域 U(p) 使得 \sigma_p=U(p) \cap \Gamma 有显式表示, 比如说

\zeta_3=f_p(\hat{\zeta}) \text { 于 }\left\{\hat{\zeta} ;\left|\hat{\zeta}-\hat{p}\right|<4 d_p\right\},

其中 f_pC^1 类的且若 \zeta=\left(\zeta_1,\zeta_2,\zeta_3\right) 我们不妨设 \hat{\zeta}=\left(\zeta_1,\zeta_2\right) \Gamma_p^{\prime}=\big\{\big(\zeta_1, \zeta_2, f_p(\hat{\zeta})\big) ;\big|\hat{\zeta}-\hat{p}\big| <d_p\big\}, 因为 \left\{\Gamma_p^{\prime}\right\}_{p \in \Gamma} 覆盖 \Gamma, 由\Gamma 的紧性, 存在有限多个 \Gamma_p^{\prime}, 比如说, \Gamma_{p_1}^{\prime}, \cdots, \Gamma_{p_l}^{\prime}, 使得 \cup_{i=1}^l \Gamma_{p_i}^{\prime}=\Gamma. 简记 p_ii, 我们得到 \Gamma_i=\left\{\left(\zeta_1, \zeta_2, f_i(\hat{\zeta}), \right) ;\left|\hat{\zeta}-\hat{p}_i\right|<2 d_i\right\}, 它是 f_iD_i= \left\{\hat{\zeta}; \mid \hat{\zeta}-\right. \left.\hat{p_{i}} \mid<2 d_i\right\} 上的图像. 因为在 \left\{\hat{\zeta} ;\left|\hat{\zeta}-\hat{p}_i\right|<4 d_i\right\} 上, f_i \in C^1, 故存在数 K_1>0 使得对 于 i=1, \cdots, l

\begin{aligned} &\left[1+\left(\frac{\partial f_i}{\partial \zeta_1}\right)^2+\left(\frac{\partial f_i}{\partial \zeta_2}\right)^2\right]^{1 / 2} \leqslant K_1 \text { 于 } D_i \text { 上,} \\ &\left|f_i(\hat{\zeta})-f_i(\hat{t})\right| \leqslant K_1\left|\hat{\zeta}-\hat{t}\right| \text { 对 } \zeta, t \in \Gamma_i. \end{aligned}

那么对于 \zeta, t \in \Gamma_i, 我们有

|\zeta-t|^2=\left|\hat{\zeta}-\hat{t}\right|^2+\left|f_i(\hat{\zeta})-f_i(\hat{t})\right|^2 \leqslant\left(K_1^2+1\right)\left|\hat{\zeta}-\hat{t}\right|^2.

K=\sqrt{K_1^2+1}, 我们得到 (3.1) 和 (3.2) 式. 既然 \Gamma 是紧 C^1 曲面, 由勒贝格覆盖定理可以找到 d 满足 (3.3) 式. (d 为 Lebesgue 常数[8].)

引理3.2\Gamma \subset \mathbb{R}^{3} 是紧 C^1 光滑曲面常数 dK, 由引理 3.1 给出. 0<\mu<1\delta<d. 则对于 t \in \Gamma

\int_{\Gamma} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}} \leqslant 2\pi K \frac{1}{\mu} d^\mu+V(\Gamma) \frac{1}{d^{2-\mu}};
(3.4)
\int_{\Gamma \backslash\{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} \leqslant 2\pi K^{3-\mu} \frac{1}{2-\mu} \frac{1}{\delta^{2-\mu}}+V(\Gamma) \frac{1}{d^{4-\mu}};
(3.5)
\text { 特别地,} \int_{\Gamma \backslash\{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_{\zeta}}{|\zeta-t|^{2}} \leqslant-2 \pi K \ln \frac{\delta}{k}+V(\Gamma) \frac{1}{d^{2}} \text { ;}
(3.6)
\int_{\Gamma \cap\{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}} \leqslant 2\pi K \frac{1}{\mu} \delta^\mu.
(3.7)

使用引理 3.1 的记号. 既然 \cup_{i=1}^l \Gamma_i^{\prime}=\Gamma, t 包含于某个 \Gamma_i^{\prime}, 比如说 \Gamma_{i_0}^{\prime}. 则由 (3.3) 式, \Gamma \cap\{x ;|x-t|<d\}=\Gamma_{i_0} \cap\{x ;|x-t|<d\}.

(1) 注意到 \Gamma \cap\{\zeta ;|\zeta-t|<d\} 包含于 f_{i_0}\left\{\hat{\zeta} ;\left|\hat{\zeta}-\hat{t}\right|<d\right\} 上的图像 \Gamma_{f_{i_0} d}, 那么由 (3.1) 式, 我们有

\begin{aligned}\int_{\Gamma\{\{|\zeta-t|<d\}} \frac{{\rm d} S_\zeta}{|\zeta-t|^{2-\mu}}\leqslant & \int_{\Gamma_{f_{i_0} d}} \frac{{\rm d} S_\zeta}{|\zeta-t|^{2-\mu}} \\\leqslant & \int_{\left\{\left|\hat{\zeta}-\hat{t}\right|<d\right\}} \frac{\left[1+\left(\frac{\partial f_{i_0}}{\partial \zeta_1}\right)^2+\left(\frac{\partial f_{i_0}}{\partial \zeta_2}\right)^2\right]^{1 / 2}}{|\zeta-t|^{2-\mu}} \mathrm{d\hat{\zeta}} \\\leqslant & \int_{\left\{\left|\hat{\zeta}-\hat{t}\right|<d\right\}} \frac{K}{|\zeta-t|^{2-\mu}} \mathrm{d\hat{\zeta}} \\\leqslant & \int_{\left\{\left|\hat{\zeta}-\hat{t}\right|<d\right\}} \frac{K}{|\hat{\zeta}-\hat{t}|^{2-\mu}} \mathrm{d\hat{\zeta}} \\\leqslant & 2\pi K \frac{1}{\mu} d^\mu.\end{aligned}
(3.8)

因此

\int_{\Gamma} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}}=\left[\int_{\Gamma \cap\{|\zeta-t|<d\}}+\int_{\Gamma \backslash\{|\zeta-t|<d\}}\right] \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}}\leqslant 2\pi K \frac{1}{\mu} d^\mu+V(\Gamma) \frac{1}{d^{2-\mu}}.
(3.9)

(2) 据 (3.3) 式, \Gamma \cap\{|\zeta-t| \leqslant \delta\} 包含 f_{i_0}\left\{\hat{\zeta} ;\left|\hat{\zeta} -\hat{t} \right|<\delta / K\right\} 上的图像, 所以

\begin{aligned}& \int_{\Gamma \cap\{\delta<|\zeta-t|<d\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} \\\leqslant & \int_{\left\{\delta / K<\left|\hat{\zeta}-\hat{t}\right|<d\right\}} \frac{K \mathrm{d\hat{\zeta}}}{|\zeta-t|^{4-\mu}} \\\leqslant & \int_{\left\{\delta / K<\left|\hat{\zeta}-\hat{t}\right|<d\right\}} \frac{K \mathrm{d\hat{\zeta}}}{\left|\hat{\zeta}-\hat{t}\right|^{4-\mu}} \\\leqslant & 2\pi K\frac{1}{2-\mu}\left[\frac{1}{(\delta / K)^{2-\mu}}-\frac{1}{(d)^{2-\mu}}\right] \\\leqslant &2\pi K^{3-\mu} \frac{1}{2-\mu} \frac{1}{(\delta)^{2-\mu}}.\end{aligned}
(3.10)

\begin{aligned}\int_{\Gamma \backslash\{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} & =\left[\int_{\Gamma \cap\{\delta<|\zeta-t|<d\}}+\int_{\Gamma \backslash\{|\zeta-t|<d\}}\right] \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} \\& \leqslant 2\pi K^{3-\mu} \frac{1}{2-\mu} \frac{1}{\delta^{2-\mu}}+V(\Gamma) \frac{1}{d^{4-\mu}}.\end{aligned}
(3.11)

u=2 时过程类似.

(3)

\begin{aligned}\int_{\Gamma \cap\{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}} & \leqslant \int_{\left\{\left|\hat{\zeta}-\hat{t}\right|<\delta\right\}} \frac{K \mathrm{d\hat{\zeta}}}{|\zeta-t|^{2-\mu}} \\& \leqslant \int_{|\hat{\zeta}-\hat{t}|<\delta} \frac{K \mathrm{d\hat{\zeta}}}{|\hat{\zeta}-\hat{t}|^{2-\mu}}\\& =2\pi K \frac{1}{\mu} \delta^\mu.\end{aligned}
(3.12)

引理3.3 对于非零的 t, x \in \mathbb{R}^n, n \geqslant 2, 和 \nu \geqslant 0,

\left|\frac{x}{|x|^{\nu+2}}-\frac{t}{|t|^{\nu+2}}\right| \leqslant \frac{P_\nu(x, t)}{|x|^{\nu+1}|t|^{\nu+1}}|x-t| \text {. }
(3.13)

其中

\begin{aligned}P_\nu(x, t) :=\sum_{k=0}^\nu|x|^{\nu-k}|t|^k=\frac{|x|^{\nu+1}-|t|^{\nu+1}}{|x|-|t|} \quad (|x| \neq|t|).\end{aligned}
(3.14)

通过平方和展开我们得到

\left|\frac{x}{|x|^{\nu+2}}-\frac{t}{|t|^{\nu+2}}\right|=\frac{\left.|x| x\right|^\nu-t|t|^\nu \mid}{|x|^{\nu+1}|t|^{\nu+1}} \text {. }
(3.15)

因此, 如果能证明

\left.|x| x\right|^\nu-t|t|^\nu\left|\leqslant P_\nu(x, t)\right| x-t \mid,
(3.16)

结论自然成立. 为此, 注意到如果 t 或者 x 等于 0, 或者 |t|=|x|, 结论显然成立, 因此假设 t, x \neq 0|t| \neq|x|. 则上式等价于

\left.|x| x\right|^\nu-\left.t|t|^\nu\right|^2 \leqslant P_\nu^2\cdot|x-t|^2.
(3.17)

|x|^{2\nu+2}+|t|^{2\nu+2}+|x|^{\nu}|t|^{\nu}(-t \bar{x}-x \bar{t}) \leqslant P_\nu^2\cdot|x-t|^2.
(3.18)

两边同时减去 P_\nu^2\cdot(|x|-|t|)^2=(|x|^{\nu+1}-|t|^{\nu+1})^2,

|x|^\nu|t|^\nu(2|x||t|-t \bar{x}-x \bar{t}) \leqslant P_\nu^2\cdot\left(|x-t|^2-(|x|-|t|)^2\right).
(3.19)

因为

0 \leqslant|x-t|^2-(|x|-|t|)^2=2|x||t|-t \bar{x}-x \bar{t}.
(3.20)

因此原式等价于

|x|^\nu|t|^\nu \leqslant P_\nu^2(x, t)=|x|^\nu|t|^\nu+\cdots,
(3.21)

显然成立.

定理3.1 (含参变量的Privalov定理) 设 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面, \Sigma\mathbb{R}^{3} 中紧子集. 对 f \in H\left(\Gamma \times\right. \left.\Sigma\right), 令

F(t, \tau)=\frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta f(\zeta, \tau).
(3.22)

F \in H\left(\Gamma \times \Sigma\right).

只要证明 F\left(t, \tau\right) 分别对 t\tau 作为一元函数时一致地 \in H 即可.

f(\zeta, \tau) \in H^{\alpha, \beta}. \left|t_1-t_2\right|=\delta. 当 \tau \in \Sigma 固定时, 由于

\left|f\left(t_1, \tau\right)-f\left(t_2, \tau\right)\right| \leqslant A\left|t_1-t_2\right|^\alpha, \quad t_1, t_2 \in \Gamma,
(3.23)

于是有

\begin{aligned}& F\left(t_1, \tau\right)-F\left(t_2, \tau\right) \\&=\left(\frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t_1}}{|\zeta-t_1|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau)-f(t_1, \tau)]-\frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t_2}}{|\zeta-t_2|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau)-f(t_2, \tau)]\right)\\& +\left( \frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t_1}}{|\zeta-t_1|^{3}} \mathrm{ d} \sigma_\zeta f(t_1, \tau)-\frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t_2}}{|\zeta-t_2|^{3}} \mathrm{ d} \sigma_\zeta f(t_2, \tau)\right)\\&=I+J.\end{aligned}
(3.24)

由于

\frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta=\frac{1}{2}, \quad \forall t \in \Gamma,
(3.25)

因此

|J| =\frac{1}{2}|f(t_1, \tau)-f(t_2, \tau)|\leqslant \frac{1}{2}A\left|t_1-t_2\right|^\alpha.
(3.26)

对于 I,

\begin{aligned}|I|&\leqslant\bigg|\frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}}\frac{\overline{\zeta-t_1}}{|\zeta-t_1|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau)-f(t_1, \tau)]\\& -\frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}} \frac{\overline{\zeta-t_2}}{|\zeta-t_2|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau)-f(t_2, \tau)]\bigg|\\& +\frac{1}{4\pi}\int_{\Gamma \cap\{|\zeta-t_1|<4\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t_1|^{2-\alpha}} +\frac{1}{4\pi}\int_{\Gamma \cap\{|\zeta-t_2|<4\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t_2|^{2-\alpha}} \\&=I_1+I_2+I_3.\end{aligned}
(3.27)

\zeta \in \Gamma \setminus B(t_1,2\delta) 时, |\zeta-t_1|\leqslant2|\zeta-t_2|,|\zeta-t_2|\leqslant2|\zeta-t_1|.

由 Hile 引理和引理 3.2 的 (2),

\begin{aligned}|I_1|&\leqslant\frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}}\left|\frac{\overline{\zeta-t_1}}{|\zeta-t_1|^{3}}-\frac{\overline{\zeta-t_2}}{|\zeta-t_2|^{3}} \right||f(\zeta, \tau)-f(t_1, \tau)| \mathrm{ d} S_\zeta\\& +\frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}}\frac{1}{|\zeta-t_2|^{2}}|f(t_2, \tau)-f(t_1, \tau)| \mathrm{ d} S_\zeta\\&\leqslant \frac{A}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}}\frac{6}{|\zeta-t_1|^{3-\alpha}} \mathrm{ d} S_\zeta \cdot \delta \\& +\frac{A}{4\pi}\int_{\Gamma\setminus \{|\zeta-t_1|<2\delta\}}\frac{1}{|\zeta-t_2|^{2}} \mathrm{ d} S_\zeta \cdot \delta^{\alpha}\\&\leqslant M_1\delta^{\alpha}+M_2\delta^{\alpha}{\rm ln}\delta.\end{aligned}
(3.28)

由引理 3.2 的 (3),

|I_2|\leqslant 2\pi K \frac{1}{\alpha} (4\delta)^\alpha,|I_3|\leqslant 2\pi K \frac{1}{\alpha} (4\delta)^\alpha.
(3.29)

所以 F\left(t, \tau\right)t 作为一元函数时一致地属于 H.

现任意固定 t\in \Gamma. 任取 \tau_1, \tau_2 \in \Sigma 且设 \left|\tau_1-\tau_2\right|=\delta 已充分小. 则

\left|f\left(\zeta, \tau_1\right)-f\left(\zeta, \tau_2\right)\right| \leqslant B\left|\tau_1-\tau_2\right|^\beta, \quad \tau_1, \tau_2 \in \Sigma,
(3.30)

我们有

\begin{aligned}& F\left(t, \tau_2\right)-F\left(t, \tau_1\right) \\&=\frac{1}{4\pi} \int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau_2)-f(\zeta, \tau_1)]\\&= \frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t|<\delta\}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau_2)-f(\zeta, \tau_1)]\\& + \frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t|<\delta\}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau_2)-f(t, \tau_2)] \\& -\frac{1}{4\pi}\int_{\Gamma\cap \{|\zeta-t|<\delta\}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta [f(\zeta, \tau_1)-f(t, \tau_1)]\\& +[f\left(t, \tau_2\right)-f\left(t, \tau_1\right)]\frac{1}{4\pi} \int_{\Gamma\cap \{|\zeta-t|<\delta\}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \\&= I_1+I_2+I_3+I_4,\end{aligned}
(3.31)

由引理 3.2 的 (3),

|I_2|,|I_3| \leqslant \frac{1}{4\pi}\int_{\Gamma\cap \{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\alpha}} \leqslant \frac{1}{2} K \frac{1}{\alpha} \delta^\alpha,
(3.32)

对于 I_1, 由引理 3.2 的 (2),

|I_1| \leqslant \frac{1}{4\pi}\int_{\Gamma\setminus \{|\zeta-t|<\delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^2}\cdot B\delta^\beta \leqslant \frac{1}{4\pi}[-2\pi K \ln{\frac{\delta }{k}} +V(\Gamma) \frac{1}{d^{2}}]\cdot B\delta^\beta.
(3.33)

对于 I_4, 将积分区域补充成封闭光滑曲面, 主值积分 \frac{1}{4\pi}\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta=\frac{1}{2}, 所以

|I_4| \leqslant M\cdot B \delta^\beta \ln\delta.
(3.34)

所以 F\left(t, \tau\right)\tau 作为一元函数时一致地属于 H.

注3.1 定理 3.1 证明了含参变量的 Privalov 定理, 其中通过分别讨论两个奇异点附近的积分从而将主值积分分解的思路在后续证明中还会多次用到.

4 Poincaré-Bertrand 公式

下面证明本文的主要结论

定理4.1 (Poincaré-Bertrand公式) 设 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 封闭光滑曲面. 令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1). 则对于 t \in \Gamma

\begin{aligned}& \int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau) \\= & \left[\frac{4\pi}{2}\right]^2 \varphi(t, t)+\int_{\Gamma_\tau}\left[\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right].\end{aligned}
(4.1)

为此, 首先考虑 z \notin \Gamma 时的情形.

引理4.1\Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面. 令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1). 则对于 z \notin \Gamma

\begin{aligned}&\frac{1}{4\pi} \int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau [\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right]\\= & \frac{1}{4\pi}\int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau [\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right].\end{aligned}
(4.2)

由引理 3.1, 存在 Lebesgue 常数, 将曲面分成有限片, 每片直径小于 Lebesgue 常数, 从而这有限片均有局部坐标表示, 化上述积分分解成这些有限片上的积分求和, 当 \zeta\tau 不在同一片区域时, 是正常积分与正常积分的换序, 这只要四重积分存在, 累次积分的内层积分存在, 由 Fubini 定理[10], 换序公式成立.

\zeta\tau 在同一片区域时, 是正常二重积分与带弱奇性的二重积分的换序, 由引理 3.2, 内层弱奇异积分收敛, 而因为

\begin{aligned} &\left|\frac{1}{4\pi} \int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau [\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right]\right|\\ \leqslant & M \int_{\Gamma_\zeta} \int_{\Gamma_\tau} \frac{1}{|\tau-\zeta|^{2-u}}\mathrm{ d}S_\tau\mathrm{ d}S_\zeta\\ \leqslant & M \int_{\Gamma_\zeta} [2\pi K \frac{1}{\mu} d^\mu+V(\Gamma) \frac{1}{d^{2-\mu}}]\mathrm{ d}S_\zeta\\ \leqslant & M V(\Gamma) [2\pi K \frac{1}{\mu} d^\mu+V(\Gamma) \frac{1}{d^{2-\mu}}]\\ < & \infty \end{aligned}

故四重积分收敛. 由 Fubini 定理[10], 引理 4.1 成立.

引理4.2 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 封闭光滑曲面. 令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1). 则对于 z \notin \Gamma

\begin{aligned}&\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\right]\\=&\frac{1}{4\pi} { \int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\right] }.\end{aligned}
(4.3)

F(z^*)=\frac{1}{4\pi} \int_{\Gamma_\tau} \frac{\overline{\tau-z^*}}{|\tau-z^*|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau).

F^+(\zeta)=\frac{1}{2}\varphi(\zeta, \zeta)+\frac{1}{4\pi} \int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau).

z \in \Omega^+ 时,

\begin{equation} \begin{aligned} \mbox{ (4.3) 式左边}&=\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[F^+(\zeta)-\frac{1}{2}\varphi(\zeta, \zeta)\right]\\ &=F(z)-\frac{1}{8\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \varphi(\zeta, \zeta)\\ &=\frac{1}{8\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \varphi(\zeta, \zeta). \end{aligned} \end{equation}
(4.4)

z \in \Omega^- 时,

\begin{equation} \begin{aligned} \mbox{ (4.3) 式左边}&=\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[F^+(\zeta)-\frac{1}{2}\varphi(\zeta, \zeta)\right]\\ &=0-\frac{1}{8\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \varphi(\zeta, \zeta)\\ &=-\frac{1}{8\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \varphi(\zeta, \zeta). \end{aligned} \end{equation}
(4.5)

下面考虑 (4.3) 式右边 \frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}. z \in \Omega^+,z^* \in \Omega^+ 时,

\begin{aligned}&\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-z^*}}{|\zeta-z^*|^{3}}\\=&\frac{1}{4\pi}\int_{\partial B(z,\delta)} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-z^*}}{|\zeta-z^*|^{3}}+\frac{1}{4\pi}\int_{\partial B(z^*,\delta)} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-z^*}}{|\zeta-z^*|^{3}}\\=&\frac{\overline{z-z^*}}{|z-z^*|^3}+\frac{\overline{z^*-z}}{|z^*-z|^3}=0.\end{aligned}
(4.6)

z \in \Omega^-,z^* \in \Omega^+ 时,

\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-z^*}}{|\zeta-z^*|^{3}}=\frac{\overline{z^*-z}}{|z^*-z|^3}.
(4.7)

z^*\to \tau 时, 可以得到

\frac{1}{2} \frac{\overline{\tau-z}}{|\tau-z|^{3}}+\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-\tau}}{|\zeta-\tau|^{3}}=0. \ \ (z \in \Omega^+)
(4.8)

\frac{1}{2} \frac{\overline{\tau-z}}{|\tau-z|^{3}}+\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\zeta-\tau}}{|\zeta-\tau|^{3}}=\frac{\overline{\tau-z}}{|\tau-z|^{3}}. \ \ (z \in \Omega^-).
(4.9)

\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}=\begin{cases}\frac{1}{2} \frac{\overline{\tau-z}}{|\tau-z|^{3}}, \ \ z \in \Omega^+,\\-\frac{1}{2} \frac{\overline{\tau-z}}{|\tau-z|^{3}}, \ \ z \in \Omega^-.\end{cases}
(4.10)
\begin{equation}\label{eq:7} \mbox{ (4.3) 式右边}= \begin{cases} \frac{1}{8\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-z}}{|\tau-z|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau),\ \ z \in \Omega^+,\\ -\frac{1}{8\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-z}}{|\tau-z|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau),\ \ z \in \Omega^-. \end{cases} \end{equation}
(4.11)

所以 (4.3) 式成立.

定理4.2 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 封闭光滑曲面. 令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1). 则对于 z \notin \Gamma

\begin{aligned}&\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right]\\=&\frac{1}{4\pi} { \int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right] }.\end{aligned}
(4.12)

由引理 4.1, 4.2 立即可得.

接下来令定理 4.2 中的 z \to t,t \in \Gamma. 为此, 需要证明接下来几个相关的引理.

引理4.3\Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面. 当 z \to t 时, 有

\frac{|\zeta-t|}{|\zeta-z|}<2
(4.13)

根据文献 [11,引理 8.1], 设 N(t)\Gamma 上的一个连续的单位法向量场. 然后对于每个角度 \theta_0 \in(0,\frac{\pi}{2}), 存在 \eta > 0, 使得

\theta(t,\zeta)\in(\frac{\pi}{2}-\theta_0,\frac{\pi}{2}+\theta_0),\ \ \text{对于}0<|t-\zeta|<\eta,\ \ \ t,\zeta\in \Gamma,

其中 \theta(t,\zeta) 表示向量 N(t)t-\zeta 之间的夹角.

不妨设 \theta_0=\frac{\pi}{4},\theta(z) 表示向量 N(t)z-\zeta 之间的夹角. 则由正弦定理,

\frac{|\zeta-t|}{|\zeta-z|}=\frac{{\rm sin}\theta(z)}{{\rm sin}\theta(t,\zeta)}<\frac{1}{\frac{1}{2}\sqrt{2}}<2.
(4.14)

|t-\zeta|>\eta 时,可令 |z-t|<\frac{\eta}{2},

|\zeta-z|>|\zeta-t|-|z-t|>|\zeta-t|-\frac{|\zeta-t|}{2}=\frac{|\zeta-t|}{2},
(4.15)

\frac{|\zeta-t|}{|\zeta-z|}<2.
(4.16)

引理4.4 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面. 令 d 是由 \Gamma 确定的引理 3.1 中给出的常数. 令 \delta<d, \tau, t \in \Gamma, z \notin \Gamma,|\tau-t|>\delta. 则

\left|\int_{\Gamma \cap|\zeta-t|<\delta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \leqslant \frac{2\cdot 4\pi}{(|\tau-t|-\delta)^2},
(4.17)
\left|\int_{\Gamma \cap|\zeta-t|<\delta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \leqslant \frac{ 4\pi}{(|\tau-t|-\delta)^2}.
(4.18)

由假设 \delta<d, 故由引理 3.1 的 (4), 我们可以假设 \Gamma 是连通的. 我们记 \mathbb{R}^{3} \backslash \Gamma 的无界分支为 \Omega^{-}. 令

\gamma_\lambda=\{\zeta \in \Gamma ; \lambda<|\zeta-t|<\delta\}, \gamma_1=\left\{\zeta \in \overline{\Omega^{-}} ;|\zeta-t|=\lambda\right\}, \gamma_2=\left\{\zeta \in \overline{\Omega^{-}} ;|\zeta-t|=\delta\right\}.

分片光滑曲面 \gamma_1\gamma_2 由相应的球的外法线定向. 显然, \partial\left(\Omega^{-} \cap\{\lambda<|\zeta-t|<\delta\}\right)= \gamma_1+\gamma_2+\gamma_\lambda. 既然 \frac{\overline{\zeta-t}}{|\zeta-t|^{3}}\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\overline{\Omega^{-} \cap\{\lambda<|\zeta-t|<\delta\}} 的某个邻域中正则, 由散度公式及注意到 |\zeta-\tau| \geq|\tau-t|-|\zeta-t| \geq|\tau-t|-\delta, 我们有

\begin{aligned}& \left|\int_{\gamma_\lambda} \frac{\overline{\zeta-t}}{|\zeta-t|^3} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\= & \left|\frac{1}{\delta^2} \int_{\gamma_2} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} S_\zeta-\frac{1}{\lambda^2} \int_{\gamma_1} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} S_\zeta\right| \\\leqslant & \frac{1}{\delta^2} \frac{1}{(|\tau-t|-\delta)^2} 4\pi \delta^2+\frac{1}{\lambda^2} \frac{1}{(|\tau-t|-\delta)^2} 4\pi \lambda^2\\= & \frac{8\pi}{(|\tau-t|-\delta)^2}.\end{aligned}
(4.19)

因此

\begin{aligned}& \left|\int_{\Gamma \cap|\zeta-t|<\delta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\= & \lim _{\lambda \rightarrow 0}\left|\int_{\gamma_\lambda} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\\leqslant & \frac{8\pi}{(|\tau-t|-\delta)^2}.\end{aligned}
(4.20)

而对于 \int_{\Gamma \cap|\zeta-t|<\delta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} 时, 由引理 4.3,

\begin{aligned}& \left|\int_{\Gamma \cap|\zeta-t|<\delta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\= & \left|\int_{\gamma_2} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\\leqslant & \int_{\gamma_2} \frac{4}{|\zeta-t|^{2} } \frac{1}{|\tau-\zeta|^{2}}\mathrm{ d} S_\zeta \\\leqslant &\frac{4}{\delta^2} \int_{\gamma_2} \frac{1}{|\tau-\zeta|^{2}} \mathrm{ d} S_\zeta\\\leqslant & \frac{4}{\delta^2} \frac{1}{(|\tau-t|-\delta)^2} 4\pi \delta^2\\= & \frac{16\pi}{(|\tau-t|-\delta)^2}.\end{aligned}
(4.21)

引理4.5 \Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面. 令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1), t \in \Gamma, \tau \in \Gamma, t \neq \tau, 0<\rho \leqslant+\infty, \Gamma_\rho=\Gamma_\zeta \cap\{|\zeta-t|<\rho\}.

\Phi_\rho(t, \tau) =\int_{\Gamma_\rho} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)].

那么 \Phi_\rho(t, \tau)\Gamma \times \Gamma \backslash\{(t, \tau) \in \Gamma \times \Gamma ; t=\tau\} 上连续, 且

\left|\Phi_\rho(t, \tau)\right| \leqslant C\left(\frac{1}{|\tau-t|^{2-\mu}}+1\right) \leqslant \frac{C^{\prime}}{|\tau-t|^{2-\mu}}, \quad \text { 对 }|\tau-t|<d,

其中 d 是由 \Gamma 确定的引理 3.1 给出的常数, 常数 C 只依赖于 \Gamma\varphi 而不依赖于 \rho. 特别是, 我们有

\left|\Phi_{\infty}(t, \tau)\right|=\left|\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right| \leqslant \frac{C^{\prime \prime}}{|\tau-t|^{2-\mu}}.
(4.22)

\varphi(\zeta, \tau)=\varphi_0(\zeta, \tau)+i\varphi_1(\zeta, \tau)+j\varphi_2(\zeta, \tau)+k\varphi_3(\zeta, \tau), 则

\begin{aligned} \Phi_\rho(t, \tau)=&\left[\int_{\Gamma_\rho} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\left[\varphi_0(\zeta, \tau)-\varphi_0(\tau, \tau)\right]\right] n_\tau \\ &+\left[\int_{\Gamma_\rho} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\left[\varphi_1(\zeta, \tau)-\varphi_1(\tau, \tau)\right]\right] n_\tau i+\cdots. \end{aligned}

既然 \GammaC^1 光滑曲面, n_\tau 连续. 所以为证 \Phi_\rho(t, \tau)\Gamma \times \Gamma \backslash\{(t, \tau) \in \Gamma \times \Gamma ; t=\tau\} 上连续, 只要证明在每点 \left(t_0, \tau_0\right) \in \Gamma \times \Gamma, t_0 \neq \tau_0,

\int_{\Gamma_\rho} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\left[\varphi_0(\zeta, \tau)-\varphi_0(\tau, \tau)\right]
(4.23)

连续就够了. 将上式分割成两部分

\begin{aligned}& \int_{\Gamma_\rho \backslash\left|\zeta-\tau_0\right|<\frac{\left|\tau_0-t_0\right|}{2}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\left[\varphi_0(\zeta, \tau)-\varphi_0(\tau, \tau)\right]\\&+ \int_{\Gamma_\rho \cap\left|\zeta-\tau_0\right|<\frac{\left|\tau_0-t_0\right|}{2}} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\left[\varphi_0(\zeta, \tau)-\varphi_0(\tau, \tau)\right],\end{aligned}
(4.24)

由引理 3.1 它们都在 \left(t_0, \tau_0\right) 附近连续. 因此 4.23 式在 \left(t_0, \tau_0\right) 连续. 对曲面 \Gamma, 使用引理 3.1 中的记号. 特别是, 有由 \Gamma 决定的常数 d\mathrm{K}. 令 \delta= |\tau-t|. 由假设有 \delta<d. 令 \Gamma_1=\Gamma_\rho-B(t, 2 \delta), \Gamma_2=\Gamma_\rho \cap B\left(t, \frac{\delta}{2}\right), \Gamma_3=\Gamma_\rho-\Gamma_1-\Gamma_2. 设

|\varphi(x, t)-\varphi(y, \tau)| \leqslant M\left(|x-y|^\mu+|t-\tau|^\mu\right), \text { 对 }(x, t),(y, \tau) \in \Gamma \times \Gamma.
(4.25)
\begin{aligned}\left|\Phi_\rho(t, \tau)\right| \leqslant & \left|\int_{\Gamma_1} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right|\\&+\left|\int_{\Gamma_2} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right| \\&+ \left|\int_{\Gamma_3} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right| \\= & I_1+I_2+I_3.\end{aligned}
(4.26)

\zeta \in \Gamma_1, 有 |\zeta-\tau|>|\zeta-t|-|\tau-t| \geqslant \frac{1}{2}|\zeta-t|. 那么由引理 3.2 的 (2), 有

\begin{aligned}I_1 & \leqslant M \int_{\Gamma_1} \frac{1}{|\zeta-t|^2} \frac{1}{|\tau-\zeta|^{2-\mu}} \mathrm{dS}_\zeta \\& \leqslant M 2^{2-\mu} \int_{\Gamma_1} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} \\& \leqslant M 2^{2-\mu} \int_{\Gamma \backslash\{|\zeta-t|<2 \delta\}} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{4-\mu}} \\& \leqslant M 2^{2-\mu}\left[K^{3-\mu} \cdot 2\pi \cdot \frac{1}{2-\mu} \frac{1}{(2 \delta)^{2-\mu}}+V(\Gamma) \frac{1}{d^{4-\mu}}\right].\end{aligned}
(4.27)

\zeta \in \Gamma_3, 有 |\zeta-t|>\frac{\delta}{2},|\zeta-\tau|<3 \delta, 故由引理 3.2 的 (3),

\begin{aligned}I_3 & \leqslant M \int_{\Gamma_3} \frac{1}{|\zeta-t|^2} \frac{1}{|\tau-\zeta|^{2-\mu}} \mathrm{dS}_\zeta \\& \leqslant M\left(\frac{2}{\delta}\right)^2 \int_{\Gamma_3} \frac{\mathrm{dS}_\zeta}{|\tau-\zeta|^{2-\mu}} \\& \leqslant M\left(\frac{2}{\delta}\right)^2 \int_{\Gamma \cap|\zeta-\tau|<3 \delta} \frac{\mathrm{dS}_\zeta}{|\tau-\zeta|^{2-\mu}} \\& \leqslant M\left(\frac{2}{\delta}\right)^2 K \cdot 2\pi \cdot \frac{1}{\mu}(3 \delta)^\mu \\& =8\pi \cdot 3^\mu M K \frac{1}{\mu} \frac{1}{\delta^{2-\mu}}.\end{aligned}
(4.28)

\zeta \in \Gamma_2, 有 |\zeta-t|<\frac{\delta}{2},|\zeta-\tau| \geq|\tau-t|-|\zeta-t|>\delta-\frac{\delta}{2}=\frac{\delta}{2}.

\begin{aligned}I_2 &\leqslant \left|\int_{\Gamma_2} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(t, \tau)]\right| \\& +\left|\int_{\Gamma_2} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)]\right|\\&=\Theta_1+\Theta_2.\end{aligned}
(4.29)

由引理 3.2 的 (3), 有

\begin{aligned}\Theta_1 & \leqslant M \int_{\Gamma_2} \frac{1}{|\zeta-t|^{2-\mu}} \frac{1}{|\tau-\zeta|^2} \mathrm{dS}_\zeta \\& \leqslant M\left(\frac{2}{\delta}\right)^2 \int_{\Gamma_2} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}} \\& \leqslant M\left(\frac{2}{\delta}\right)^2 \int_{\Gamma \cap|\zeta-t|<\delta / 2} \frac{\mathrm{dS}_\zeta}{|\zeta-t|^{2-\mu}} \\& \leqslant M\left(\frac{2}{\delta}\right)^2 2\pi K \frac{1}{\mu}\left(\frac{\delta}{2}\right)^\mu \\& =2^{2-\mu} M 2\pi K \frac{1}{\mu} \frac{1}{\delta^{2-\mu}}.\end{aligned}
(4.30)

根据引理 4.4, 注意到 \Gamma_2=\Gamma \cap|\zeta-t|<\min \{\rho, \delta / 2\}, 得到

\begin{aligned}\Theta_2 & \leqslant M|\tau-t|^\mu\left|\int_{\Gamma_2} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}\right| \\& \leqslant M|\tau-t|^\mu \frac{2 \cdot 4\pi}{(|\tau-t|-\min \{\rho, \delta / 2\})^2} \\& \leqslant M|\tau-t|^\mu \frac{2 \cdot 4\pi}{\left(|\tau-t|-\frac{\delta}{2}\right)^2} \\& =\frac{ M \cdot 32\pi}{|\tau-t|^{n-\mu}}.\end{aligned}
(4.31)

\Phi_{\infty}(t, \tau)\Gamma \times \Gamma \backslash\{(t, \tau) \in \Gamma \times \Gamma ; t=\tau\} 上的连续性得到引理 4.5 成立.

同理, 由 (4.3) 式, |\zeta-z|>\frac{|\zeta-t|}{2}, 与上面证明过程完全相同, 可以得到

\left|\int_{\Gamma} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right| \leqslant \frac{C^{\prime \prime}}{|\tau-t|^{2-\mu}}.
(4.32)

最后, 根据文献 [11,引理 7.2], 还有以下引理.

引理4.6 \Gamma\mathbb{R}^{3} 中的紧 C^1 光滑曲面, 则

\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}=0,\tau \neq t,
(4.33)

接下来考虑定理 4.2 中 z \to t,(t \in \Gamma) 时的情形.

由定理 4.2, 令

\begin{aligned}&G(z)=\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right]=\\&H(z)=\frac{1}{4\pi} { \int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right] }.\end{aligned}
(4.34)

G(t)=\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \left[\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right],
(4.35)
H(t)=\frac{1}{4\pi} { \int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right] }.
(4.36)

z \to t 时, 先考虑 G(z).

\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)=g(\zeta),
(4.37)

由 plemelj 公式[7],

G^+(t)=\frac{1}{2}g(t)+\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta g(\zeta),
(4.38)
G^-(t)=-\frac{1}{2}g(t)+\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta g(\zeta).
(4.39)

所以

\frac{G^{+} (t)+G^{-} (t)}{2}= G(t).
(4.40)

再考虑 H(z)z \to t 时.

\begin{aligned}H(z)&=\frac{1}{4\pi}\int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau\varphi(\tau, \tau)\right] \\& +\frac{1}{4\pi}\int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right]=\Theta(z)+\Phi(z).\end{aligned}
(4.41)

由 (4.11) 式,

\Theta(z)=\begin{cases}\frac{1}{8\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-z}}{|\tau-z|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\ \ z \in \Omega^+,\\-\frac{1}{8\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-z}}{|\tau-z|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\ \ z \in \Omega^-.\end{cases}
(4.42)

所以

\Theta^+(t)=\frac{1}{2}\left[\frac{1}{2}\varphi(t,t)+\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-t}}{|\tau-t|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\right],
(4.43)
\Theta^-(t)=-\frac{1}{2}\left[-\frac{1}{2}\varphi(t,t)+\frac{1}{4\pi}\int_{\Gamma_\tau} \frac{\overline{\tau-t}}{|\tau-t|^{3}} \mathrm{ d} \sigma_\tau \varphi(\tau, \tau)\right],
(4.44)
\frac{\Theta^{+} (t)+\Theta^{-} (t)}{2}=\frac{1}{4}\varphi(t,t).
(4.45)

定理4.3 \Phi(z) 由 (4.41) 式定义. 则

\frac{\Phi^{+} (t)+\Phi^{-} (t)}{2}=\Phi (t),
(4.46)

其中

\Phi (t) =\frac{1}{4\pi}\int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right],
(4.47)

\Phi^{+} (t), \Phi^{-} (t) 分别表示 \Phi(z)z 从曲面正侧与负侧沿法向量趋于 t 时的极限值.

\delta 充分小,

\begin{aligned}\Phi (z) = \,&\frac{1}{4\pi}\int_{\Gamma_\tau\cap|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right] \\&+\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right] \\=\,&\Phi _{1} (z)+\Phi _{2} (z).\end{aligned}
(4.48)

由 (4.32) 式,

\Phi _{1} (z)\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\cap|\tau-t|<\delta}\frac{C^{\prime\prime}}{|\tau-t|^{2-\mu}} \mathrm{dS}_\zeta \leqslant \frac{1}{8\pi} K C^{\prime\prime} \frac{1}{\mu} \delta^\mu.
(4.49)
\begin{aligned}\Phi _{2} (z)&=\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-\tau|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right] \\& +\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right] \\& +\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\backslash|\zeta-\tau|<\frac{\delta}{2}\backslash|\zeta-t|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]\right] \\&=\Phi _{21} (z)+\Phi _{22} (z)+\Phi _{23} (z).\end{aligned}
(4.50)

同理, 将 \Phi(t) 的积分区域作同样分解,

\Phi(t)=\Phi _{1} (t)+\Phi _{2} (t),
(4.51)
\Phi _{2} (t)=\Phi _{21} (t)+\Phi _{22} (t)+\Phi _{23} (t).
(4.52)

由 (4.22) 式,

\Phi _{1} (t)\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\cap|\tau-t|<\delta}\frac{C^{\prime}}{|\tau-t|^{2-\mu}} \mathrm{dS}_\zeta \leqslant \frac{1}{8\pi} K C^{\prime} \frac{1}{\mu} \delta^\mu.
(4.53)

|\zeta-\tau|<\frac{\delta}{2}, 我们有

|\zeta-t|>|\tau-t|-|\zeta-\tau| > \frac{1}{2}|\tau-t|,

所以

\begin{aligned}|\Phi _{21} (z)-\Phi _{21} (t)|&\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\int_{\Gamma_\zeta\cap|\zeta-\tau|<\frac{\delta}{2}}\frac{(|\zeta-z|+|\zeta-t|)|z-t|}{|\zeta-z|^{2}|\zeta-t|^{2}}\frac{1}{|\zeta-\tau|^{2-\mu}}\mathrm{ d} S_\zeta\mathrm{ d} S_\tau \\&\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\int_{\Gamma_\zeta\cap|\zeta-\tau|<\frac{\delta}{2}}\frac{|z-t|}{|\zeta-t|^{3}}\frac{1}{|\zeta-\tau|^{2-\mu}}\mathrm{ d} S_\zeta\mathrm{ d} S_\tau \\&\leqslant \frac{1}{16\pi^2}\cdot8|z-t|\cdot\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\frac{1}{|\tau-t|^3}\mathrm{ d} S_\tau\int_{\Gamma_\zeta\cap|\zeta-\tau|<\frac{\delta}{2}}\frac{1}{|\zeta-\tau|^{2-\mu}}\mathrm{ d} S_\zeta\\&\leqslant\frac{1}{16\pi^2}\cdot8|z-t|\cdot 2\pi K \frac{1}{\mu} \cdot(\frac{\delta}{2})^{\mu}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\frac{1}{|\tau-t|^{3}}\mathrm{ d} S_\tau\\&\leqslant M\frac{|z-t|}{\delta^{1-\mu}}.\end{aligned}
(4.54)

接下来考虑 \Phi _{22} (z).

f(\tau,\zeta)=\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)],
(4.55)
f(\tau,t)=\frac{\overline{\tau-t}}{|\tau-t|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)].
(4.56)

\begin{aligned}\Phi _{22} (z)&=\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta f(\tau,\zeta)\right] \mathrm{ d}S_\tau\\&=\frac{1}{4\pi} \int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta\left[ f(\tau,\zeta)- f(\tau,t)\right]\right] \mathrm{ d}S_\tau\\& +\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta\right] f(\tau,t) \mathrm{ d}S_\tau\\&=\Delta_1(z)+\Delta_2(z).\end{aligned}
(4.57)

z\in {\Gamma_\zeta} ^{+} 时,

\frac{1}{4\pi}\int_{\Gamma_\zeta}\frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta=1.
(4.58)

z\in {\Gamma_\zeta} ^{-} 时,

\frac{1}{4\pi}\int_{\Gamma_\zeta}\frac{\overline{\zeta-z}}{|\zeta-z|^{3}} \mathrm{ d} \sigma_\zeta=0,
(4.59)

\frac{1}{4\pi}\int_{\Gamma_\zeta}\frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta=\frac{1}{2},
(4.60)

所以

\begin{aligned}\left|\frac{\Delta^{+}_2(t)+\Delta^{-}_2 (t)}{2}-\Delta_2 (t)\right|&\leqslant \left|\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta} f(\tau,t) \mathrm{ d}S_\tau\right|\\& \times\left|\frac{1}{4\pi}\int_{\Gamma_\zeta\backslash|\zeta-t|<\frac{\delta}{2}} \left(\frac{\overline{\zeta-z}}{|\zeta-z|^{3}}-\frac{\overline{\zeta-t}}{|\zeta-t|^{3}}\right)\mathrm{ d} \sigma_\zeta\right|\\&\leqslant M' \cdot |z-t|\int_{\Gamma_\zeta\backslash|\zeta-t|<\frac{\delta}{2}}\frac{1}{|\zeta-t|^3}\mathrm{ d} S_\zeta\\&\leqslant M"\frac{|z-t|}{\delta}.\end{aligned}
(4.61)

\begin{matrix} & \Delta_{1} (z)-\Delta_{1} (t) \\ &=\frac{1}{4\pi}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \left(\frac{\overline{\zeta-z}}{|\zeta-z|^{3}}-\frac{\overline{\zeta-t}}{|\zeta-t|^{3}}\right)\mathrm{ d} \sigma_\zeta\left[ f(\tau,\zeta)- f(\tau,t)\right]\right] \mathrm{d}S_\tau. \end{matrix}
(4.62)

因为

\begin{matrix} |f(\tau,\zeta)-f(\tau,t)|&=\left|\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]-\frac{\overline{\tau-t}}{|\tau-t|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)]\right| \\ &=\left|\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(\zeta, \tau)-\varphi(\tau, \tau)]-\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)]\right| \\ & +\left|\frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)]-\frac{\overline{\tau-t}}{|\tau-t|^{3}} n_\tau[\varphi(t, \tau)-\varphi(\tau, \tau)]\right| \\ & \leqslant \frac{|\zeta-t|^\mu}{|\tau-\zeta|^{2}}+ \frac{(|\tau-\zeta|+|\tau-t|)|\zeta-t|}{|\tau-\zeta|^{2}|\tau-t|^{2-\mu}} \\ & \leqslant \frac{|\zeta-t|^\mu}{|\tau-\zeta|^{2}}+ \frac{|\zeta-t|}{|\tau-\zeta||\tau-t|^{2-\mu}}+\frac{|\zeta-t|}{|\tau-\zeta|^{2}|\tau-t|^{1-\mu}}. \end{matrix}
(4.63)

|\tau-t|>\delta,|\zeta-t|<\frac{\delta}{2}, 我们有 |\tau-\zeta|>|\tau-t|-|\zeta-t| > \frac{1}{2}|\tau-t|,

此时

|f(\tau,\zeta)-f(\tau,t)|\leqslant \frac{4|\zeta-t|^\mu}{|\tau-t|^{2}}+\frac{6|\zeta-t|}{|\tau-t|^{3-\mu}},
(4.64)

由引理 4.3,

|z-t|<|\zeta-z|+|\zeta-t|<3|\zeta-z|,

所以

\begin{matrix} & |\Delta_{1} (z)-\Delta_{1} (t)| \\ &\!\leqslant\frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \left(\frac{|\zeta-z|\!+\!|\zeta-t|}{|\zeta-z|^{2}|\zeta-t|^{2}}\right)|z\!-\!t|\left(\frac{4|\zeta-t|^\mu}{|\tau-t|^{2}}\!+\!\frac{6|\zeta-t|}{|\tau-t|^{3-\mu}}\right)\mathrm{d} S_\zeta\right] \mathrm{d}S_\tau \\ & |\Delta_{1} (z)-\Delta_{1} (t)| \\ &\leqslant\frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}} \frac{9}{|\zeta-t|^2}\left(\frac{4|\zeta-t|^\mu}{|\tau-t|^{2}}+\frac{6|\zeta-t|}{|\tau-t|^{3-\mu}}\right)\mathrm{ d} S_\zeta\right] \mathrm{ d}S_\tau \\ &\leqslant\frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left[\int_{\Gamma_\zeta\cap|\zeta-t|<\frac{\delta}{2}}\frac{36}{|\zeta-t|^{2-\mu}|\tau-t|^{2}}+\frac{54}{|\zeta-t||\tau-t|^{3-\mu}} \mathrm{ d} S_\zeta\right]\mathrm{ d}S_\tau \\ &\leqslant\frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\left(\frac{36\cdot 2 \pi K \frac{1}{\mu} (\frac{\delta}{2})^\mu}{|\tau-t|^2}+\frac{54\cdot \pi K \delta}{|\tau-t|^{3-\mu}}\right)\mathrm{ d}S_\tau \\ &\leqslant M_1 \delta^\mu \cdot \ln\delta+M_2 \delta^\mu. \end{matrix}
(4.65)

我们接下来考虑 \Phi _{23} (z).

\begin{aligned} & |\Phi _{23} (z)-\Phi _{23} (t)|\\ &\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\int_{\Gamma_\zeta\backslash|\zeta-\tau|<\frac{\delta}{2}\backslash|\zeta-t|<\frac{\delta}{2}}\frac{(|\zeta-z|+|\zeta-t|)|z-t|}{|\zeta-z|^{2}|\zeta-t|^{2}}\frac{1}{|\zeta-\tau|^{2-\mu}}\mathrm{ d} S_\zeta\mathrm{ d} S_\tau \\ &\leqslant \frac{1}{16\pi^2}\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\int_{\Gamma_\zeta\backslash|\zeta-t|<\frac{\delta}{2}}\frac{|z-t|}{|\zeta-t|^{3}}\frac{1}{(\frac{\delta}{2})^{2-\mu}}\mathrm{ d} S_\zeta\mathrm{ d} S_\tau \\ &\leqslant \frac{1}{16\pi^2}\frac{|z-t|}{(\frac{\delta}{2})^{2-\mu}}\cdot\int_{\Gamma_\tau\backslash|\tau-t|<\delta}\int_{\Gamma_\zeta\backslash|\zeta-t|<\frac{\delta}{2}}\frac{1}{|\zeta-t|^{3}}\mathrm{ d} S_\zeta\mathrm{ d} S_\tau\\ &\leqslant M\frac{|z-t|}{\delta^{3-\mu}}. \end{aligned}

\delta-\varepsilon 语言极限的定义, 定理 4.3 成立.

最后完成定理 4.1 的证明.

定理\Gamma\mathbb{R}^{3} 中的定向紧 C^1 光滑曲面.令 \varphi \in H^\mu(\Gamma \times \Gamma)(0<\mu<1).则对于 t \in \Gamma

\begin{aligned}& \int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \int_{\Gamma_\tau} \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau) \\= & \left[\frac{4\pi}{2}\right]^2 \varphi(t, t)+\int_{\Gamma_\tau}\left[\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau \varphi(\zeta, \tau)\right].\end{aligned}
(4.66)

(4.34) 式,

G(z)=H(z)
(4.67)

对上式两边取极限, 由 (4.41) 式,

\begin{matrix} \frac{G^{+}(t)+G^{-} (t)}{2}&=\frac{H^{+} (t)+H^{-} (t)}{2} \\ &=\left (\frac{\Theta^{+} (t)+\Theta^{-} (t)}{2}\right) \\ & +\left(\frac{\Phi^{+} (t)+\Phi^{-} (t)}{2}\right) \end{matrix}
(4.68)

(4.40), (4.45), (4.46) 式, 即

G(t)=\frac{1}{4}\varphi(t,t)+\Phi(t).
(4.69)

由 (4.33) 式,

\int_{\Gamma} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}}=0,\tau \neq t,
(4.70)

所以

\Lambda(t)=\frac{1}{4\pi}\int_{\Gamma_\tau}\left[\frac{1}{4\pi}\int_{\Gamma_\zeta} \frac{\overline{\zeta-t}}{|\zeta-t|^{3}} \mathrm{ d} \sigma_\zeta \frac{\overline{\tau-\zeta}}{|\tau-\zeta|^{3}} \mathrm{ d} \sigma_\tau\varphi(\tau, \tau)\right]=0,
(4.71)

所以

H(t)=\Phi(t)+\Lambda(t)=\Phi(t),
(4.72)

G(t)=\frac{1}{4}\varphi(t,t)+H(t).
(4.73)

定理 4.1 成立.

参考文献

杨丕文. 四元数分析与偏微分方程. 北京: 科学出版社, 2009

[本文引用: 1]

Yang P W. Quaternion Analysis and Partial Differential Equations. Beijing: Science Press, 2009

[本文引用: 1]

Brack F, Delanghe R, Sommen F. Clifford Analysis. Boston: Pitman Books Limits, 1982

[本文引用: 1]

路见可. 解析函数边值问题. 武汉: 武汉大学出版社, 2004

[本文引用: 3]

Lu J K. Analytical Function Boundary Value Problems. Wuhan: Wuhan University, 2004

[本文引用: 3]

Kandmanov R M.

Bochner-Martinelli integrals and their applications

Sciences Siberia Press, 1992, 100: 209-213

[本文引用: 1]

黄沙.

Clifford 分析中奇异积分方程的 Poincaré-Bertrand 公式

数学学报, 1998, 41(1) : 119-126

DOI:10.12386/A1998sxxb0045      [本文引用: 3]

借助于多元复分析的思想,本文?

Huang S.

Poincaré-Bertrand transformation formulae of the singular integrals in Clifford analysis

Acta Mathematica Sinica, 1998, 41(1): 119-126

DOI:10.12386/A1998sxxb0045      [本文引用: 3]

借助于多元复分析的思想,本文?

罗纬宇. Clifford 分析中正则函数边值问题及奇异积分方程. 武汉: 武汉大学出版社, 2014

[本文引用: 1]

Luo W Y. The regularization function boundary value problem and singular integral equation in Clifford analysis. Wuhan: Wuhan University, 2014

[本文引用: 1]

Huang S, Qiao Y Y, Wen G C. Real and Complex Clifford Analysis. New York: Springer, 2006

[本文引用: 2]

Xu Q H, Ma T, Yin Z. Functional Analysis. Beijing: Higher Education Press, 2017

[本文引用: 1]

Gilbert R P, Buchanan J L.

First order elliptic systems, a function theoretic approach

Mathematics in Science Engineering, 1983, 163: Art 281

Rankin R A. Real and Complex Analysis. By W. Rudin. Pp. 412. 84s. 1966. (McGraw-Hill, New York.). The Mathematical Gazette, 1968, 52(382): 412

[本文引用: 2]

Luo W Y, Du J.

Generalized Cauchy theorem in Clifford analysis and boundary value problems for regular functions

Advances in Applied Clifford Algebras, 2017, 27: 2531-2583

[本文引用: 2]

Zhang Z X, Du J Y.

On certain Riemann boundary value problems and singular integral equations in Clifford analysis

Chinese Journal of Contemporary Mathematics, 2001, 22(3): 237-244

Du J Y, Zhang Z X.

A Cauchy's integral formula for functions with values in a universal Clifford algebral and its applications

Complex Variables, 2002, 47(10): 915-928

Du J Y, Xu N, Zhang Z X.

Boundary behavior of Cauchy-type integrals in Clifford analysis

Acta Math Sci, 2009, 29(1): 210-224

/