Processing math: 6%

数学物理学报, 2025, 45(2): 465-478

一类具有对数非线性源项的分数阶 p-Laplace 扩散方程解的存在性和爆破

李建军,, 李阳晨,*

辽宁工程技术大学理学院 辽宁阜新 123000

The Existence and Blow-Up of Solutions for a Class of Fractional p-Laplace Diffusion Equation with Logarithmic Nonlinearity

Li Jianjun,, Li Yangchen,*

College of Science, Liaoning Technical University, Liaoning Fuxin 123000

通讯作者: * 李阳晨,E-mail:19850712992@163.com

收稿日期: 2024-04-22   修回日期: 2024-09-24  

Received: 2024-04-22   Revised: 2024-09-24  

作者简介 About authors

李建军,E-mail:lijianjun751026@163.com

摘要

该文研究了一类具有对数非线性源项的分数阶 p-Laplace 扩散方程的初边值问题. 文中利用 Galerkin 近似、势阱理论和 Nehari 流形的方法证明了方程在亚临界状态和临界状态下解的全局存在性, 然后通过构造辅助函数、应用微分不等式给出了解在有限时间内爆破的一些充分条件.

关键词: 分数阶 p-Laplace 方程; Galerkin 近似; 全局解; 微分不等式; 爆破

Abstract

The paper study the initial-boundary value problem for a class of fractional p-Laplace diffusion equation with logarithmic nonlinearity. Using the Galerkin approximation, potential well theory and Nehari manifold methods, the global existence of solutions in subcritical and critical states is proven. Then, by constructing auxiliary functions and applying differential inequality techniques, the existence of blow-up solutions in finite time is established.

Keywords: fractional p-Laplacian; Galerkin approximation; the solutions for global existence; differential inequality; blow-up

PDF (665KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李建军, 李阳晨. 一类具有对数非线性源项的分数阶 p-Laplace 扩散方程解的存在性和爆破[J]. 数学物理学报, 2025, 45(2): 465-478

Li Jianjun, Li Yangchen. The Existence and Blow-Up of Solutions for a Class of Fractional p-Laplace Diffusion Equation with Logarithmic Nonlinearity[J]. Acta Mathematica Scientia, 2025, 45(2): 465-478

1 引言

扩散方程是物理学中描述物质和能量随着时间变化在空间中传播的现象, 其在材料科学、地质勘探中有着广泛的应用. 近些年关于非线性扩散方程的研究主要体现在求其解的全局存在性、解的爆破性和爆破时间的上下界, 见文献 [1],[2],[3],[4]. 分数阶 p-Laplace 方程作为整数阶的推广在近些年被很多学者广泛关注, 其理论研究方向多集中于研究爆破解的最大存在时间问题, 见文献 [5],[6],[7],[8],[9],[10],[11],[12],[13],[14],[15],[16],[17]. 在分数阶偏微分方程中引入对数非线性源项也是这些年研究的热点方向, 在描述扩散的过程中引入对数非线性源项可以反映介质的特殊扩散特性, 在生物数学中引入对数非线性源项可以更直接的描述生物种群的增长和衰减, 近些年的研究集中于对其解的全局存在性、 唯一性以及爆破性的探讨, 见文献 [18],[19],[20],[21],[22],[23],[24],[25],[26],[27],[28],[29],[30],[31],[32],[33].

非线性伪抛物型方程是在伪抛物型方程的基础上引入非线性源项的一类偏微分方程, 其研究领域包括非线性扩散, 非线性波的传播以及描述多孔介质中液体的流动. 近年来, 对非线性伪抛物型方程的研究也取得了许多新的进展. 在文献 [33] 中, 作者温兰, 杨晗研究了带有对数非线性源项的 p-Laplace 伪抛物方程解的存在性和爆破

{|ut|r2utΔutdiv(|u|p2u)=|u|q2uln|u|xΩt>0u(x,0)=u0(x)xΩu(x,t)=0xΩt>0
(1.1)

作者应用了 Galerkin 近似解的方法证明了方程 (1.1) 局部解的存在性, 然后应用势阱理论得到了初值在稳定集中时方程解的存在性, 之后通过构造辅助函数, 应用 Hölder 不等式和 Young 不等式等方法证明了解在有限时刻的爆破.

分数阶 p-Laplace 方程是对整数阶方程更深一层的探讨, 两类方程都使用 Galerkin 近似的方法探究初始能量在适当条件下解的全局存在性. 在探究解的爆破等问题的时候都会采用构造辅助函数并结合微分不等式的方法得到结果, 然而分数阶 p-Laplace 方程由于其分数阶导数的存在, 在理论分析上比整数阶更为复杂. 对于此类方程的研究, Liao M 等在文献 [5] 中研究了在任意初始能量下方程 (1.2) 的全局存在性, 解的唯一性和在有限时间内的爆破性

{ut(x,t)+(Δ)spu(x,t)=f(u(x,t)) (x,t)Ω×(0,T)u(x,t)=0 (x,t)(RNΩ)×(0,T)u(x,0)=u0(x) xΩ
(1.2)

其中函数 f 满足

(a) fC1 并且 f(0)=f(0)=0;

(b) 当 u>0 时, 函数 f(u) 单调递增并且是凸的, 当 u<0 时是凹的;

(c) (q+1)F(u)uf(u) 并且 |uf(u)|r|F(u)|, 其中 F(u)=u0f(s)ds 并且

max{2NN+2s,1}<p,max{p,2}<q+1r<ps

其中

ps={NpNsp if sp<N+ if spN;

(d) u(uf(u)(p1)f(u))0, 等号仅在 u=0 时成立.

在文中, 作者运用了改进势阱理论方法, 设阱的深度为 d=inf, 通过构造 Galerkin 近似解求出了方程 (1.2) 在次临界 J(u_{0})<d、临界 J(u_{0})=d 和超临界 J(u_{0})>d 状态下解的全局存在性、唯一性和在有限时间内的爆破性. 作者在整数阶的基础上更进一步地研究了分数阶 p-Laplace 方程解的性质, 两者在数学性质和物理实际应用领域中都有着重要意义, 但分数阶 p-Laplace 方程的研究和应用则更加具有挑战性.

Kirchhoff 型方程源自 Kirchhoff 在 1883 年对弦振动方程的推广, 与经典的 p-Laplace 方程不同, Kirchhoff 型方程能够描述更多现实世界中非线性和非均匀的物理现象, 由于其特殊的性质引来了众多学者对其的研究. 在文献 [18] 中, 作者 Zeng F 等研究了下列含有对数非线性源项的分数阶 p-Laplace Kirchhoff 型扩散方程的初边值问题. 作者在方程中加入 Kirchhoff 型函数 M(\cdot ) 可以更深入的研究各类物理系统中非线性扩散现象

\begin{cases}u_{t}+M([u]^{p}_{s,p})(-\Delta )^{s}_{p}u=\left | u \right |^{\alpha p-2}u\text{ln}\left | u \right |\text{, }& x\in \Omega \times (0,T)\text{, } \\u(0)=u_{0}\text{, } & x\in \Omega\text{, } \\u=0\text{, } & x\in \partial \Omega \times (0,T)\text{, }\end{cases}
(1.3)

作者利用 Galerkin 近似的方法和势阱理论, 并结合 Sobolev 空间相关知识, 证明了方程 (1.3) 在次临界和临界状态下解的整体存在性和有限时间内的爆破性, 讨论了弱解的增长率, 研究了基态解的性质.

近些年, 在偏微分方程中引入对数非线性源项也是众多学者研究的热门方向, 尤其是在 Kirchhoff 型方程中加入对数非线性源项, 不仅在解的稳定性和复杂分析的研究中更具挑战性, 而且为物理学研究领域提供了更为准确的数学工具, 这使得方程在处理复杂系统的建模中具有更广泛的应用. 在文献 [19] 中, Zhao Q 等研究了下列含有对数非线性源项的 Kirchhoff 型方程

\begin{cases}u_{t}-k\Delta u_{t}+M(\left \| \nabla u \right \|^{p}_{p} )\Delta _{p}u=\left | u \right |^{q-1}u\text{log}\left | u \right |\text{, } & x\in \Omega \times (0,T)\text{, } \\u(x,0)=u_{0}(x)\text{, } & x\in \Omega\text{, } \\u(x,t)=0\text{, } & x\in\partial \Omega \times (0,T)\text{, }\end{cases}
(1.4)

这篇论文中引入对数非线性源项 \left | u \right |^{q-1}u\text{log}\left | u \right | 可以更好的描述复杂的物理现象. 作者通过构造 Galerkin 近似解的方法研究了方程 (1.4) 的解在任意初始能量条件下的全局存在性以及解的爆破性, 得到了全局解的指数衰减率和爆破解的最大存在时间. 同时研究了方程基态解的性质, 并建立了基态解与全局解之间的收敛关系.

本文参考方程 (1.3) 和 (1.4), 在其研究的问题上进一步延伸, 考虑了下列分数阶 p-Laplace 扩散方程的初边值问题

\begin{cases}u_{t}-\alpha \Delta u_{t}+M([u]^{p}_{s,p})(-\Delta )^{s}_{p}u=\left | u \right |^{\theta p-2}u\text{ln}\left | u \right |+\left | u \right |^{\theta p-2}u\text{, } & x\in \Omega \times (0,T)\text{, } \\u(x,0)=u_{0}(x)\text{, } & x\in \Omega\text{, } \\u(x,t)=0\text{, } & x\in \partial \Omega \times (0,T)\text{, }\end{cases}
(1.5)

其中 s\in (0,1), 2< p< N/s, 1\le \theta < p_{s}^{*}/p , p_{s}^{*}=\frac{Np}{N-sp}, \Omega \subset R^{N}(N\ge 1) 为一个具有 Lipschitz 光滑边界的有界区域, u_{0}\ne0\Omega 上的初始函数, 我们令 M(t)=a+bt^{\theta -1}, 其中 a=0, b=1, t=\left [ u \right ]_{s,p}^p, (-\Delta) ^s_p 为分数阶 p-Laplace 算子, 并且满足

(-\Delta) ^s_p\varphi (x)=2\lim\limits_{\varepsilon \to 0^{+} } \int_{R^{N}\setminus B_\varepsilon (x){} }^{ } \frac{\left | \varphi (x)-\varphi(y) \right |^{p-2} (\varphi(x)-\varphi (y) ){} }{\left | x-y \right|^{N+sp} } \mathrm{d}y.

本文的具体结构如下:在第二节中, 我们介绍了一些符号以及引理;在第三和第四节中, 我们证明了在次临界 J(u_{0} )<h, 和临界 J(u_{0} )=h 状态下解的全局存在性和在有限时间内的爆破性.

为了阐述本文的结果, 我们给出了如下定义

定义1.1 如果函数 u(x,t)\Omega \times [0,T) 上满足 u\in L^\infty (0,T;W_{0}^{s,p}(\Omega ) ), u_t\in L^2(0,T; H^{s}_{0}(\Omega )), u(x,0)=u_0\in W_{0}^{s,p}(\Omega ), 且对于任意的 v\in W_{0}^{s,p}(\Omega )t\in(0,T) 上都有

\begin{aligned}\int_{\Omega }^{}u_tv\mathrm{d}x+\alpha \int_{\Omega }^{}\nabla u_t\nabla v\mathrm{d}x+\left [ u \right ]_{s,p}^{\theta p-p}\left \langle u,v \right \rangle _{s,p}=\int_{\Omega }^{}v\left | u \right |^{\theta p-2}u\text{ln}\left | u \right |\mathrm{d}x+\int_{\Omega }^{}\left | u \right |^{\theta p-2}uv\mathrm{d}x\text{, } \nonumber\end{aligned}

其中

\left \langle u,v \right \rangle _{s,p}=\iint_{R^{2N}}^{}\frac{\left | u(x)-u(y) \right |^{p-2} (u(x)-u(y))(v(x)-v(y))}{\left | x-y \right |^{N+sp} } \mathrm{d}x \mathrm{d}y\text{, }

则称 u 为方程 (1.5) 在 \Omega \times [0,T) 上的一个弱解.

定义1.2 u 为方程 (1.5) 的一个弱解, 若 u 的最大存在时间 T< \infty , 并且满足

\lim\limits_{t \to T^-}\int_{0}^{T}(\left \| u \right \| _{2}^{2}+\alpha\left \| \nabla u \right \| _{2}^{2})\mathrm{d}\tau =+\infty\text{, }

则称 u 在有限时间内爆破.

2 准备工作

在本节我们给出了定理的证明过程中所用到的符号以及引理. 在本文中 \left \|\cdot \right \| _p 来表示 Lebesgue 空间 L^p(\Omega ) 的空间范数, 其中 p\in (0,+\infty ), 用 (\cdot,\cdot) 来表示 L^2(\Omega ) 的内积, \left [ u \right ]_{s,p} (s,p)\text{-Gagliardo} 半范数

\left [ u \right ]_{s,p}=\left ( \int_{R^{N}}^{}\int_{R^{N}}^{}\frac{\left | u(x)-u(y) \right |^{p} }{\left | x-y \right |^{N+sp} }\mathrm{d}x \mathrm{d}y \right )^{\frac{1}{p} }.

定义

r(\varrho )=\left (\frac{e\varrho (1-C_{\ast } )}{D_{\ast }^{\theta p+\varrho }(e+1) } \right )^{\frac{1}{\varrho } }\text{, }

其中 \varrho \in (0,p_{s}^{\ast }-\theta p ), D_{\ast } C_{\ast } W_{0}^{s,p}(\Omega )\hookrightarrow L^{\theta p+\varrho } (\Omega ) 以及 W_{0}^{s,p}(\Omega )\hookrightarrow L^{\theta p} (\Omega ) 的最佳嵌入常数. 对于 u(x)\in W_{0}^{s,p}(\Omega ), 定义的泛函如下所示

J(u)=\frac{1}{\theta p}\left [ u \right ] _{s,p}^{\theta p}-\frac{1}{\theta p} \int_{\Omega }^{}\left | u \right |^{\theta p}\mathrm{d}x -\frac{1}{\theta p} \int_{\Omega }^{}\left | u \right |^{\theta p}\text{ln}\left | u \right | \mathrm{d}x+\frac{1}{(\theta p)^{2}} \int_{\Omega }^{}\left | u \right |^{\theta p}\mathrm{d}x\text{, }
(2.1)
I(u)=\left [ u \right ] _{s,p}^{\theta p}-\int_{\Omega }^{}\left | u \right |^{\theta p}\mathrm{d}x - \int_{\Omega }^{}\left | u \right |^{\theta p}\text{ln}\left | u \right | \mathrm{d}x.
(2.2)

根据 (2.1), (2.2) 式可以得到

J(u)=\frac{1}{\theta p}I(u)+\frac{1}{(\theta p)^2}\int_{\Omega }^{} \left | u \right |^{\theta p}\mathrm{d}x.
(2.3)

定义

W: = \left \{ u\in W_{0}^{s,p} (\Omega )\mid I(u)> 0,J(u)< h \right \}\cup \left \{ 0 \right \}\text{, }
(2.4)
\begin{matrix} & V: = \left \{ u\in W_{0}^{s,p} (\Omega )\mid I(u)< 0,J(u)< h \right \}\text{, } \label{10} \\ & N_+=\left \{ { u\in W_{0}^{s,p}(\Omega )\mid I(u)> 0} \right \}\text{, } \\ & N_-=\left \{ { u\in W_{0}^{s,p}(\Omega )\mid I(u)< 0} \right \}\text{, } \\ & N=\left \{ u\in W_{0}^{s,p}(\Omega )\setminus \left \{ 0 \right \} \mid I(u)=0 \right \}\text{, } \end{matrix}
(2.5)

其中

h: = \inf_{u\in N}J(u).
(2.6)

下面将给出证明过程中所需要的引理.

引理2.1 [18] 如果 \varrho \in (0,p_{s}^{\ast }-\theta p ), 则有 \text{ln}t \le \frac{1}{e\varrho }t ^{\varrho }\text{, } 其中 t\in [1,+\infty ).

引理2.2u\in W_{0}^{s,p}(\Omega )\setminus\left \{ 0 \right \} , \lambda \in (0,+\infty ), 则

(I) \lim\limits_{\lambda \to 0^+}J (\lambda u)=0, \lim\limits_{\lambda \to +\infty } J(\lambda u)=-\infty ;

(II) 存在唯一的 \lambda^{\ast} \in (0,+\infty ), 使得 \frac{\mathrm{d} }{\mathrm{d} \lambda } J(\lambda u)\mid _{\lambda =\lambda ^{\ast } }=0\text{, } \nonumber 并且 J(\lambda u)(0,\lambda ^{\ast } ) 上递增, 在 (\lambda ^{\ast },+\infty ) 上递减, 在 \lambda=\lambda ^{\ast } 处取得最大值;

(III) 对于任意的 0< \lambda < \lambda ^{\ast } I(\lambda u)> 0, 对于任意的 \lambda > \lambda ^{\ast }I(\lambda u)< 0, 并且 I(\lambda ^{\ast }u)=0.

对于任意的 u\in W_{0}^{s,p} (\Omega ), 有

\begin{align*} J(\lambda u(x))&=\frac{1}{\theta p}\lambda^{\theta p}\left [ u(x) \right ] _{s,p}^{\theta p}-\frac{1}{\theta p}\lambda ^{\theta p}\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\mathrm{d}x-\frac{1}{\theta p}\lambda ^{\theta p}\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\text{ln}\left | u(x) \right |\mathrm{d}x\\ & -\frac{1}{\theta p}\lambda ^{\theta p}\int_{\Omega }^{}\left | u(x) \right | ^{\theta p} \text{ln} \lambda \mathrm{d}x+\frac{1}{(\theta p)^2}\lambda ^{\theta p} \int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\mathrm{d}x\\ & =\frac{1}{\theta p}\lambda^{\theta p} ( \left [ u(x) \right ] _{s,p}^{\theta p}-\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\mathrm{d}x -\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\text{ln}\left | u(x) \right |\mathrm{d}x\\ & -\int_{\Omega }^{}\left | u(x) \right | ^{\theta p} \text{ln}\lambda \mathrm{d}x +\frac{1}{\theta p}\int_{\Omega }^{}\left | u(x) \right | ^{\theta p} \mathrm{d}x )\text{, } \end{align*}

其中 \lambda>0, 则 (I) 成立.

通过简单的计算可以得到

\begin{matrix} & \frac{\mathrm{d} }{\mathrm{d} \lambda } J(\lambda u(x)) \\ &=\lambda ^{\theta p-1}\left ( \left [ u(x) \right ]^{\theta p}_{s,p}-\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\mathrm{d}x-\int_{\Omega }^{}\left | u(x) \right | ^{\theta p}\text{ln}\left | u(x) \right |\mathrm{d}x-\text{ln}\lambda \int_{\Omega }^{}\left | u(x) \right |^{\theta p}\mathrm{d}x \right ) \text{, } \label{16} \end{matrix}
(2.7)

根据 (2.7) 式, 当 0<\lambda<\lambda^{\ast } 时有 \frac{\mathrm{d} }{\mathrm{d} \lambda } J(\lambda u(x))>0\text{, } \nonumber \lambda ^{\ast } < \lambda <+\infty 时有 \frac{\mathrm{d} }{\mathrm{d} \lambda } J(\lambda u(x))< 0\text{, } \nonumber

因此 (II) 成立. 通过 (2.7) 式和

\begin{align*} I( \lambda u(x))&= \lambda ^{\theta p}\left [ u(x) \right ]^{\theta p}_{s,p}- \lambda ^{\theta p} \int_{\Omega }^{}\left | u(x) \right |^{\theta p}\mathrm{d}x\\ & - \lambda ^{\theta p}\int_{\Omega }^{}\left | u(x) \right |^{\theta p}\text{ln}\left | u(x) \right |\mathrm{d}x - \lambda ^{\theta p}\text{ln}\lambda \int_{\Omega }^{}\left | u(x) \right |^{\theta p}\mathrm{d}x\text{, } \end{align*}

得到

I(\lambda u(x))=\lambda \frac{\mathrm{d} }{\mathrm{d} \lambda } J(\lambda u(x))\text{, }

根据已知得到 (III) 成立.

引理2.3u\in W_{0}^{s,p}(\Omega )\setminus\left \{ 0 \right \}, \varrho \in (0,p_{s}^{\ast }-\theta p ), 得到

(I) 若 0< \left [ u \right ]_{s,p}<r(\varrho ), 则 I(u)>0;

(II) 若 I(u)\le 0, 则 \left [ u \right ] _{s,p}\ge r(\varrho ).

根据引理 2.1 和公式 (2.2) 可以得到

\begin{aligned}I(u)&=\left [ u \right ] _{s,p}^{\theta p} -\int_{\Omega }^{} \left | u \right | ^{\theta p}\mathrm{d}x-\int_{\Omega }^{}\left | u \right | ^{\theta p}\text{ln}\left | u \right |\mathrm{d}x> \left [ u \right ] _{s,p}^{\theta p} -\int_{\Omega }^{}\left | u \right |^{\theta p}\mathrm{d}x\\& -\frac{1}{\varrho } \int_{\Omega (\left | u \right | < 1)}^{}\left | u \right |^{\theta p} \text{ln}\left | u \right |\mathrm{d}x-\int_{\Omega (\left | u \right |\ge 1 )}^{}\left | u \right | ^{\theta p}\text{ln}\left | u \right |\mathrm{d}x\\&\ge \left [ u \right ] _{s,p}^{\theta p} -\left \| u \right \| _{\theta p}^{\theta p}-\frac{1}{\varrho }\left \| u \right \| _{\theta p+\varrho }^{\theta p+\varrho }-\frac{1}{e\varrho }\left \| u \right \| _{\theta p+\varrho }^{\theta p+\varrho }\quad \,\quad \quad \quad \,\,\,\\&\ge \left [ u \right ] _{s,p}^{\theta p}-C_\ast \left [ u \right ] _{s,p}^{\theta p}-\frac{1}{\varrho }D_{\ast }^{\theta p+\varrho }\left [ u \right ] _{s,p}^{\theta p+\varrho }-\frac{1}{e\varrho }D_{\ast }^{\theta p+\varrho } \left [ u \right ] _{s,p}^{\theta p+\varrho }\\&=\left [ u \right ] _{s,p}^{\theta p}\left (1-C_\ast -\frac{1}{\varrho }D_{\ast }^{\theta p+\varrho }\left [ u \right ] _{s,p}^{\varrho }-\frac{1}{e\varrho }\left [ u \right ] _{s,p}^{\varrho }D_{\ast }^{\theta p+\varrho } \right ) \,\,\,\,\,\,\,\,\\&=\left [ u \right ] _{s,p}^{\theta p}\left (1-C_\ast -\left [ u \right ] _{s,p}^{\varrho }\left (\frac{1}{\varrho }+\frac{1}{e\varrho } \right ) D_{\ast }^{\theta p+\varrho } \right ) \quad \quad \quad \quad \quad \,\,\\&=\left [ u \right ] _{s,p}^{\theta p}\left (1-C_\ast -\left [ u \right ] _{s,p}^{\varrho }D_{\ast }^{\theta p+\varrho }\frac{e+1}{e\varrho } \right ) \text{, }\nonumber\end{aligned}

从而得到

I(u)>\left [ u \right ] _{s,p}^{\theta p}\left (1-C_\ast -\left [ u \right ] _{s,p}^{\varrho }D_{\ast }^{\theta p+\varrho }\frac{e+1}{e\varrho } \right )\text{, }

0< [u]_{s,p}< r(\varrho ), 则

1-C_\ast -\left [ u \right ] _{s,p}^{\varrho }D_{\ast }^{\theta p+\varrho }\frac{e+1}{e\varrho }>0\text{, }

因此 (I) 成立. 同理可证 (II) 成立.

引理2.4 假设 s\in (0,1), 2< p< N/s, \theta \in [1,p_{s}^{\ast }/p) , t\in [0,T), 并且 u 为方程 (1.5) 的弱解, 则

\frac{\mathrm{d} }{\mathrm{d} t}(\left \| u \right \| _{2}^{2}+\alpha\left \| \nabla u \right \| _{2}^{2} )=-2I(u).

通过定义 1.1 可得到

\int_{\Omega }^{}u_tu\mathrm{d}x+\alpha\int_{\Omega }^{}\nabla u_t\nabla u\mathrm{d}x+\left [ u \right ]_{s,p}^{\theta p-p}\left \langle u,u \right \rangle _{s,p}=\int_{\Omega }^{}u^{2}\left | u \right |^{\theta p-2}\text{ln}\left | u \right |\mathrm{d}x+\int_{\Omega }^{}u^{2}\left | u \right |^{\theta p-2}\mathrm{d}x.

通过简单的计算得到

\frac{1}{2} \frac{\mathrm{d} }{\mathrm{d} t}(\left \| u \right \| _{2}^{2}+\alpha\left \| \nabla u \right \| _{2}^{2} )=-\left [ u \right ] _{s,p}^{\theta p}+\int_{\Omega }^{}u^{2}\left | u \right |^{\theta p-2}\text{ln}\left | u \right |\mathrm{d}x+\int_{\Omega }^{}u^{2}\left | u \right |^{\theta p-2}\mathrm{d}x.

因此有

\frac{\mathrm{d} }{\mathrm{d} t}(\left \| u \right \| _{2}^{2}+\alpha\left \| \nabla u \right \| _{2}^{2} )=-2I(u).

引理2.5 假设 u_0\in W_{0}^{s,p}(\Omega ) , u(t) 为方程 (1.5) 的弱解, 如果 J(u_0)\le h, I(u_0)<0, 则对于任意的 0\le t< T 都有 u(t)\in V.

考虑当 J(u_0)<h 时, 若假设结论不成立, 则根据 I(u_0)<0 以及连续性可知存在 t_0\in (0,T) 使得对于任意 t\in [0,t_0)I(u(t_0))=0I(u(t))<0. 根据引理 2.3, 可知对于任意的 t\in [0,t_0)\left [ u \right ] _{s,p}\ge r(\varrho ). 根据连续性可得到 \left [ u(t_{0}) \right ] _{s,p}\ge r(\varrho ), 从而有 u(t_0)\ne 0, 因此 u(t_0)\in N, 根据 h 的定义可知 J(u_0)\ge h, 这与 J(u_0)\le h 矛盾, 从而有对于任意的 0\le t< TI(u(t))<0, 即对于任意的 0\le t< T 都有 u(t)\in V. 同理可证 J(u_0)=h 的情况.

3 次临界状态

在本节中, 我们将证明方程 (1.5) 的解在次临界状态 J(u_{0})<h 下的全局存在性以及在有限时间内的爆破性.

定理3.1u_0\in W_{0}^{s,p} (\Omega )J(u_0)<h, I(u_0)>0. 则方程 (1.5) 存在一个弱解 u\Omega \times [0,T) 上满足 u(t)\in L^{\infty } (0,T;W_{0}^{s,p}(\Omega ) ), u_t\in L^{2}(0,T;H^{s}_{0}(\Omega )) 且对于任意的 t\in [0,+\infty ), 有 u(t)\in W. 满足能量不等式

\int_{0}^{t}(\left \| u_\tau \right \| _{2}^{2} +\alpha\left \| \nabla u_{\tau }^{} \right \| _{2}^{2})\mathrm{d}\tau +J(u)\le J(u_0).
(3.1)

通过定义 1.1, 选取 \left \{ {\eta _k(x)} \right \} _{k=1}^{\infty } W_{0}^{s,p}(\Omega ) 中的正交基. 构造方程 (1.5) 的近似解,

u_m(x,t)=\sum_{k=1}^{m}d_{km}\eta _k(x)\text{, }\quad m=1,2,\cdots,

满足下面的常微分方程

\begin{matrix} & \int_{\Omega }^{}u_{mt}\eta _k\mathrm{d}x+\alpha\int_{\Omega }^{}\nabla u_{mt}\nabla \eta _k\mathrm{d}x+\left [ u_m \right ]_{s,p}^{\theta p-p}\left \langle u_{m},\eta _k \right \rangle _{s,p} \\ &=\int_{\Omega }^{}\eta _k\left | u_m \right |^{\theta p-2}u_m\text{ln}\left | u_m \right |\mathrm{d}x +\int_{\Omega }^{}\left | u_m \right |^{\theta p-2}u_m\eta _k\mathrm{d}x. \label{17} \end{matrix}
(3.2)

b_{km}=(u_m(0),\eta _k)\text{, }k=1,2,\cdots,m\nonumber\text{, }

并且

u_m(x,0)=\sum_{k=1}^{m}b_{km}\eta _k(x)\to u_0
(3.3)

W_{0}^{s,p}(\Omega ).

将方程 (3.2) 两边同时乘以 d_{km}^{'}(t) , 对 k 从 1 到 m 求和, 再关于 t 积分, 可以得到

\int_{0}^{t }(\left \| u_{m\tau } \right \|_{2}^{2}+\alpha\left \| \nabla u_{m\tau } \right \|_{2}^{2})\mathrm{d}\tau +J(u_m)=J(u_m(0))\text{, } 0\le t\le T.

根据 (3.3) 式, 可以得到 d_{km}(0)=b_{km}, J(u_m(x,0))\to J(u_0)< h. 根据已知 J(u_0)<h, 得到对于足够大的 m

\int_{0}^{t}(\left \| u_{m\tau } \right \|_{2}^{2}+\alpha\left \| \nabla u_{m\tau } \right \|_{2}^{2})\mathrm{d}\tau +J(u_m)=J(u_m(0)) <h.
(3.4)

同理可得 I(u_m(x,0))\to I(u_0)>0. 由 (2.4) 式可知对于足够大的 mu_m(x,0)\in W.

以下将证明 u_m(t)\in W. 如果 m\to +\infty, 0\le t\le T, 假设 u_m(t)\notin W, 那么存在 t_0\in (0,T) 使得 u_m(t_0)\in \partial W, 则有 I(u_m(t_0))=0, u(t_0)\ne 0, 因此, u_m(t_0)\in N. 通过 (2.6) 式得到 J(u_m(t_0))>h, 显然是矛盾的. 对于任意的 0\le t\le T, 存在足够大的 m 使得 u_m(t_0)\in W. 通过 (3.4) 式和

J(u_m)=\frac{1}{\theta p}I(u_m)+\frac{1}{(\theta p)^2}\int_{\Omega }^{} \left | u_{m} \right | ^{\theta p}\mathrm{d}x\text{, }

得到

\int_{0}^{t} (\left \| u_{m\tau } \right \| _{2}^{2}+\alpha \left \| \nabla u_{m\tau } \right \| _{2}^{2})\mathrm{d}\tau +\frac{1}{(\theta p)^2}\left \| u_m \right \|_{\theta p}^{\theta p}<h.

m 足够大时有

\int_{0}^{t} (\left \| u_{m\tau } \right \| _{2}^{2}+\alpha\left \| \nabla u_{m\tau } \right \| _{2}^{2})\mathrm{d}\tau<h\text{, }\quad 0\le t\le T\text{, }
(3.5)
\frac{1}{(\theta p)^2}\left \| u_m \right \|_{\theta p}^{\theta p}<h\text{, }\quad 0\le t\le T\text{, }
(3.6)
\left \| u_{m}^{\theta p-2} \right \|^q_{q}=C^{\theta p}\left \| u_{m} \right \| _{\theta p}^{\theta p}\le C^{\theta p}C_{\ast }^{\theta p}\left [ u \right ]_{s, p}^{\theta p}< C^{\theta p}C_{\ast }^{\theta p}r^{\theta p}(\varrho )\text{, }\quad 0\le t\le T\text{, }\quad q=\frac{\theta p}{\theta p-2}.
(3.7)

其中 CL^{\theta p}(\Omega )\hookrightarrow L^{q}(\Omega ) 的最佳嵌入常数. 因此得到当 m 足够大时, T=+\infty , 对于任意的 0\le t< +\inftyu_m(t)\in W.

接下来, 将证明 u(t)\in L^\infty (0,T;W_{0}^{s,p}(\Omega )), u_t\in L^2(0,T;H^{s}_{0}(\Omega )). 根据 (3.5), (3.6), (3.7) 式可以得到 u(t)\in L^\infty (0,T;W_{0}^{s,p}(\Omega )) 以及 u_t\in L^2(0,T;H^{s}_{0}(\Omega )). 基于上述证明, 可以得到存在 u\left \{ u_m \right \} 使得

u_m\rightharpoonup u\quad \text{弱收敛于}\,\, L^2(0,+\infty ;W_{0}^{s,p}(\Omega ))\text{, }
(3.8)
u_m\rightharpoonup u\quad \text{弱*收敛于}\,\,L^\infty (0,+\infty ;W_{0}^{s,p}(\Omega ))\text{, }
(3.9)
u_m^{\theta p-2}\rightharpoonup u^{\theta p-2}\quad \text{弱*收敛于}\,\,L^\infty (0,+\infty ;L^q(\Omega ))\text{, }
(3.10)
u_m\to u\quad \mathrm{a.e.}\,\,\Omega \text{, }
(3.11)
u_{mt}\rightharpoonup u_t\quad \text{弱收敛于}\,\,L^2(0,+\infty ;H^{s}_{0}(\Omega )).
(3.12)

通过 (3.8), (3.9), (3.12) 式以及 Aubin-Lions 紧性定理可得到

u_{m}\to u\quad \text{强收敛于}\,\,L^2(0,+\infty ;L^{\theta p}(\Omega )).

则有

\left | u_{m} \right |^{\theta p-2}u_m\text{ln}\left | u_{m} \right |\to \left | u \right |^{\theta p-2}u \text{ln}\left | u \right | \quad \mathrm{a.e.}\,(x,t)\in\Omega \times (0,+\infty )\text{, }
(3.13)

通过 (3.13) 式, 可以得到

\left | u_{m} \right | ^{\theta p-2}u_{m}\text{ln}\left | u_{m} \right |\rightharpoonup \left | u \right | ^{\theta p-2}u\text{ln}\left | u \right | \quad \text{弱*收敛于}\,\,L^{\infty }(0,+\infty ;L^{\theta p}(\Omega )).

通过同样的方法可以得到

\left | u_{m} \right | ^{\theta p-2}u_{m}\rightharpoonup \left | u \right | ^{\theta p-2}u \quad \text{弱*收敛于}\,\,L^{\infty }(0,+\infty ;L^{\theta p}(\Omega )).

因为 \left \{ {\eta _k(x)} \right \} _{k=1}^{\infty }W_{0}^{s,p}(\Omega )\subset H^{s}_{0}(\Omega ) 中的正交基, 故 \left \{ {\Delta \eta _k(x)} \right \} _{k=1}^{\infty }\in H^{-s}(\Omega ). 将方程 (3.2) 乘以任意函数 f(t) 并在 \left [ 0,T \right ] 上积分得到

\begin{aligned}& \int_{0}^{T} f(t)\left ( \int_{\Omega }^{}u_{mt}\eta _k\mathrm{d}x+\alpha\int_{\Omega }^{}\nabla u_{mt}\nabla \eta _k\mathrm{d}x+\left [ u_m \right ]_{s,p}^{\theta p-p}\left \langle u_{m},\eta _k \right \rangle _{s,p}\right )\mathrm{d}t \\&=\int_{0}^{T} f(t)\left ( \int_{\Omega }^{}\eta _k\left | u_m \right |^{\theta p-2}u_m\text{ln}\left | u_m \right |\mathrm{d}x+\int_{\Omega }^{}\left | u_m \right |^{\theta p-2}u_m\eta _k\mathrm{d}x\right )\mathrm{d}t.\end{aligned}

根据 (3.12) 式有

\int_{0}^{T} f(t)\left ( \int_{\Omega }^{}\nabla u_{mt}\nabla \eta _k\mathrm{d}x \right )\mathrm{d}t\to \int_{0}^{T} f(t)\left ( \int_{\Omega }^{}\nabla u_{t}\nabla \eta _k\mathrm{d}x \right )\mathrm{d}t.

根据函数 f(t) 的任意性以及 (3.2) 式, 固定一个 k, 令 m\to +\infty , 则有

\begin{aligned}\int_{\Omega }^{}u_{t}\eta _k\mathrm{d}x\!+\!\alpha\int_{\Omega }^{}\nabla u_{t}\nabla \eta _k\mathrm{d}x\!+\!\left [ u \right ]_{s,p}^{\theta p-p}\left \langle u,\eta _k \right \rangle _{s,p}\!=\!\int_{\Omega }^{}\eta _k\left | u \right |^{\theta p-2}u\text{ln}\left | u \right |\mathrm{d}x\!+\!\int_{\Omega }^{}\eta _k\left | u\right |^{\theta p-2}u\mathrm{d}x\text{, }\end{aligned}

因为 \left \{ {\eta _k(x)} \right \} _{k=1}^{\infty }W_{0}^{s,p}(\Omega ) 中是稠密的, 则可得到

\begin{aligned}\int_{\Omega }^{}u_{t}v\mathrm{d}x+\alpha\int_{\Omega }^{}\nabla u_{t}\nabla v\mathrm{d}x+\left [ u \right ]_{s,p}^{\theta p-p}\left \langle u,v \right \rangle _{s,p}=\int_{\Omega }^{}v\left | u \right |^{\theta p-2}u\text{ln}\left | u \right |\mathrm{d}x+\int_{\Omega }^{}v\left | u\right |^{\theta p-2}u\mathrm{d}x\text{, }\end{aligned}

其中对于 t\in (0,+\infty )v\in W_{0}^{s,p}(\Omega ), 并且在 W_{0}^{s,p}(\Omega ) 中有 u(x,0)=u_0(x).

最后证明能量不等式 (3.1) 成立. 根据引理 2.1, 可以得到

\begin{aligned}& \int_{\Omega }^{} \left | u_{m} \right |^{\theta p}\text{ln}\left | u_{m} \right |\mathrm{d}x-\int_{\Omega }^{}\left | u \right |^{\theta p}\text{ln}\left | u \right |\mathrm{d}x \\&\le \left | \int_{\Omega }^{}\left | u_{m} \right |^{\theta p}\text{ln}\left | u_{m} \right |+uu_{m}\left | u_{m} \right |^{\theta p-2} \text{ln}\left | u_{m} \right |-uu_{m}\left | u_{m} \right |^{\theta p-2}\text{ln}\left | u_{m} \right |-\left | u \right |^{\theta p}\text{ln}\left | u \right |\mathrm{d}x \right | \\&\le\int_{\Omega }^{} \left | (u_{m}-u)u_{m}\left | u_{m} \right |^{\theta p-2}\text{ln}\left | u_{m} \right | \right |\mathrm{d}x+\left | \int_{\Omega }^{}u(u_{m}\left | u_{m} \right |^{\theta p-2}\text{ln}\left | u_{m} \right |-u\left | u \right |^{\theta p-2}\text{ln}\left | u \right | )\mathrm{d}x \right | \\&=\frac{1}{\varrho }\left \| u_{m}-u \right \| _{\theta p} \left \| u_{m} \right \|^{\theta p+\varrho -1}_{\theta p+\varrho -1}+\left | \int_{\Omega }^{}u(u_{m}\left | u_{m} \right |^{\theta p-2}\text{ln}\left | u_{m} \right |-u\left | u \right |^{\theta p-2}\text{ln}\left | u \right |)\mathrm{d}x \right |\\&\to 0\quad (m\to +\infty ).\nonumber\end{aligned}

通过弱下半连续性和上述不等式, 可以得到

\begin{aligned}& J(u_{0})+\frac{1}{\theta p}\int_{\Omega }^{} \left | u \right |^{\theta p}\text{ln}\left | u \right |\mathrm{d}x\\&=\liminf_{m \to +\infty }\left (J(u_{m}(0))+\frac{1}{\theta p}\int_{\Omega }^{}\left | u_{m} \right |^{\theta p}\text{ln}\left | u_{m} \right |\mathrm{d}x \right ) \\&=\liminf_{m \to +\infty }\left (J(u_{m})+\frac{1}{\theta p}\int_{\Omega }^{}\left | u_{m} \right |^{\theta p}\text{ln}\left | u_{m} \right |\mathrm{d}x +\int_{0}^{t}(\left \| u_{m\tau } \right \|_{2}^{2}+\alpha \left \| \nabla u_{m\tau } \right \|^{2}_{2})\mathrm{d}\tau \right ) \quad \,\\&=\liminf_{m \to +\infty }\left (\frac{1}{\theta p}\left [ u_{m} \right ]^{\theta p}_{s,p}-\frac{1}{\theta p}\left \| u_{m} \right \|^{\theta p}_{\theta p} +\frac{1}{(\theta p)^{2}}\left \| u_{m} \right \|^{\theta p}_{\theta p} +\int_{0}^{t}(\left \| u_{m\tau } \right \|_{2}^{2}+\alpha \left \| \nabla u_{m\tau } \right \|^{2}_{2})\mathrm{d}\tau \right ) \\&\ge \frac{1}{\theta p}\left [ u \right ]^{\theta p}_{s,p} -\frac{1}{\theta p}\left \| u \right \|^{\theta p}_{\theta p}+\frac{1}{(\theta p)^{2}}\left \| u \right \|^{\theta p}_{\theta p}+\int_{0}^{t}(\left \| u_{\tau } \right \|_{2}^{2}+\alpha \left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau\text{, }\nonumber\end{aligned}

因此得到能量不等式

\int_{0}^{t}(\left \| u_\tau \right \| _{2}^{2} +\alpha\left \| \nabla u_{\tau }^{} \right \| _{2}^{2})\mathrm{d}\tau +J(u)\le J(u_0).

定理3.2 u_0\in W_{0}^{s,p} (\Omega ), J(u_0)<h, I(u_0)<0, u=u(t) 是方程 (1.5) 的一个弱解, 则 u(t) 在有限时间 T (T>0) 内爆破, 即

\lim\limits_{t \to T^{-}}\int_{0}^{t}(\left \| u(\tau ) \right \| _{2}^{2}+\alpha \left \| \nabla u(\tau ) \right \| _{2}^{2})\mathrm{d}\tau=+\infty.

假设 u_0\in W_{0}^{s,p} (\Omega ), u=u(t) 是方程 (1.5) 的一个弱解. 因为 J(u_0)<h, I(u_0)<0, 结合引理 2.5 得到 u(t)\in V, 0<t<T^{\ast }, 因此得到 J(u)<h, I(u)<0, t\in[0,T^{\ast } ). T^ {\ast}=\infty, 定义辅助函数

G(t)=\int_{0}^{t}(\left \| u(\tau ) \right \| _{2}^{2}+\alpha\left \| \nabla u(\tau ) \right \| _{2}^{2})\mathrm{d}\tau\text{, } t\in [T^{\ast }]\text{, }
(3.14)

通过简单的计算得到

\begin{matrix} &G^{'}(t)-G^{'}(0)=\left \| u(t) \right \| _{2}^{2}+\alpha\left \| \nabla u(t) \right \| _{2}^{2}-\left \| u_{0} \right \| _{2}^{2}-\alpha\left \| \nabla u_{0} \right \| _{2}^{2} \\ &\qquad\qquad\quad \, =2\int_{0}^{t}\left ((u_{\tau },u)+\alpha(\nabla u_{\tau },\nabla u)\right ) \mathrm{d}\tau\text{, } \end{matrix}
(3.15)
\begin{matrix} & G^{"}(t) =2(u_{t},u)+2\alpha(\nabla u_{t},\nabla u)=-2I(u), \label{34} \end{matrix}
(3.16)

根据 (3.1) 和 (2.3) 式可得

G^{"}(t)=-2I(u)\ge 2\theta p\left (\int_{0}^{t}(\left \| u_{\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau-J(u_{0})+\frac{2}{\theta p}\left \| u \right \|^{\theta p}_{\theta p} \right ).
(3.17)

根据 (3.16) 式和 I(u)<0 可得到 G^{"}(t)>0, 因此有

\frac{\mathrm{d} }{\mathrm{d}t}(\left \| u \right \|^{2}_{2}+\alpha\left \| \nabla u \right \|^{2}_{2} )>0\text{, }
G^{'}(t)>G^{'}(0)=\left \| u_{0} \right \|^{2}_{2}+\alpha\left \| \nabla u_{0} \right \|^{2}_{2}>0\text{, }\quad 0<t<T^{\ast }.
(3.18)

根据 Hölder 不等式得到

\begin{align*} & \int_{0}^{t} (\left \| u \right \|^{2}_{2}+\alpha\left \| \nabla u \right \|^{2}_{2})\mathrm{d}\tau \int_{0}^{t}(\left \| u_{\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau\\ & -\left (\int_{0}^{t}(u_{\tau },u)+\alpha(\nabla u_{\tau },\nabla u) \right ) ^{2} \\ &\ge \left (\int_{0}^{t}(\left \| u \right \|^{2}_{2}+\alpha\left \| \nabla u \right \|^{2}_{2})\mathrm{d}\tau \right ) \left (\int_{0}^{t}(\left \| u_{\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau \right )\\ & -\left (\int_{0}^{t}(\alpha\left \| \nabla u_{\tau } \right \|_{2}\left \| \nabla u \right \|_{2}+\left \| u_{\tau } \right \|_{2}\left \| u \right \|_{2})\mathrm{d}\tau \right )^{2}. \label{37} \end{align*}

x=a^{\frac{1}{2} }\left \| \nabla u_{\tau } \right \|_{2}\text{, }y=a^{\frac{1}{2} }\left \| \nabla u \right \|_{2}\text{, }z=\left \| u_{\tau } \right \|_{2}\text{, }w=\left \| u \right \|_{2}, 根据不等式

xz+yw\le (x^{2}+y^{2})^{\frac{1}{2} }(z^{2}+w^{2})^{\frac{1}{2} }\text{, }

可得

\int_{0}^{t}(\left \| u \right \|^{2}_{2}\!+\!\alpha\left \| \nabla u \right \|^{2}_{2})\mathrm{d}\tau \int_{0}^{t}(\left \| u_{\tau } \right \|^{2}_{2}\!+\!\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau\!-\!\left (\int_{0}^{t}(u_{\tau },u)\!+\!\alpha(\nabla u_{\tau },u)\mathrm{d}\tau \right ) ^{2}\ge 0.
(3.19)

根据 (3.15) 和 (3.19) 式有

\begin{aligned}\frac{1}{4}(G^{'}(t)-G^{'}(0))^{2}&=\left (\int_{0}^{t}(u_{\tau },u)+\alpha(\nabla u_{\tau },\nabla u)\mathrm{d}\tau \right ) ^{2}\\&\le \left (\int_{0}^{t}(\left \| u \right \|^{2}_{2}+\alpha\left \| \nabla u \right \|^{2}_{2})\mathrm{d}\tau \right )\left (\int_{0}^{t}(\left \| u_{\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau \right ).\end{aligned}
(3.20)

结合 (3.14), (3.17) 和 (3.20) 式有

G^{"}(t)G(t)\ge \frac{\theta p}{2}(G^{'}(t)-G^{'}(0))^{2}+G(t)\left (\frac{2}{\theta p}\left \| u \right \|^{\theta p}_{\theta p}-2\theta pJ(u_{0}) \right ).

因此, 得到

G^{"}(t)G(t)+\frac{\theta p}{2}(G^{'}(t)-G^{'}(0))^{2}\ge G(t)\left (\frac{2}{\theta p}\left \| u \right \|^{\theta p}_{\theta p}-2\theta pJ(u_{0}) \right ).

t_{0}>0, 根据 (3.18) 式有

G(t)\ge G(t_{0})\ge (\left \| u_{0} \right \|^{2}_{2}+\alpha\left \| \nabla u_{0} \right \|^{2}_{2} )t_{0}>0\text{, }t\ge t_{0}.

(a) 如果 J(u_{0})\le 0, 则根据 (3.17) 式可得

G^{"}(t)G(t)-\frac{\theta p}{2}(G^{'}(t)-G^{'}(0))^{2}\ge \frac{2}{\theta p}G(t)\left \| u \right \|^{\theta p}_{\theta p}\text{, }

由 Hölder 不等式得到

\frac{2}{\theta p}\left \| u(t) \right \|^{\theta p}_{\theta p}\ge \frac{2}{\theta p}\left | \Omega \right |^{\frac{2-\theta p}{2} }\left \|u(t) \right \|^{\theta p}_{2}=\frac{2}{\theta p}\left | \Omega \right |^{\frac{2-\theta p}{2} }(r(t))^{\frac{\theta p}{2} }\text{, }

其中

\begin{align*} & r(t)=G^{'}(t)+\left \| u_{0} \right \|_{2}^{2}+\alpha\left \| \nabla u_{0} \right \| _{2}^{2}\text{, } \\ & r^{'}(t)\ge 2(\theta p)^{-1}\left | \Omega \right | ^{\frac{2-\theta p}{2} }(r(t))^{\frac{\theta p}{2} }\text{, } \end{align*}

根据微分不等式原理, 得到

\left \| u \right \|_{2}^{2}+\alpha\left \| \nabla u \right \|_{2}^{2}\ge \left ((\theta p)^{-1}\left | \Omega \right |^{\frac{2-\theta p}{2} }t(2-\theta p)\right ) ^{\frac{2}{2-\theta p} }.
(3.21)

由于 G>0, 根据 (3.21) 式, 当 t 足够大时有

G^{"}(t)G(t)-\frac{\theta p}{2}(G^{'}(t)-G^{'}(0))^{2}> 0;

(b) 如果 0< J(u_{0})< h, 根据 I(u)<0, t\in (0,+\infty ) 和引理 2.5 可知存在 \rho ^{\ast }\in(0,1) 使得 I(\rho ^{\ast }u)=0. 因此通过 (2.3) 和 (2.6) 式可得

\frac{1}{(\theta p)^{2}}\left \| u \right \|^{\theta p}_{\theta p}> \frac{1}{\theta p}I(u)+\frac{1}{(\theta p)^{2}}\left \| u \right \|^{\theta p}_{\theta p}\ge \frac{1}{\theta p}I(\rho ^{\ast }u)+\frac{1}{(\theta p)^{2}}(\rho ^{\ast })^{\theta p}\left \| u \right \|^{\theta p}_{\theta p}=J(\rho ^{\ast }u)\ge h.

通过计算可得到

\begin{align*} G^{"}(t)G(t)+\frac{\theta p}{2}(G^{'}(t)-G^{'}(0))^{2} &\ge G(t)\left (\frac{2}{\theta p}\left \| u \right \|^{\theta p}_{\theta p}-2\theta pJ(u_{0}) \right )\\ & \ge G(t)(2\theta ph-2\theta pJ(u_{0}))>0. \end{align*}

T^{\ast }>t_{0}, 定义函数

H(t)=G(t)+(T^{\ast }-t)(\left \| u_{0} \right \|^{2}_{2}+\alpha\left \| \nabla u_{0} \right \|^{2}_{2} )\text{, }0\le t\le T^{\ast }\text{, }

根据已知可得到 H(t)\ge H(0)>0\text{, }H^{'}(t)=G^{'}(t)-G^{'}(0), H^{"}(t)=G^{"}(t)>0. 通过 (3.16) 式可得到

H^{"}(t)H(t)-\frac{\theta p}{2}(H^{'}(t))^{2}>0,0\le t\le T^{\ast }.

则有

\begin{align*} & y^{'}(t)=-\frac{\theta p-2}{2}G(t)^{-\frac{\theta p}{2} }G^{'}(t)\text{, } \\ & y^{"}(t)=-\frac{\theta p-2}{2}G(t)^{-\frac{\theta p}{2} } \left (G(t)G^{"}(t)-\frac{\theta p}{2}(G^{'}(t))^{2} \right ) <0\text{, }\quad 0\le t\le T^{\ast }. \end{align*}

因此得到 y(t)t\in[t_{0},T^{\ast }] 上的一个凹函数. 由于 y(t_{0})>0 并且 y^{'}(t_{0})<0, 则存在 T<T^{\ast } 使得 \lim\limits_{t \to T^{-}} y(t)=0, 即

\lim\limits_{t \to T^{-}}\int_{0}^{t}(\left \| u(\tau ) \right \| _{2}^{2}+\alpha\left \| \nabla u(\tau ) \right \| _{2}^{2})\mathrm{d}\tau=+\infty.

4 临界状态

在本节中, 我们将证明方程 (1.5) 的解在临界状态 J(u_{0})=h 下的全局存在性以及在有限时间内的爆破性.

定理4.1 u_0\in W_{0}^{s,p} (\Omega )J(u_0)=h, I(u_0)\ge0. 则方程 (1.5) 存在一个弱解 u\Omega \times [0,T) 上满足 u(t)\in L^{\infty }(0,T;W_{0}^{s,p}(\Omega ) ), u_t\in L^{2}(0,T;H^{s}_{0}(\Omega )) 且对于任意的 t\in [0,+\infty )u(t)\in W.

根据 J(u_{0})=h, [u_{0}]_{s,p}\ne 0. 设 \rho _{m}=1-\frac{1}{m}, m=2\text{,}\ 3\text{,}\cdots\text{, } 并考虑下面的近似问题

\begin{cases}u_{t}-\alpha\Delta u_{t}+M([u]^{p}_{s,p})(-\Delta )^{s}_{p}u=\left | u \right |^{\theta p-2}u\text{ln}\left | u \right |+\left | u \right |^{\theta p-2}u, &x \in \Omega \times (0,T), \\u(x,0)=u_{0m}(x)=\rho _{m}u_{0}, & x \in \Omega, \\u(x,t)=0,& x \in \partial \Omega \times (0,T).\end{cases}
(4.1)

根据 I(u_{0})\ge0, \rho _{m}\in (0,1) 和引理 2.2 可得

[u_{0}]^{\theta p}_{s,p}\ge \int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\mathrm{d}x+\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\text{ln}\left | u_{0} \right |\mathrm{d}x

(\rho )^{\theta p}\text{ln}\rho \int_{\Omega }^{} \left | u_{0} \right |^{\theta p}\mathrm{d}x<0.

通过 (2.2) 式, 可得到

\begin{aligned}I(\rho u_{0})&=\rho ^{\theta p}[u_{0}]^{\theta p}_{s,p}-\rho ^{\theta p}\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\mathrm{d}x-\rho ^{\theta p}\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\text{ln}\left | u_{0} \right |\mathrm{d}x-\rho ^{\theta p}\text{ln}\rho \int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\mathrm{d}x \\&> \rho ^{\theta p}[u_{0}]^{\theta p}_{s,p}-\rho ^{\theta p}\int_{\Omega }^{} \left | u_{0} \right |^{\theta p}\mathrm{d}x-\rho ^{\theta p}\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\text{ln}\left | u_{0} \right |\mathrm{d}x \\&=\rho ^{\theta p}\left ([u_{0}]^{\theta p}_{s,p}-\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\mathrm{d}x-\int_{\Omega }^{}\left | u_{0} \right |^{\theta p}\text{ln}\left | u_{0} \right |\mathrm{d}x \right ) \ge 0.\nonumber\end{aligned}

因此得到 \rho _{m}\frac{\mathrm{d} }{\mathrm{d}\rho _{m}}J(\rho _{m}u_{0}) =I(\rho _{m}u_{0})> 0. 通过引理 2.2 (III) 可知

J(u_{0m})=J(\rho _{m}u_{0})< J(u_{0})=h.

根据定理 3.1 可知存在 m, 使得方程 (4.1) 存在解 u_{m}(t), 其中 u_{m}(t)\in L^{\infty }(0,+\infty ;W_{0}^{s,p}(\Omega )), u_{mt}\in L^{2}(0,+\infty ;H^{s}_{0}(\Omega )), u_{m}\in W, t\in[0,+\infty ) 并且满足

\begin{aligned}& \int_{\Omega }^{}u_{mt}\varphi \mathrm{d}x+\alpha\int_{\Omega }^{}\nabla u_{mt}\nabla \varphi \mathrm{d}x+\left [ u_{m} \right ]_{s,p}^{\theta p-p}\left \langle u,\varphi \right \rangle _{s,p}\\&=\int_{\Omega }^{}\varphi \left | u_{m} \right |^{\theta p-2}u_{m}\text{ln}\left | u_{m} \right |\mathrm{d}x+\int_{\Omega }^{}\left | u_{m} \right |^{\theta p-2}u_{m}\varphi \mathrm{d}x\text{, }\nonumber\end{aligned}

其中 \forall \varphi\in W^{s,p}_{0}(\Omega ), t>0, 另外

\int_{0}^{t}(\left \| u_{m\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{m\tau } \right \|^{2}_{2})\mathrm{d}\tau+J(u_{m}(t))=J(u_{0m}) <h.
(4.2)

根据 (2.3) 式可得

J(u_{{m}}(t))=\frac{1}{\alpha p}I(u_{m}(t))+\frac{1}{(\alpha p)^2}\int_{\Omega }^{} \left | u_{m} (t)\right |^{\alpha p}\mathrm{d}x.
(4.3)

通过 (4.2) 和 (4.3) 式, 可以得到

\int_{0}^{t}(\left \| u_{m\tau } \right \|^{2}_{2}+\alpha\left \| \nabla u_{m\tau } \right \|^{2}_{2})\mathrm{d}\tau+\frac{1}{(\theta p)^{2}}\left \| u_{m} \right \|^{\theta p}_{\theta p}<h.

再根据定理 3.1 的证明, 定理 4.1 得证.

定理4.2 u_0\in W_{0}^{s,p} (\Omega ), J(u_0)=h, I(u_0)<0, u=u(t) 是方程 (1.5) 的一个弱解, 则 u(t) 在有限时间 T (T>0) 内爆破.

由于 J(u_{0})=h, I(u_{0})<0, 根据引理 2.5 得到对于任意的 0\le t<T^{\ast }u(t)\in V, 从而有

(u_{t},u)+\alpha(\nabla u_{t},\nabla u)=-I(u(t))>0\text{, }\quad 0\le t< T^{\ast }.

因此对于 \forall t\ge 0(\left \| u_{t} \right \|^{2}_{2}+\alpha\left \| \nabla u_{t} \right \|^{2}_{2})>0. 通过能量不等式可知存在 t_{1}>0, 使得

J(u(t_{1}))=h-\int_{0}^{t_{1}}(\left \| u_{\tau } \right \| ^{2}_{2}+\alpha\left \| \nabla u_{\tau } \right \|^{2}_{2})\mathrm{d}\tau=h_{1}<h.

t_{1} 为初始时间, 根据定理 3.2 的证明, 定理 4.2 得证.

参考文献

Shao X, Tang G J.

Blow-up phenomena for a kirchhoff-type parabolic equation with logarithmic nonlinearity

Applied Mathematics Letters, 2021, 116: Article 106969

[本文引用: 1]

Xiang M, Yang D, Zhang B.

Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity

Asymptotic Analysis, 2020, 118(4): 313-329

[本文引用: 1]

Piskin E, Cömert T.

Blow-up of solutions for a parabolic kirchhoff type equation with logarithmic nonlinearity

Gulf Journal of Mathematics, 2020, 9(2): 21-30

[本文引用: 1]

Ding H, Zhou J.

Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity

Applied Mathematics & Optimization, 2021, 83: 1651-1707

[本文引用: 1]

Liao M, Liu Q, Ye H.

Global existence and blow-up of weak solutions for a class of fractional p-Laplacian evolution equations

Advances in Nonlinear Analysis, 2020, 9(1): 1569-1591

[本文引用: 2]

Shi P, Jiang M, Zeng F, et al.

Initial boundary value problem for fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity

Mathematical Biosciences and Engineering, 2021, 18(3): 2832-2848

[本文引用: 1]

Bidi Y, Beniani A, Bouhali K, et al.

Local existence and blow-up of solutions for wave equation involving the fractional laplacian with nonlinear source term

Axioms, 2023, 12(4): 343

[本文引用: 1]

Boudjeriou T.

Global existence and blow-up for the fractional p-Laplacian with logarithmic nonlinearity

Mediterranean Journal of Mathematics, 2020, 17(5): Article 162

[本文引用: 1]

Lian W, Wang J, Xu R Z.

Global existence and blow up of solutions for pseudo-parabolic equation with singular potential

Journal of Differential Equations, 2020, 269(6): 4914-4959

DOI:10.1016/j.jde.2020.03.047      [本文引用: 1]

We consider the initial boundary value problem of pseudo-parabolic equation with singular potential. We obtain global existence, asymptotic behavior and blowup of solutions with initial energy J (u(0)) 0. (C) 2020 Elsevier Inc.

Liu W, Yu J, Li G.

Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity

Discrete and Continuous Dynamical Systems-S, 2021, 14(12): 4337-4366

[本文引用: 1]

Yang Y, Tian X, Zhang M.

Blow-up of solutions to degenerate Kirchhoff type dissusion problems involving the fractional p-Laplacian

Electronic Journal of Differential Equations, 2018, 154: 1-11

[本文引用: 1]

Jiang R, Zhou J.

Blow-up and global existence of solutions to a parabolic equation associated with the fraction p-Laplacian

Communications on Pure & Applied Analysis, 2019, 18(3): 1-6

[本文引用: 1]

Pucci P, Xiang M, Zhang B.

Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional p-Laplacian in \mathbb{R}^N

Calculus of Variations and Partial Differential Equations, 2015, 54: 2785-2806

[本文引用: 1]

Pan N, Zhang B, Cao J.

Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian

Nonlinear Analysis: Real World Applications, 2017, 37: 56-70

[本文引用: 1]

Shi M, Wang J.

Blow-up properties of solution for a parabolic equations involving the fractional p-Laplacian with logarithmic nonlinearity

Periodical of Ocean University of China, 2020, 52(4): 138-146

[本文引用: 1]

Pang Y, Rădulescu V D, Xu R Z.

Global existence and finite time blow-up for the m-Laplacian parabolic problem

Acta Mathematica Sinica, English Series, 2023, 39(8): 1497-1524

[本文引用: 1]

Boudjeriou T.

Global well-posedness and finite time blow-up for a class of wave equation involving fractional p-Laplacian with logarithmic nonlinearity

Mathematische Nachrichten, 2023, 296(3): 938-956

[本文引用: 1]

Zeng F, Shi P, Jiang M.

Global existence and finite time blow-up for a class of fractional p-Laplacian Kirchhoff type equations with logarithmic nonlinearity

AIMS Math, 2021, 6(3): 2559-2578

[本文引用: 3]

Zhao Q.

Initial boundary value problem of a class of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity

arXiv preprint, 2021, arXiv:2104.01597

[本文引用: 2]

Ding H, Zhou J.

Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity

Applied Mathematics & Optimization, 2021, 83: 1651-1707

[本文引用: 1]

Alves C O, Boudjeriou T.

Existence of solution for a class of nonlocal problem via dynamical methods

Rendiconti del Circolo Matematico di Palermo Series, 2021, 2: 1-22

[本文引用: 1]

Xiang M Q, Zhang B L, Qiu H.

Existence of solutions for a critical fractional Kirchhoff type problem in \mathbb{R}^N

Science China Mathematics, 2017, 60: 1647-1660

[本文引用: 1]

Lin Q, Tian X, Xu R, et al.

Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy

Discrete & Continuous Dynamical Systems-Series S, 2020, 13(7): 2095-2107

[本文引用: 1]

Guo H, Zhang Y, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. arXiv preprint, 2017, arXiv:1707.02445

[本文引用: 1]

Mingqi X, Rădulescu V D, Zhang B.

Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions

Nonlinearity, 2018, 31(7): 3228

[本文引用: 1]

Zhou J.

Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping

Applied Mathematics and Computation, 2015, 265: 807-818

[本文引用: 1]

Hiramatsu T, Kawasaki M, Takahashi F.

Numerical study of Q-ball formation in gravity mediation

Journal of Cosmology and Astroparticle Physics, 2010, 2010(6): 008

[本文引用: 1]

Zhang H W, Liu G W, Hu Q Y.

Exponential decay of energy for a logarithmic wave equation

Partial Differ Equ, 2015, 28(3): 269-277

[本文引用: 1]

Ji S, Yin J, Cao Y.

Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity

Journal of Differential Equations, 2016, 261(10): 5446-5464

[本文引用: 1]

Chen H, Tian S.

Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity

Journal of Differential Equations, 2015, 258(12): 4424-4442

[本文引用: 1]

Ding H, Zhou J.

Global existence and blow-up for a mixed pseudo-parabolic p-Laplacian type equation with logarithmic nonlinearity

Journal of Mathematical Analysis and Applications, 2019, 478(2): 393-420

[本文引用: 1]

Ji C, Szulkin A.

A logarithmic Schrödinger equation with asymptotic conditions on the potential

Journal of Mathematical Analysis and Applications, 2016, 437(1): 241-254

[本文引用: 1]

温兰, 杨晗.

一类带对数非线性源项的 p-Laplace 抛物方程解的存在性与爆破

应用数学, 2022, 35(3): 544-552

[本文引用: 2]

Wen Lan, Yang Han.

Global existence and blow-up of solutions for a class of p-Laplacian parabolic equations with logarithmic nonlinearity

Mathematica Applicata, 2022, 35(3): 544-552

[本文引用: 2]

/