数学物理学报 ›› 2025, Vol. 45 ›› Issue (2): 465-478.
收稿日期:
2024-04-22
修回日期:
2024-09-24
出版日期:
2025-04-26
发布日期:
2025-04-09
通讯作者:
李阳晨
E-mail:lijianjun751026@163.com;19850712992@163.com
作者简介:
李建军,E-mail: Received:
2024-04-22
Revised:
2024-09-24
Online:
2025-04-26
Published:
2025-04-09
Contact:
Yangchen Li
E-mail:lijianjun751026@163.com;19850712992@163.com
摘要:
该文研究了一类具有对数非线性源项的分数阶
中图分类号:
李建军,李阳晨. 一类具有对数非线性源项的分数阶
Jianjun Li,Yangchen Li. The Existence and Blow-Up of Solutions for a Class of Fractional
[1] | Shao X, Tang G J. Blow-up phenomena for a kirchhoff-type parabolic equation with logarithmic nonlinearity. Applied Mathematics Letters, 2021, 116: Article 106969 |
[2] | Xiang M, Yang D, Zhang B. Degenerate Kirchhoff-type fractional diffusion problem with logarithmic nonlinearity. Asymptotic Analysis, 2020, 118(4): 313-329 |
[3] | Piskin E, Cömert T. Blow-up of solutions for a parabolic kirchhoff type equation with logarithmic nonlinearity. Gulf Journal of Mathematics, 2020, 9(2): 21-30 |
[4] | Ding H, Zhou J. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. Applied Mathematics & Optimization, 2021, 83: 1651-1707 |
[5] |
Liao M, Liu Q, Ye H. Global existence and blow-up of weak solutions for a class of fractional ![]() |
[6] |
Shi P, Jiang M, Zeng F, et al. Initial boundary value problem for fractional ![]() |
[7] | Bidi Y, Beniani A, Bouhali K, et al. Local existence and blow-up of solutions for wave equation involving the fractional laplacian with nonlinear source term. Axioms, 2023, 12(4): 343 |
[8] |
Boudjeriou T. Global existence and blow-up for the fractional ![]() |
[9] |
Lian W, Wang J, Xu R Z. Global existence and blow up of solutions for pseudo-parabolic equation with singular potential. Journal of Differential Equations, 2020, 269(6): 4914-4959
doi: 10.1016/j.jde.2020.03.047 |
[10] | Liu W, Yu J, Li G. Global existence, exponential decay and blow-up of solutions for a class of fractional pseudo-parabolic equations with logarithmic nonlinearity. Discrete and Continuous Dynamical Systems-S, 2021, 14(12): 4337-4366 |
[11] |
Yang Y, Tian X, Zhang M. Blow-up of solutions to degenerate Kirchhoff type dissusion problems involving the fractional ![]() |
[12] |
Jiang R, Zhou J. Blow-up and global existence of solutions to a parabolic equation associated with the fraction ![]() |
[13] |
Pucci P, Xiang M, Zhang B. Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional ![]() ![]() ![]() |
[14] |
Pan N, Zhang B, Cao J. Degenerate Kirchhoff-type diffusion problems involving the fractional ![]() |
[15] |
Shi M, Wang J. Blow-up properties of solution for a parabolic equations involving the fractional ![]() |
[16] |
Pang Y, Rădulescu V D, Xu R Z. Global existence and finite time blow-up for the ![]() |
[17] |
Boudjeriou T. Global well-posedness and finite time blow-up for a class of wave equation involving fractional ![]() |
[18] |
Zeng F, Shi P, Jiang M. Global existence and finite time blow-up for a class of fractional ![]() |
[19] | Zhao Q. Initial boundary value problem of a class of pseudo-parabolic Kirchhoff equations with logarithmic nonlinearity. arXiv preprint, 2021, arXiv:2104.01597 |
[20] | Ding H, Zhou J. Global existence and blow-up for a parabolic problem of Kirchhoff type with logarithmic nonlinearity. Applied Mathematics & Optimization, 2021, 83: 1651-1707 |
[21] | Alves C O, Boudjeriou T. Existence of solution for a class of nonlocal problem via dynamical methods. Rendiconti del Circolo Matematico di Palermo Series, 2021, 2: 1-22 |
[22] |
Xiang M Q, Zhang B L, Qiu H. Existence of solutions for a critical fractional Kirchhoff type problem in ![]() ![]() |
[23] | Lin Q, Tian X, Xu R, et al. Blow up and blow up time for degenerate Kirchhoff-type wave problems involving the fractional Laplacian with arbitrary positive initial energy. Discrete & Continuous Dynamical Systems-Series S, 2020, 13(7): 2095-2107 |
[24] | Guo H, Zhang Y, Zhou H S. Blow-up solutions for a Kirchhoff type elliptic equation with trapping potential. arXiv preprint, 2017, arXiv:1707.02445 |
[25] | Mingqi X, Rădulescu V D, Zhang B. Nonlocal Kirchhoff diffusion problems: local existence and blow-up of solutions. Nonlinearity, 2018, 31(7): 3228 |
[26] | Zhou J. Global existence and blow-up of solutions for a Kirchhoff type plate equation with damping. Applied Mathematics and Computation, 2015, 265: 807-818 |
[27] | Hiramatsu T, Kawasaki M, Takahashi F. Numerical study of Q-ball formation in gravity mediation. Journal of Cosmology and Astroparticle Physics, 2010, 2010(6): 008 |
[28] | Zhang H W, Liu G W, Hu Q Y. Exponential decay of energy for a logarithmic wave equation. Partial Differ Equ, 2015, 28(3): 269-277 |
[29] | Ji S, Yin J, Cao Y. Instability of positive periodic solutions for semilinear pseudo-parabolic equations with logarithmic nonlinearity. Journal of Differential Equations, 2016, 261(10): 5446-5464 |
[30] | Chen H, Tian S. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity. Journal of Differential Equations, 2015, 258(12): 4424-4442 |
[31] |
Ding H, Zhou J. Global existence and blow-up for a mixed pseudo-parabolic ![]() |
[32] | Ji C, Szulkin A. A logarithmic Schrödinger equation with asymptotic conditions on the potential. Journal of Mathematical Analysis and Applications, 2016, 437(1): 241-254 |
[33] |
温兰, 杨晗. 一类带对数非线性源项的 ![]() |
Wen Lan, Yang Han. Global existence and blow-up of solutions for a class of ![]() |
[1] | 石金诚, 刘炎. 带不同幂次型非线性项的半线性三阶发展方程整体解的存在性与爆破[J]. 数学物理学报, 2024, 44(6): 1550-1562. |
[2] | 肖苏平, 赵元章. 一类半线性双曲型微分不等式非齐次 Dirichlet 外问题解的存在性与非存在性[J]. 数学物理学报, 2024, 44(5): 1167-1182. |
[3] | 高晓茹, 李建军, 徒君. 一类带有时变系数的分数阶扩散方程解的爆破性[J]. 数学物理学报, 2024, 44(5): 1230-1241. |
[4] | 王伟敏, 闫威. 修正Kawahara方程的收敛问题与色散爆破[J]. 数学物理学报, 2024, 44(3): 595-608. |
[5] | 李锋杰, 李平. 伪抛物型 p-Kirchhoff 方程的爆破解[J]. 数学物理学报, 2024, 44(3): 717-736. |
[6] | 简慧, 龚敏, 王莉. 带部分调和势的非齐次非线性 Schrödinger 方程的爆破解[J]. 数学物理学报, 2023, 43(5): 1350-1372. |
[7] | 沈旭辉,丁俊堂. 具有梯度源项和非线性边界条件的多孔介质方程组解的爆破[J]. 数学物理学报, 2023, 43(5): 1417-1426. |
[8] | 蔡森林,周寿明,陈容. 大振幅浅水波模型的柯西问题研究[J]. 数学物理学报, 2023, 43(4): 1197-1120. |
[9] | 陈雪姣, 李远飞, 侯春娟. 半无穷柱体上Forchheimer方程组解的Phragmén-Lindelöf型二择一结果[J]. 数学物理学报, 2023, 43(2): 505-514. |
[10] | 欧阳柏平. 非线性记忆项的Euler-Poisson-Darboux-Tricomi方程解的爆破[J]. 数学物理学报, 2023, 43(1): 169-180. |
[11] | 冯美强, 张学梅. Monge-Ampère方程边界爆破解的最优估计和不存在性[J]. 数学物理学报, 2023, 43(1): 181-202. |
[12] | 鲁呵倩,张正策. 带非线性梯度项的p-Laplacian抛物方程的临界指标[J]. 数学物理学报, 2022, 42(5): 1381-1397. |
[13] | 万雅琪,陈晓莉. 压力项属于Triebel-Lizorkin空间的三维不可压Navier-Stokes方程的正则性准则[J]. 数学物理学报, 2022, 42(5): 1473-1481. |
[14] | 邱臻,王光武. 量子Navier-Stokes-Landau-Lifshitz方程光滑解的爆破问题[J]. 数学物理学报, 2022, 42(4): 1074-1088. |
[15] | 何春蕾,刘子慧. 一类双曲平均曲率流的对称与整体解[J]. 数学物理学报, 2022, 42(4): 1089-1102. |
Viewed | ||||||||||||||||||||||||||||||||||||||||||||||
Full text 62
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Abstract 43
|
|
|||||||||||||||||||||||||||||||||||||||||||||
Cited |
|
|||||||||||||||||||||||||||||||||||||||||||||
Shared | ||||||||||||||||||||||||||||||||||||||||||||||
Discussed |
|