非局部扩散的时空时滞霍乱传染病系统的行波解
Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal
通讯作者:
收稿日期: 2024-01-29 修回日期: 2024-05-15
基金资助: |
|
Received: 2024-01-29 Revised: 2024-05-15
Fund supported: |
|
作者简介 About authors
杨咏丽,E-mail:
该文研究了一类非局部扩散的时空时滞霍乱传染病系统行波解的存在性、不存在性和渐近行为. 通过构造上下解, 将行波解的存在性问题转化为闭凸锥上非线性算子存在不动点的问题, 再借助Schauder不动点定理、极限理论和分析技术证明该系统行波解的存在性、有界性和负无穷远处的渐近行为. 此外, 基于双边 Laplace 变换和反证法建立该系统行波解的不存在性.
关键词:
This paper deals with the existence, non-existence and asymptotic behaviors of traveling wave solutions to a class of cholera epidemic system with spatio-temporal delay and nonlocal dispersal. By constructing the upper and lower solutions, the existence of traveling waves to the system is converted into the fixed point problem of a nonlinear operator on a closed and convex cone, and thus the existence, boundedness and asymptotic behavior at negative infinity of traveling waves of the system are proved by applying Schauder's fixed point theorem, limit theory and analysis techniques. In addition, the nonexistence of traveling waves of the system is also established based on the two-sided Laplace transform and the method of proof by contradiction.
Keywords:
本文引用格式
杨咏丽, 杨赟瑞.
Yang Yongli, Yang Yunrui.
1 引言
传染病模型一直是反应扩散方程中的热点研究对象, 其中经典 SIR 模型考虑的是通过人与人之间的传染发生的疾病传播. 而现实环境中, 疾病的传播存在多种途径, 除了人与人之间的传染, 人与具有传播途径的媒介 (比如受污染的水源或者食物) 之间也会发生传染, 例如模拟霍乱病毒 [1]的 Laplace 扩散传染病模型
这里
通常, 经典 Laplace 扩散表明个体的发展只依赖于当前时刻和当前位置, 是一种局部扩散. 然而, 个体的扩散不只局限于当前位置, 还与周围其他位置甚至整个区域有关, 这就是非局部扩散, 它可以用积分项
来表示, 其中
其中时空时滞项
(其中
行波解的存在性、渐近行为和不存在性, 其中
注意到, 由于系统 (1.6) 中未知函数的耦合和时空时滞的出现, 会产生两个不同的波速
2 预备知识
首先给出本文用到的假设条件.
(A
(A
(A
(A
(A
(A
条件 (A
由于系统 (1.6) 的前四个方程中不含
不难验证, 系统 (2.1) 存在无病平衡点
借助下一代矩阵法可以得到基本再生数
系统 (2.1) 的行波解是指形如
并满足如下边界条件
为了建立系统 (2.1) 行波解的 (不) 存在性, 只需研究行波系统 (2.2) 的解的 (不) 存在性. 为此, 先考虑系统 (2.2) 中的后两个方程在
将
和特征方程
为了建立界定行波解是否存在的波速
(A
引理 2.1 若
证明过程类似于文献 [19,引理 2.1], 故此省略.
由上述引理可知, 存在一对正常数
下面给出行波系统 (2.2) 的上、下解定义
定义2.1 若 (A
和
则称
3 行波解的存在性
本节讨论当
其中
引理 3.1 函数
证 由
引理 3.2 令
证 先证 (3.2) 式的第一个不等式成立. 利用 Taylor 公式及条件 (A
其中
注意到, 当
当
要使
于是, (3.2) 式的第一个不等式成立. 下证 (3.2) 式的第二个不等式成立.
注意到, 当
当
要使
综上, 只要正常数
则 (3.2) 式成立.
引理 3.3 若存在充分小的
证 当
因为
因此, 结合上式最后一个不等号的右边, 只需令
即 (3.6) 式的第一个不等式成立. 同理, 利用 (3.8) 式可得 (3.6) 式的第二个不等式也成立. 于是, (3.6) 式成立.
引理 3.4 若存在充分小的
证 当
接下来, 再次利用Taylor公式并结合条件 (A
其中
同理, 利用 (2.7) 和 (3.12) 式, 可知
因此, 要证 (3.9) 式成立, 只要
其中
令
对
考虑如下初值问题
由常微分方程理论[20]可知, (3.13) 式存在唯一解
对
引理 3.5 算子
证 利用引理 3.1 和引理 3.4 可知, 算子
由 (3.13) 式可知,
其中
由于
类似可得
又因为对
另外, 利用Lagrange 中值定理, 不难验证
和
其中
因此, 对
由
不难验证,
定义空间
及其上的范数
接下来, 为了建立系统 (2.1) 行波解的存在性, 还需建立下面的先验估计.
引理 3.6(先验估计) 对
证 因为
又因为对
利用 (3.16) 式及条件 (A
从而, 由 (3.17)-(3.20) 式可知,
利用 (3.15) 式的第一个方程可知
类似文献 [2,定理 2.8] 的讨论, 由 (3.16) 和 (3.21) 式及条件 (A
其中
另一方面, 类似文献 [4, 引理 8], 利用 Lagrange中值定理及条件 (A
其中
下面建立并证明当
定理3.1 若
和
证 对
从而在
定理 3.1 剩余结论的证明分以下两部分:
因为
另外, 不难验证
最后, 由夹逼原理可得,
由 (3.29) 式可知, 只需证明 (3.29) 式的严格不等式成立.
先证对
因为对
然后, 证明对
这出现了矛盾. 从而对
为了验证系统 (2.1) 行波解满足
(A
定理3.2 若
证 令
首先证明
其次, 不难验证
下证
这蕴含着: 当
由 (3.28) 式可知,
令
定义
从而, 有
类似文献 [21,引理 3.11] 的证明过程可知, 存在与
下证
这蕴含了对
记
其中
从而, 只要
则
下面为了建立当
(A
定理3.3 若
证 对
进一步, 类似文献 [22,定理 3.19] 的讨论可得,
定义
下证 (3.37) 式的严格不等式成立. 若存在实数
因为
最后, 证明 (2.2) 式的解
4 行波解的不存在性
本节利用双边 Laplace变换和反证法研究当
定理4.1 若
证 利用反证法, 若对
因此, 由 (2.2) 式的第三个方程可得,
对 (4.1) 式从
定义
再对 (4.3) 式从
由微积分学基本定理和 Fubini 定理, 不难得到
同理可得,
将 (4.5), (4.6) 式代入 (4.4)式可知,
由
对
那么, 由 (4.8), (4.9) 式可知对
成立. 于是, 存在正实数
下面, 定义非负增函数
且对
另外, 容易验证
从而, 将 (4.13), (4.14) 式代入 (4.12) 式并结合
根据
因此, 在 (4.15) 式中令
则对
为了方便, 记
由条件 (A
令
取
注意到, 对某个常数
取常数
类似 (4.14) 式, 有
另外, 利用 Taylor公式并结合条件 (A
将 (4.21)-(4.23) 式代入 (4.20) 式并结合
当
由 (4.11) 式和
则有
因为
接下来, 对 (4.17) 式两边进行 Laplace变换可得
其中
参考文献
霍乱传染病行波解的上下解计算
Calculation of upper and lower solutions of travelling wave solutions for cholera diseases
Traveling waves in a nonlocal dispersal SIRH model with relapse
一类非局部扩散的 SIR 模型的行波解
Traveling wave solutions of a class of SIR model with nonlocal diffusion
具有时空时滞的非局部扩散 SIR 模型的行波解
Traveling wave solutions for nonlocal dispersal SIR models with spatio-temporal delays
Traveling waves in a convolution model for phase transitions
Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Analysis: Theory
On uniqueness and monotonicity of solutions of non-local reaction diffusion equation
Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model
带有非局部扩散项的霍乱传染病模型行波解的存在性
DOI:10.12387/C2021032
[本文引用: 6]
In this paper, we study a nonlocal dispersal cholera model. The existence of traveling wave solutions is obtained by applying Schauder’s fixed point theorem with upperlower solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> > <i>c</i><sup>*</sup>. Moreover, we construct suitable Lyapunov function to analyze the boundary asymptotic behavior of traveling wave solutions at +∞. Finally, we show the existence of the traveling wave solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> = <i>c</i><sup>*</sup>.
Traveling waves in a nonlocal dispersal cholera model
DOI:10.12387/C2021032
[本文引用: 6]
In this paper, we study a nonlocal dispersal cholera model. The existence of traveling wave solutions is obtained by applying Schauder’s fixed point theorem with upperlower solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> > <i>c</i><sup>*</sup>. Moreover, we construct suitable Lyapunov function to analyze the boundary asymptotic behavior of traveling wave solutions at +∞. Finally, we show the existence of the traveling wave solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> = <i>c</i><sup>*</sup>.
带非局部扩散项的一般性霍乱模型的行波解
Traveling wave solution of a general cholera model with non-local diffusion
Traveling waves for a cholera vaccination model with nonlocal dispersal
DOI:10.1002/mma.7099
[本文引用: 4]
In this paper, we study the existence and nonexistence of a nonlocal dispersal cholera model with vaccination. First, we explore the existence of traveling wave solution when R-0 > 1 and c >= c* by using the Schauder's fixed-point theorem associated with the upper-lower solutions. Moreover, the Lyapunov functional is used to show the boundary asymptotic behavior of traveling wave solution. Furthermore, in the case when R-0 > 1 and c < c*, we show that the model system has nonexistence of traveling wave solution on the basis of the Laplace transform. At last, we discuss how the spatial movement and vaccination affect the minimal wave speed.
Traveling waves for SVIR epidemic model with nonlocal dispersal
DOI:10.3934/mbe.2019079
PMID:30947437
[本文引用: 3]
In this paper, we studied an SVIR epidemic model with nonlocal dispersal and delay, and we find that the existence of traveling wave is determined by the basic reproduction number ℜ₀ and minimal wave speed c. By applying Schauder's fixed point theorem and Lyapunov functional, the existence and boundary asymptotic behaviour of traveling wave solutions is investigated for ℜ₀>1 and c>c. The existence of traveling waves is obtained for ℜ₀>1 and c=c by employing a limiting argument. We also show that the nonexistence of traveling wave solutions by Laplace transform. Our results imply that (i) the diffusion and infection ability of infected individuals can accelerate the wave speed; (ii) the latent period and successful rate of vaccination can slow down the wave speed.
一类时滞非局部扩散 SVIR 模型单稳行波解的稳定性
Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay
Aggregation and the competitive exclusion principle
A mathematical model for aggregation in a single animal population is set up. It relies on two premises. First, there is an advantage to individuals in the population in grouping together, for example for social purposes or to reduce the risk of predation. Second, the intra-specific competition at a point depends not simply on the population density at that point but on the average population density near the point, since the animals may move to find resources. The model is then extended to competing populations, and inter-specific competition is also assumed to depend on an average population density. It is shown that the resulting aggregation may lead to the co-existence of populations one of which would otherwise be excluded by the other. This finding is discussed with regard to the Competitive Exclusion Principle.
Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model
Strongly order preserving semiflows generated by functional differential equations
Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay
Traveling waves for a nonlocal dispersal SIR model with renewal and spatio-temporal delay
Traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal
DOI:10.1007/s10473-022-0218-5
PMID:35132292
[本文引用: 4]
This paper deals mainly with the existence and asymptotic behavior of traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal based on Schauder's fixed-point theorem and analysis techniques, which generalize the results of nonlocal SIRH models without relapse and delay. In particular, the difficulty of obtaining the asymptotic behavior of traveling waves for the appearance of spatio-temporal delay is overcome by the use of integral techniques and analysis techniques. Finally, the more general nonexistence result of traveling waves is also included.Supplementary material is available in the online version of this article at 10.1007/s10473-022-0218-5.© Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2022.
Traveling wave fronts of reaction-diffusion systems with delay
/
〈 |
|
〉 |
