Processing math: 5%

数学物理学报, 2025, 45(1): 110-135

非局部扩散的时空时滞霍乱传染病系统的行波解

杨咏丽,, 杨赟瑞,*

兰州交通大学数理学院 兰州 730070

Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal

Yang Yongli,, Yang Yunrui,*

School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070

通讯作者: * 杨赟瑞,E-mail: yl051199@163.com

收稿日期: 2024-01-29   修回日期: 2024-05-15  

基金资助: 国家自然科学基金(12361038)
兰州交通大学百名青年优秀人才培养计划

Received: 2024-01-29   Revised: 2024-05-15  

Fund supported: National Natural Science Foundation of China(12361038)
the Foundation of a Hundred Youth Talents Training Program of Lanzhou Jiaotong University

作者简介 About authors

杨咏丽,E-mail:lily1979101@163.com

摘要

该文研究了一类非局部扩散的时空时滞霍乱传染病系统行波解的存在性、不存在性和渐近行为. 通过构造上下解, 将行波解的存在性问题转化为闭凸锥上非线性算子存在不动点的问题, 再借助Schauder不动点定理、极限理论和分析技术证明该系统行波解的存在性、有界性和负无穷远处的渐近行为. 此外, 基于双边 Laplace 变换和反证法建立该系统行波解的不存在性.

关键词: 非局部扩散; 时空时滞; 行波解

Abstract

This paper deals with the existence, non-existence and asymptotic behaviors of traveling wave solutions to a class of cholera epidemic system with spatio-temporal delay and nonlocal dispersal. By constructing the upper and lower solutions, the existence of traveling waves to the system is converted into the fixed point problem of a nonlinear operator on a closed and convex cone, and thus the existence, boundedness and asymptotic behavior at negative infinity of traveling waves of the system are proved by applying Schauder's fixed point theorem, limit theory and analysis techniques. In addition, the nonexistence of traveling waves of the system is also established based on the two-sided Laplace transform and the method of proof by contradiction.

Keywords: nonlocal dispersal; spatio-temporal delay; traveling wave solutions

PDF (699KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨咏丽, 杨赟瑞. 非局部扩散的时空时滞霍乱传染病系统的行波解[J]. 数学物理学报, 2025, 45(1): 110-135

Yang Yongli, Yang Yunrui. Traveling Wave Solutions to a Cholera Epidemic System with Spatio-Temporal Delay and Nonlocal Dispersal[J]. Acta Mathematica Scientia, 2025, 45(1): 110-135

1 引言

传染病模型一直是反应扩散方程中的热点研究对象, 其中经典 SIR 模型考虑的是通过人与人之间的传染发生的疾病传播. 而现实环境中, 疾病的传播存在多种途径, 除了人与人之间的传染, 人与具有传播途径的媒介 (比如受污染的水源或者食物) 之间也会发生传染, 例如模拟霍乱病毒 [1]的 Laplace 扩散传染病模型

{S(t,x)t=d1ΔS(t,x)+ΛβWS(t,x)W(t,x)βIS(t,x)I(t,x)μS(t,x),I(t,x)t=d2ΔI(t,x)+βWS(t,x)W(t,x)+βIS(t,x)I(t,x)(μ+ϖ+γ)I(t,x),W(t,x)t=d3ΔW(t,x)+αI(t,x)δW(t,x),R(t,x)t=d4ΔR(t,x)+γI(t,x)μR(t,x),
(1.1)

这里 S(t,x), I(t,x), W(t,x)R(t,x) 分别是易感者、已感者、霍乱病毒和治愈者的密度(其中 t>0, xR), di>0(i=1,2,3,4) 为扩散率, Λ 是外部输入率, βWβI 分别表示病毒在人与环境和人与人之间的传染率, μ 为除霍乱病毒以外的个体的出生率或死亡率, ϖ 表示由疾病引起的死亡率, γ 为已感者的治愈率, α 表示霍乱病毒在生长环境中增加的速率, δ 是病毒的死亡率.

通常, 经典 Laplace 扩散表明个体的发展只依赖于当前时刻和当前位置, 是一种局部扩散. 然而, 个体的扩散不只局限于当前位置, 还与周围其他位置甚至整个区域有关, 这就是非局部扩散, 它可以用积分项

Ju(t,x)u(t,x)=RJ(xy)(u(t,y)u(t,x))dy

来表示, 其中 J(xy) 表示个体从空间位置 y 到达位置 x 的概率密度. 于是, 非局部扩散方程及其行波解引起了学者们的研究兴趣, 并将行波理论运用到实际问题. 例如, 传染病的传播能够用以固定波速在空间传播的行波解来模拟, 若传染波的传播速度大于 (等于) 个体离开传染源的速度时, 那么行波解存在, 即个体会被传染, 否则个体不会被传染. 因此, 对传染病系统行波解的存在性、不存在性研究能反映疾病的实际发展和控制情况 [1-4]. 基于 Bates、Coville对非局部扩散标量方程行波解的代表性工作[5-7], 非局部扩散系统、特别是非局部扩散传染病系统行波解的研究[8-10]得以发展. 2021年, 杨炜明等[9]借助上下解结合Schauder不动点定理和Lyapunov泛函建立了带有输入项和双线性发生率的非局部扩散霍乱传染病系统

{S(t,x)t=d1(J1S(t,x)S(t,x))+ΛβWS(t,x)W(t,x)βIS(t,x)I(t,x)μS(t,x),I(t,x)t=d2(J2I(t,x)I(t,x))+βWS(t,x)W(t,x)+βIS(t,x)I(t,x)(μ+γ)I(t,x),W(t,x)t=d3(J3W(t,x)W(t,x))+αI(t,x)δW(t,x),R(t,x)t=d4(J4R(t,x)R(t,x))+γI(t,x)μR(t,x)
(1.2)

(其中 t>0, xR) 行波解的存在性和渐近行为. 此后, 廖书和方章英 [10] 还将杨炜明等 [9]对系统 (1.2) 的研究结果推广到具有一般非线性发生率的霍乱传染病系统.

另一方面, 考虑到疫苗接种策略可以有效预防并控制疾病的传播. 因而, 对加入疫苗接种策略的传染病系统的行波解研究引发更多关注[11-13]. 例如, Liao 等[11]建立了考虑疫苗接种策略的非局部扩散霍乱传染病系统

{S(t,x)t=d1(J1S(t,x)S(t,x))+μNβWS(t,x)W(t,x)βIS(t,x)I(t,x)          (μ+κ)S(t,x)+θV(t,x),V(t,x)t=d2(J2V(t,x)V(t,x))+κS(t,x)σβIV(t,x)I(t,x)(μ+θ)V(t,x),I(t,x)t=d3(J3I(t,x)I(t,x))+βWS(t,x)W(t,x)+βIS(t,x)I(t,x)          (μ+γ)I(t,x)+σβIV(t,x)I(t,x),W(t,x)t=d4(J4W(t,x)W(t,x))+αI(t,x)δW(t,x),R(t,x)t=d5(J5R(t,x)R(t,x))+γI(t,x)μR(t,x)
(1.3)

(其中 t>0, xR) 行波解的存在性、渐近行为和不存在性, 其中 S, I, WR 的含义同系统 (1.1) 中的解释, V 表示接种疫苗者的密度, N 是人口总数, κ 为易感者接种疫苗的速率, θ 表示疫苗诱导下免疫降低的速率, σ 是疫苗的有效率. 注意到, 系统 (1.2)-(1.3) 并未考虑时滞因素, 而客观世界中, 疾病的潜伏期、生物的孵化期、成熟期等时滞因素普遍存在. 因此, 考虑疫苗接种策略和时滞因素的非局部扩散传染病模型更符合客观实际. 例如,Zhang 和 Liu [12], 李孝武等[13]分别研究了一类具有疫苗接种策略和离散时滞的非局部扩散SVIR系统

{S(t,x)t=d1(J1S(t,x)S(t,x))+Λβ1S(t,x)I(ts,x)(α+μ1)S(t,x),V(t,x)t=d2(J2V(t,x)V(t,x))β2V(t,x)I(ts,x)+αS(t,x)(γ1+μ2)V(t,x),I(t,x)t=d3(J3I(t,x)I(t,x))+β1S(t,x)I(ts,x)+β2V(t,x)I(ts,x)  (γ+μ3)I(t,x),R(t,x)t=d4(J4R(t,x)R(t,x))+γ1V(t,x)+γI(t,x)μ4R(t,x)
(1.4)

(其中 t[s,0], s>0, xR) 单稳行波解的存在性和稳定性. 然而, 个体在过去时间乃至整个历史时期的状态都可能会对当前的状态产生影响, 这就是时间-空间的非局部 (也称时空时滞). 基于 Britton[14,15] 提出的空间加权平均思想和 Smith[16] 发展的特征线方法, 模型中可以归纳并体现这种时空时滞, 例如带有输入项的时空时滞非局部扩散SIR 系统

{S(t,x)t=d1(J1S(t,x)S(t,x))+B0(S(t,x))F(S(t,x),GI(t,x))D1(S(t,x)),I(t,x)t=d2(J2I(t,x)I(t,x))+F(S(t,x),GI(t,x))M(I(t,x))D2(I(t,x)),R(t,x)t=d3(J3R(t,x)R(t,x))+M(I(t,x))D3(R(t,x)),
(1.5)

其中时空时滞项

GI(t,x)=T0RG(s,y)I(ts,xy)dyds,  T(0,+)

表示易感者变成已感者的最长潜伏期, 通常 T 也可以等于 +. 至此, 具有时空时滞的非局部扩散系统行波解的研究也逐步发展起来[17-19]. 2017 年, Zhou和Yang [17] 建立了一类具有时空时滞的非局部扩散 SIR系统行波解的存在性和不存在性. 此后, Yang 等[18]研究了系统 (1.5)行波解的存在性、渐近行为和不存在性. 此类工作还可参见 Yang 等[19].

但是, 上述提到的杨炜明等 [9], 廖书和方章英 [10] 和 Liao 等[11]的工作中并未考虑时滞因素和时间-空间的非局部, 因此, 本文研究如下非局部扩散的时空时滞霍乱传染病系统

{S(t,x)t=d(JS(t,x)S(t,x))+μNβWS(t,x)W(t,x)           βIf(S(t,x),GI(t,x))(μ+κ)S(t,x)+θV(t,x),V(t,x)t=d(JV(t,x)V(t,x))+κS(t,x)σβIg(V(t,x),GI(t,x))(μ+θ)V(t,x),I(t,x)t=d(JI(t,x)I(t,x))+βWS(t,x)W(t,x)+βIf(S(t,x),GI(t,x))           (μ+γ)I(t,x)+σβIg(V(t,x),GI(t,x)),W(t,x)t=d(JW(t,x)W(t,x))+αh(GI(t,x))δW(t,x),R(t,x)t=d(JR(t,x)R(t,x))+γI(t,x)μR(t,x)
(1.6)

(其中 t>0, xR), 初值条件

S(0,x)=S0(x),V(0,x)=V0(x),I(t,x)=I0(t,x),
W(0,x)=W0(x),R(0,x)=R0(x),t[s,0]

行波解的存在性、渐近行为和不存在性, 其中 f(S,I)g(V,I) 是反应函数, h(I) 是脱落功能函数.

注意到, 由于系统 (1.6) 中未知函数的耦合和时空时滞的出现, 会产生两个不同的波速 cc (0<cc) 去确定行波解存在与否, 只有当 c=c 时, 这个波速 c=c=c 才是临界波速 (即最小波速). 而且, 建立当 R0>1 (这里 R0 为基本再生数, 是指在发病初期, 当所有人均为易感者时, 一个患者在平均患病期内感染的人数, 它可以看作决定疾病是否消亡的一个阈值), c>c 时系统 (1.6) 行波解的存在性时, 时空时滞和更一般非线性反应项的出现使构造适当的 Lyapunov泛函有困难, 因此无法得到强行波解 (强行波解是指系统 (1.6) 连接无病平衡点和地方病平衡点的行波解), 故借助分析技术得到的是弱行波解 (弱行波解是指系统 (1.6) 连接无病平衡点和非地方病平衡点的行波解) 的存在性. 接下来, 基于极限理论和分析技术建立了当 R0>1, c=c 时系统 (1.6) 行波解的存在性. 此外, 更一般的时空时滞反应项使行波解有界性的建立变得困难, 需借助积分技巧和分析方法来克服, 而这是研究系统 (1.6) 行波解渐近行为和不存在性的前提. 最后, 利用双边 Laplace变换和反证法证明当 R0>1, 0<c<c 时系统 (1.6) 不存在满足边界条件的行波解 (即行波解的不存在性), 这不同于文献 [18] 仅得到的是不存在满足负无穷远处边界条件和渐近行为的行波解结论. 特别地, 当 f(S,I)=SI, g(V,I)=VI, h(I)=I, 且 G(t,x)=δ(t)δ(x) 时, 系统 (1.6) 退化为系统 (1.3), 其中 δ() 为Dirac函数. 因此, 本文不仅将未考虑疫苗接种策略、具有双线性发生率的霍乱传染病系统行波解的相关研究 [9]推广到具有更一般非线性发生率的传染病系统, 还将无时滞和离散时滞传染病系统行波解的研究结果[813]拓展到了非局部扩散的时空时滞传染病系统.

2 预备知识

首先给出本文用到的假设条件.

(A1) J(y)C1(R,R+), 且对 yR, 有 J(y)=J(y)0RJ(y)dy=1. 此外, 对 λ>0, 有 RJ(y)eλydy<+ 以及 lim

(A_2) \mathcal{G}(s,y)\in C^{1}([T]\times\mathbb{R},\mathbb{R_{+}}) 关于空间变量 y 是Lipschitz连续的, 且对 \forall(s,y)\in[T]\times\mathbb{R}, 有 \mathcal{G}(s,y)=\mathcal{G}(s,-y)\geq0\int_{0}^{T}\int_{\mathbb{R}}\mathcal{G}(s,y){\rm d}y{\rm d}s=1. 此外, 对 \forall c, \lambda>0, 有 \int_{0}^{T}\int_{\mathbb{R}}\mathcal{G}(s,y){\rm e}^{-\lambda (y+cs)}{\rm d}y{\rm d}s < +\infty 以及 \mathop {\lim }\limits_{\lambda \to +\infty }\int_{0}^{T}\int_{\mathbb{R}}\mathcal{G}(s,y){\rm e}^{-\lambda (y+cs)}{\rm d}y{\rm d}s=+\infty.

(A_3) f(S,I)\in C^{2}(\mathbb{R}_{+}^{2},\mathbb{R}_{+}), 且当 (S,I)\in \mathbb{R}_{+}^{2} 时, 有 f_{S}(S,I)\geq0, f_{I}(S,I)\geq0, f_{SS}(S,I)\leq0, f_{SI}(S,I)\geq0, f_{II}(S,I)\leq0\bar f_{I}(S,I)\leq0, 其中 \bar f(S,I) = \frac{{f(S,I)}}{I}. 特别地, f(S,0)=f(0,I)=0, f_{S}(S,0)=0f_{I}(S,0)>0.

(A_4) g(V,I)\in C^{2}(\mathbb{R}_{+}^{2},\mathbb{R}_{+}), 且当 (V,I)\in \mathbb{R}_{+}^{2} 时, 有 g_{V}(V,I)\geq0, g_{I}(V,I)\geq0, g_{VV}(V,I)\leq0, g_{VI}(V,I)\geq0, g_{II}(V,I)\leq0\bar g_{I}(V,I)\leq0, 其中 \bar g(V,I) = \frac{{g(V,I)}}{I}. 特别地, g(V,0)=g(0,I)=0, g_{V}(V,0)=0g_{I}(V,0)>0.

(A_5)\forall(S,V,I)\in\mathbb{R}_{+}^{3}, 有 f_{II}^{2}(S,I)+g_{II}^{2}(V,I)\neq0.

(A_6) h(I)\in C^{2}(\mathbb{R}_{+},\mathbb{R}_{+}), 且当 I\in\mathbb{R}_{+} 时, 有 h'(I)\geq0h''(I)\leq0. 特别地, h(0)=0.

条件 (A_{1})-(A_{2}) 是核函数满足的条件, (A_{3})-(A_{4}) 和 (A_{6}) 表明系统 (1.6) 是非单调的, 且是单稳系统, (A_{5}) 是构造系统 (1.6) 关于 IW 的上解 (即引理 3.2) 时所需的技术性条件.

由于系统 (1.6) 的前四个方程中不含 R(t,x), 因此对 t>0, x\in\mathbb{R}, 仅需考虑如下系统

\begin{equation}\label{201} \begin{cases} \frac{{\partial S(t,x)}}{{\partial t}} =d(\mathcal{J} * S(t,x) - S(t,x)) + \mu N - \beta_W S(t,x) W(t,x)\\ ~~~~~~~~~~~\quad -\beta_I f(S(t,x), \mathcal{G} * * I(t,x)) - (\mu + \kappa) S(t,x) + \theta V(t,x),\\[2mm] \frac{{\partial V(t,x)}}{{\partial t}} =d(\mathcal{J} * V(t,x) - V(t,x)) + \kappa S(t,x) - \sigma \beta_I g(V(t,x), \mathcal{G} * * I(t,x))\\ ~~~~~~~~~~~~\quad - (\mu + \theta) V(t,x),\\[2mm] \frac{{\partial I(t,x)}}{{\partial t}} =d(\mathcal{J} * I(t,x) - I(t,x)) + \beta_W S(t,x) W(t,x) + \beta_I f(S(t,x), \mathcal{G} * * I(t,x))\\ ~~~~~~~~~~~\quad-(\mu + \gamma) I(t,x) + \sigma \beta_I g(V(t,x), \mathcal{G} * * I(t,x)),\\[2mm] \frac{{\partial W(t,x)}}{{\partial t}} =d(\mathcal{J} * W(t,x) - W(t,x)) + \alpha h(\mathcal{G} * * I(t,x)) - \delta W(t,x). \end{cases} \end{equation}
(2.1)

不难验证, 系统 (2.1) 存在无病平衡点

E_{0}=(S_{0},V_{0},0,0)=\bigg(\frac{N(\mu + \theta)}{\mu + \kappa + \theta},\frac{N\kappa}{\mu + \kappa + \theta},0,0\bigg).

借助下一代矩阵法可以得到基本再生数

R_{0} = \frac{\alpha \beta_{W} S_{0} h'(0) + \delta (\beta_{I} f_{I}(S_{0},0) + \sigma \beta_{I} g_{I}(V_{0},0))}{\delta (\mu + \gamma)}.

系统 (2.1) 的行波解是指形如 (S(t,x),V(t,x),I(t,x),W(t,x))=((S(\xi),V(\xi),I(\xi),W(\xi))\xi=x+ct 的解, 其中 x\in\mathbb{R}, c>0 为波速, 从而系统 (2.1) 相应的行波系统为

\begin{matrix}\label{202} \begin{cases} &\hspace{-0.35cm}cS'(\xi) =d(\mathcal{J} * S(\xi) - S(\xi)) + \mu N - \beta_W S(\xi) W(\xi) - \beta_I f(S(\xi), \mathcal{G} * * I(\xi))\\ &~~~~~~~~- (\mu + \kappa) S(\xi) + \theta V(\xi),\\ &\hspace{-0.35cm}cV'(\xi) =d(\mathcal{J} * V(\xi) - V(\xi)) + \kappa S(\xi) - \sigma \beta_I g(V(\xi), \mathcal{G} * * I(\xi)) - (\mu + \theta) V(\xi),\\ &\hspace{-0.35cm}cI'(\xi) =d(\mathcal{J} * I(\xi) - I(\xi)) + \beta_W S(\xi) W(\xi) + \beta_I f(S(\xi), \mathcal{G} * * I(\xi))\\ &~~~~~~~~-(\mu + \gamma) I(\xi) + \sigma \beta_I g(V(\xi), \mathcal{G} * * I(\xi)),\\ &\hspace{-0.35cm}cW'(\xi) =d(\mathcal{J} * W(\xi) - W(\xi)) + \alpha h(\mathcal{G} * * I(\xi)) - \delta W(\xi), \end{cases} \end{matrix}
(2.2)

并满足如下边界条件

\lim \limits_{\xi \rightarrow -\infty}S(\xi)=S_{0},\lim \limits_{\xi \rightarrow -\infty}V(\xi)=V_{0},\lim \limits_{\xi \rightarrow -\infty}I(\xi)=0, \lim \limits_{\xi \rightarrow -\infty}W(\xi)=0,
(2.3)
\liminf \limits_{\xi \rightarrow +\infty}S(\xi)>0,~\liminf \limits_{\xi \rightarrow +\infty}V(\xi)>0,~\liminf \limits_{\xi \rightarrow +\infty}I(\xi)>0,~\liminf \limits_{\xi \rightarrow +\infty}W(\xi)>0.
(2.4)

为了建立系统 (2.1) 行波解的 (不) 存在性, 只需研究行波系统 (2.2) 的解的 (不) 存在性. 为此, 先考虑系统 (2.2) 中的后两个方程在 E_{0}=(S_{0},V_{0},0,0) 处的线性化系统

\begin{equation}\label{205} \begin{cases} &\hspace{-0.35cm}cI'(\xi) = d(\mathcal{J} * I(\xi) - I(\xi)) + \beta_W S_{0} W(\xi) \\ &~~~~~~~~+ (\beta_I f_{I}(S_{0},0) + \sigma \beta_I g_{I}(V_{0},0)) \mathcal{G} * * I(\xi) - (\mu + \gamma) I(\xi),\\ &\hspace{-0.35cm}cW'(\xi) = d(\mathcal{J} * W(\xi) - W(\xi)) + \alpha h'(0)\mathcal{G} * * I(\xi) - \delta W(\xi). \end{cases} \end{equation}
(2.5)

(I,W)(\xi)=({q_1},{q_2}){{\rm e}^{\lambda \xi }} 代入 (2.5) 式, 可得

\begin{equation}\label{206} {\Theta_1}(\lambda, c){q_1} + {\beta _W}{S_0}{q_2} = 0, {\Theta_2}(\lambda, c){q_2} + \alpha h'(0){\mathfrak{R}}(\lambda, c){q_1} = 0 \end{equation}
(2.6)

和特征方程 \Theta(\lambda, c) = {\Theta_1}(\lambda, c){\Theta_2}(\lambda, c) - \alpha {\beta _W}{S_0}h'(0){\mathfrak{R}}(\lambda, c) = 0, 这里 q_{1}, q_{2}>0,

\begin{align*} &{\Theta_1}(\lambda, c) = d\int_\mathbb{R}{\mathcal{J}(y)({{\rm e}^{ - \lambda y}} - 1){\rm d}y} - c\lambda + ( {{\beta _I}{f_I}({S_0}, 0) + \sigma {\beta _I}{g_I}({V_0}, 0)} ){\mathfrak{R}}(\lambda, c) - (\mu + \gamma ),\\ &{\Theta_2}(\lambda, c) = d\int_\mathbb{R}{\mathcal{J}(y)({{\rm e}^{ - \lambda y}} - 1){\rm d}y} - c\lambda - \delta, {\mathfrak{R}}(\lambda, c) = \int_0^T{\int_\mathbb{R}{\mathcal{G}(s,y){{\rm e}^{ - \lambda (y + cs)}}{\rm d}y{\rm d}s}}. \end{align*}

为了建立界定行波解是否存在的波速 c^{*}c_{*} 的存在性 (见引理 2.1), 还需要下面的假设条件

(A_7)\forall c>0, 有 {\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0) > \max \{ {\mu + \gamma, \frac{{\mu + \gamma }}{{\mathop {\inf }\limits_{0 < \lambda < +\infty}{\mathfrak{R}}(\lambda,c)}}}\}.

引理 2.1R_{0}>1 和 (A_1)-(A_7) 成立, 则存在实数 c^{*}>0, 使得当 c>c^{*}\Theta (\lambda, c)=0 仅有实根. 特别地, 若 \lambda_{c}\Theta (\lambda, c)=0 的最小正实根, 则存在充分小的实数 \varepsilon>0, 使得 \Theta_{1}(\lambda_{c} + \varepsilon, c)<0\Theta_{2}(\lambda_{c} + \varepsilon, c)<0 成立. 此外, 存在实数 c_{*}>0, 使得当 0<c<c_{*}\Theta(\lambda, c)=0 仅有一个正实根.

证明过程类似于文献 [19,引理 2.1], 故此省略.

由上述引理可知, 存在一对正常数 (q_{1}, q_{2}), 使得 (2.6) 式成立, 即

\begin{equation}\label{207} {\Theta_1}(\lambda_{c}, c){q_1} + {\beta _W}{S_0}{q_2} = 0, {\Theta_2}(\lambda_{c}, c){q_2} + \alpha h'(0){\mathfrak{R}}(\lambda, c){q_1} = 0. \end{equation}
(2.7)

下面给出行波系统 (2.2) 的上、下解定义

定义2.1 若 (A_1)-(A_7) 成立, 且 ({S_+}(\xi),{V_+}(\xi),{I_+}(\xi), {W_+}(\xi))({S_-}(\xi),{V_-}(\xi),{I_-}(\xi),\\ {W_-}(\xi)) 分别满足

\begin{matrix}\label{208} \begin{cases} &\hspace{-0.35cm}c{S'_ + }(\xi ) \ge d({\cal J} * {S_ + }(\xi ) - {S_ + }(\xi )) + \mu N - {\beta _W}{S_ + }(\xi ){W_ - }(\xi ) - {\beta _I}f({S_ + }(\xi ),{\cal G} * * {I_ - }(\xi ))\\ &~~~~~~~~~-(\mu + \kappa ){S_ + }(\xi ) + \theta {V_ + }(\xi ),\\ &\hspace{-0.35cm}c{V'_ + }(\xi )\ge d({\cal J} * {V_ + }(\xi )-{V_ + }(\xi ))+\kappa {S_ + }(\xi )-\sigma {\beta _I}g({V_ + }(\xi ),{\cal G} * * {I_ - }(\xi )) - (\mu + \theta ){V_ + }(\xi ),\\ &\hspace{-0.35cm}c{I'_ + }(\xi ) \ge d({\cal J} * {I_ + }(\xi ) - {I_ + }(\xi )) + {\beta _W}{S_ + }(\xi ){W_ + }(\xi ) + {\beta _I}f({S_ + }(\xi ),{\cal G} * * {I_ + }(\xi ))\\ &~~~~~~~~\,-(\mu + \gamma ){I_ + }(\xi ) + \sigma {\beta _I}g({V_ + }(\xi ),{\cal G} * * {I_ + }(\xi )),\\ &\hspace{-0.35cm}c{W'_ + }(\xi ) \ge d({\cal J} * {W_ + }(\xi ) - {W_ + }(\xi )) + \alpha h({\cal G} * * {I_ + }(\xi )) - \delta {W_ + }(\xi ) \end{cases} \end{matrix}
(2.8)

\begin{matrix}\label{209} \begin{cases} &\hspace{-0.35cm}c{S'_ - }(\xi ) \le d ({\cal J} * {S_ - }(\xi ) - {S_ - }(\xi )) + \mu N - {\beta _W}{S_ - }(\xi ){W_+ }(\xi ) - {\beta _I}f({S_ - }(\xi ),{\cal G}**{I_ + }(\xi ))\\ &~~~~~~~~~-(\mu + \kappa ){S_ - }(\xi ) + \theta {V_ - }(\xi ),\\ &\hspace{-0.35cm}c{V'_ - }(\xi ) \le d ({\cal J} * {V_ - }(\xi ) - {V_ - }(\xi )) + \kappa {S_ - }(\xi ) - \sigma {\beta _I}g({V_ - }(\xi ),{\cal G} * * {I_ + }(\xi )) - (\mu + \theta ){V_ - }(\xi ),\\ &\hspace{-0.35cm}c{I'_ - }(\xi ) \le d ({\cal J} * {I_ - }(\xi ) - {I_ - }(\xi )) + {\beta _W}{S_ - }(\xi ){W_ - }(\xi )+ {\beta _I}f({S_ - }(\xi ),{\cal G} * * {I_ - }(\xi ))\\ &~~~~~~~~~-(\mu + \gamma ){I_ - }(\xi ) + \sigma {\beta _I}g({V_ - }(\xi ),{\cal G} * * {I_ - }(\xi )),\\ &\hspace{-0.35cm}c{W'_ - }(\xi ) \le d ({\cal J} * {W_ - }(\xi ) - {W_ - }(\xi )) + \alpha h({\cal G} * * {I_ - }(\xi )) - \delta {W_ - }(\xi ), \end{cases} \end{matrix}
(2.9)

则称 ({S_+}(\xi),{V_+}(\xi),{I_+}(\xi),{W_+}(\xi))({S_-}(\xi),{V_-}(\xi),{I_-}(\xi),{W_-}(\xi)) 分别为系统 (2.2) 的上解和下解.

3 行波解的存在性

本节讨论当 R_{0} > 1, c \geq c^{*} 时系统 (2.1) 行波解的存在性. 为此, 先构造如下形式的上、下解

\begin{align*} {S_ + }(\xi ): = {S_0}, \hspace{2.7cm} &{S_ - }(\xi ) := \max \{ {S_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}),0\};\\ {V_ + }(\xi ): = {V_0}, \hspace{2.7cm} &{V_ - }(\xi ) := \max \{ {V_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}),0\};\\ {I_ + }(\xi ): = \min \{ {q_1}{{\rm e}^{{\lambda _c}\xi }},{q_1}K\},~~~&{I_ - }(\xi ): = \max \{ {q_1}{{\rm e}^{{\lambda _c}\xi }}(1 - {M_2}{{\rm e}^{{\varepsilon _2}\xi }}),0\};\\ {W_ + }(\xi ): = \min \{ {q_2}{{\rm e}^{{\lambda _c}\xi }},{q_2}K\},~~&{W_ - }(\xi ): = \max \{ {q_2}{{\rm e}^{{\lambda _c}\xi }}(1 - {M_2}{{\rm e}^{{\varepsilon _2}\xi }}),0\}. \end{align*}

其中 \varepsilon _1, \varepsilon _2, M_1, M_2K 为适当的正常数, 它们满足的条件将在后续引理中给出.

引理 3.1 函数 S_{+}(\xi)=S_{0}V_{+}(\xi)=V_{0} 满足

\begin{equation}\label{301} \begin{cases} &\hspace{-0.35cm}c{S'_ + }(\xi ) \ge d( {\mathcal{J} * {S_ + }(\xi ) - {S_ + }(\xi )} ) + \mu N - {\beta _W}{S_ + }(\xi ){W_ - }(\xi ) - {\beta _I}f( {{S_ + }(\xi ),\mathcal{G} * *{I_ - }(\xi )} )\\ &~~~~~~~~~ - (\mu + \kappa ){S_ + }(\xi ) + \theta {V_ + }(\xi ),\\ &\hspace{-0.35cm}c{V'_ + }(\xi ) \ge d( {\mathcal{J}\!*\!{V_ + }(\xi ) - {V_ + }(\xi )} ) + \kappa {S_ + }(\xi ) - \sigma {\beta _I}g( {{V_ + }(\xi ),\mathcal{G} * *{I_ - }(\xi )} ) - (\mu + \theta ){V_ + }(\xi ). \end{cases} \end{equation}
(3.1)

S_{0}V_{0} 的表达式以及条件 (A_3)-(A_4), 不难验证(3.1)式成立.

引理 3.2K>1 充分大, 则对 \forall\xi\neq\frac{\ln K}{\lambda_{c}}, 函数 I_{+}(\xi)W_{+}(\xi) 满足

\begin{matrix}\label{302} \begin{cases} &\hspace{-0.35cm}c{I'_ + }(\xi ) \ge d(\mathcal{J} * {I_ + }(\xi ) - {I_ + }(\xi )) + {\beta _W}{S_ + }(\xi ){W_ + }(\xi ) + {\beta _I}f({S_ + }(\xi ),\mathcal{G} * * {I_ + }(\xi ))\\ &~~~~~~~~~- (\mu + \gamma ){I_ + }(\xi ) + \sigma {\beta _I}g({V_ + }(\xi ),\mathcal{G} * * {I_ + }(\xi )),\\ &\hspace{-0.35cm}c{W'_ + }(\xi ) \ge d(\mathcal{J} * {W_ + }(\xi ) - {W_ + }(\xi )) + \alpha h(\mathcal{G} * * {I_ + }(\xi )) - \delta {W_ + }(\xi ). \end{cases} \end{matrix}
(3.2)

先证 (3.2) 式的第一个不等式成立. 利用 Taylor 公式及条件 (A_3)-(A_4) 和 (A_6), 可知

f({S_0},{\cal G} * * {I_ + }(\xi )) = {f_I}({S_0},0){\cal G} * * {I_ + }(\xi ) + \frac{1}{2}{f_{II}}({S_0},{\alpha _1}){[{\cal G} * * {I_ + }(\xi )]^2},
(3.3)
g({V_0},{\cal G} * * {I_ + }(\xi )) = {g_I}({V_0},0){\cal G} * * {I_ + }(\xi ) + \frac{1}{2}{g_{II}}({V_0},{\alpha _2}){[{\cal G} * * {I_ + }(\xi )]^2},
(3.4)
h({\cal G} * * {I_ + }(\xi )) = h'(0){\cal G} * * {I_ + }(\xi ) + \frac{1}{2}h''({\alpha _3}){[{\cal G} * * {I_ + }(\xi )]^2},
(3.5)

其中 {\alpha _1},{\alpha _2},{\alpha _3} \in (0,{\cal G} * * {I_ + }(\xi )).

注意到, 当 \xi < \frac{\ln K}{\lambda_{c}} 时, {I_ + }(\xi ) = {q_1}{{\rm e}^{{\lambda _c}\xi }}, {W_ + }(\xi ) = {q_2}{{\rm e}^{{\lambda _c}\xi }}, 由 (2.7), (3.3)-(3.4) 式及条件 (A_3)-(A_4), 可得

\begin{align*} &d(\mathcal{J}*I_+(\xi)-I_+(\xi))-cI_+'(\xi)+\beta_WS_+(\xi)W_+(\xi)+\beta_If(S_+(\xi),\mathcal{G}**I_+(\xi))\\ &-(\mu+\gamma)I_+(\xi)+\sigma\beta_Ig(V_+(\xi),\mathcal{G}**I_+(\xi))\\ =\,&{\rm e}^{\lambda_{c}\xi}\{[d\int_{\mathbb{R}}\mathcal{J}(y)({\rm e}^{-\lambda_{c}y}-1){\rm d}y-c\lambda_{c}+(\beta_{I}f_{I}(S_{0},0)+\sigma\beta_{I}g_{I}(V_{0},0))\mathfrak{R}(\lambda_{c},c)-(\mu+\gamma)]q_{1}\\ &+\beta_{W}S_{0}q_{2}\}+\frac{1}{2}\beta_{I}f_{II}(S_{0},\alpha_{1})[\mathcal{G}**I_{+}(\xi)]^{2}+\frac{1}{2}\sigma\beta_{I}g_{II}(V_{0},\alpha_{2})[\mathcal{G}**I_{+}(\xi)]^{2}\\ =\,&{\rm e}^{\lambda_{c}\xi}[{\Theta_1}(\lambda_{c}, c){q_1}\!+\!{\beta _W}{S_0}{q_2}]\!+\!\frac{1}{2}\beta_{I}f_{II}(S_{0},\alpha_{1})[\mathcal{G}**I_{+}(\xi)]^{2}\!+\!\frac{1}{2}\sigma\beta_{I}g_{II}(V_{0},\alpha_{2})[\mathcal{G}**I_{+}(\xi)]^{2}\\ \le\,& 0. \end{align*}

\xi > \frac{\ln K}{\lambda_{c}} 时, {I_ + }(\xi ) = {q_1}{K}, {W_ + }(\xi ) = {q_2}{K}, 则由 (3.3)-(3.4) 式及条件 (A_3)-(A_5), 有

\begin{align*} &d({\cal J} * {I_ + }(\xi ) - {I_ + }(\xi )) - c{I'_ + }(\xi ) + {\beta _W}{S_ + }(\xi ){W_ + }(\xi ) + {\beta _I}f({S_ + }(\xi ),{\cal G} * * {I_ + }(\xi ))\\ &- (\mu + \gamma ){I_ + }(\xi ) + \sigma {\beta _I}g({V_ + }(\xi ),{\cal G} * * {I_ + }(\xi ))\\ \le \,&{\beta _W}{S_0}{q_2}K + {\beta _I}{f_I}({S_0},0){q_1}K{\rm{ + }}\frac{1}{2}{\beta _I}{f_{II}}({S_0},{\alpha _1})q_{1}^2{K^2} + \sigma {\beta _I}{g_I}({V_0},0){q_1}K\\ &+ \frac{1}{2}\sigma {\beta _I}{g_{II}}({V_0},{\alpha _2})q_{1}^2{K^2}: = {\rho _1}. \end{align*}

要使 \rho _1\leq0, 只需

\begin{align*} K \ge\,& \max \Big\{ {\frac{{ - 2[ {{\beta _W}{S_0}{q_2} + ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){q_1}} ]}}{{{\beta _I}{f_{II}}({S_0},{\alpha _1})q_{1}^2}}}, \\ &{\frac{{ - 2[ {{\beta _W}{S_0}{q_2} + ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){q_1}} ]}}{{\sigma {\beta _I}{g_{II}}({V_0},{\alpha _2})q_{1}^2}}} \Big\}. \end{align*}

于是, (3.2) 式的第一个不等式成立. 下证 (3.2) 式的第二个不等式成立.

注意到, 当 \xi < \frac{\ln K}{\lambda_{c}} 时, {I_ + }(\xi ) = {q_1}{{\rm e}^{{\lambda _c}\xi }}, {W_ + }(\xi ) = {q_2}{{\rm e}^{{\lambda _c}\xi }}, 则由 (2.7) 和 (3.5) 式及条件 (A_6), 可得

\begin{align*} &d({\cal J} * {W_ + }(\xi ) - {W_ + }(\xi )) - c{W'_ + }(\xi ) + \alpha h({\cal G} * * {I_ + }(\xi )) - \delta {W_ + }(\xi )\\ =\, &{{\rm e}^{{\lambda _c}\xi }}\{ {[ {d\int_{\mathbb{R}} {\cal J}(y)({{\rm e}^{ - {\lambda _c}y}} - 1){\rm d}y - c{\lambda _c} - \delta } ]{q_2} + \alpha h'(0){\mathfrak{R}}({\lambda _c},c){q_1}} \} + \frac{1}{2}\alpha h''({\alpha _3}){[{\cal G} * * {I_ + }(\xi )]^2}\\ =\, &{{\rm e}^{{\lambda _c}\xi }}[{\Theta _2}({\lambda _c},c){q_2} + \alpha h'(0){\mathfrak{R}}({\lambda _c},c){q_1}] + \frac{1}{2}\alpha h''({\alpha _3}){[{\cal G} * * {I_ + }(\xi )]^2}\le 0. \end{align*}

\xi > \frac{\ln K}{\lambda_{c}} 时, {I_ + }(\xi ) = {q_1}{K}, {W_ + }(\xi ) = {q_2}{K}, 则由 (3.5) 式及条件 (A_6), 有

\begin{align*} &d({\cal J} * {W_ + }(\xi ) - {W_ + }(\xi )) - c{W'_ + }(\xi ) + \alpha h({\cal G} * * {I_ + }(\xi )) - \delta {W_ + }(\xi )\\ = \,&\alpha h'(0){q_1}K + \frac{1}{2}\alpha h''({\alpha _3})q_{1}^2{K^2} - \delta {q_2}K: = {\rho _2}. \end{align*}

要使 \rho _2\leq0, 需要 K > \frac{{ - 2\left[ {\alpha h'(0){q_1} - \delta {q_2}} \right]}}{{\alpha h''({\alpha _3})q_{1}^2}}\delta > \frac{{\alpha h'(0){q_1}}}{{{q_2}}}. 从而, (3.2) 式的第二个不等式成立.

综上, 只要正常数 \deltaK 满足 \delta>\frac{{\alpha h'(0){q_1}}}{{{q_2}}},

\begin{align*} K&>\max \bigg\{ {1,{\rm{ }}\frac{{ - 2[ {{\beta _W}{S_0}{q_2} + ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){q_1}} ]}}{{{\beta _I}{f_{II}}({S_0},{\alpha _1})q_{1}^2}}}, \\ &~~~\frac{{ - 2[ {{\beta _W}{S_0}{q_2} + ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){q_1}} ]}}{{\sigma {\beta _I}{g_{II}}({V_0},{\alpha _2})q_{1}^2}},{\frac{{ - 2[ {\alpha h'(0){q_1} - \delta {q_2}} ]}}{{\alpha h''({\alpha _3})q_{1}^2}}} \bigg\}, \end{align*}

则 (3.2) 式成立.

引理 3.3 若存在充分小的 \varepsilon_{1} 满足 0<\varepsilon_{1}<\lambda_{c}, 取充分大的正数 M_{1}>1, 则对 \forall\xi\neq - \frac{{\ln {M_1}}}{{{\varepsilon _1}}}, 函数 S_{-}(\xi)V_{-}(\xi) 满足

\begin{matrix}\label{306} \begin{matrix} &\hspace{-0.35cm}c{S'_ - }(\xi ) \le d\left( {\mathcal{J} * {S_ - }(\xi ) - {S_ - }(\xi )} \right) + \mu N - {\beta _W}{S_ - }(\xi ){W_ + }(\xi ) - {\beta _I}f\left( {{S_ - }(\xi ),\mathcal{G} * * {I_ + }(\xi )} \right)\\ &~~~~~~~~~- (\mu + \kappa ){S_ - }(\xi ) + \theta {V_ - }(\xi ),\\ &\hspace{-0.35cm}c{V'_ - }(\xi ) \le d\left( {\mathcal{J} * {V_ - }(\xi ) - {V_ - }(\xi )} \right) + \kappa {S_ - }(\xi ) - \sigma {\beta _I}g\left( {{V_ - }(\xi ),\mathcal{G} * * {I_ + }(\xi )} \right) - (\mu + \theta ){V_ - }(\xi ). \end{matrix} \end{matrix}
(3.6)

\xi > - \frac{{\ln {M_1}}}{{{\varepsilon _1}}} 时, {S_ - }(\xi ) = {V_ - }(\xi ) = 0, 则由条件 (A_3)-(A_4) 可得, (3.6) 式成立. 当 \xi < - \frac{{\ln {M_1}}}{{{\varepsilon _1}}} 时, {S_ - }(\xi ) = {S_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}), {V_ - }(\xi ) = {V_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}), 因为 \xi < - \frac{{\ln {M_1}}}{{{\varepsilon _1}}} < 0 < \frac{{\ln K}}{{{\lambda _c}}}, 所以 {I_ + }(\xi ) = {q_1}{{\rm e}^{{\lambda _c}\xi }}, {W_ + }(\xi ) = {q_2}{{\rm e}^{{\lambda _c}\xi }}, 由 Taylor 公式及条件 (A_3)-(A_4), 可知

\begin{aligned} f\left(S_{-}(\xi), \mathcal{G} * * I_{+}(\xi)\right) & \leq f\left(S_{0}, \mathcal{G} * * I_{+}(\xi)\right) \\ & =f_{I}\left(S_{0}, 0\right) \mathcal{G} * * I_{+}(\xi)+\frac{1}{2} f_{I I}\left(S_{0}, \alpha_{1}\right)\left[\mathcal{G} * * I_{+}(\xi)\right]^{2} \end{aligned}
(3.7)
\begin{aligned} g\left(V_{-}(\xi), \mathcal{G} * * I_{+}(\xi)\right) & \leq g\left(V_{0}, \mathcal{G} * * I_{+}(\xi)\right) \\ & =g_{I}\left(V_{0}, 0\right) \mathcal{G} * * I_{+}(\xi)+\frac{1}{2} g_{I I}\left(V_{0}, \alpha_{2}\right)\left[\mathcal{G} * * I_{+}(\xi)\right]^{2} \end{aligned}
(3.8)

因为 0<\varepsilon_{1}<\lambda_{c}\xi<0, 利用 (3.7) 式可得

\begin{align*} &d({\cal J} * {S_ - }(\xi ) - {S_ - }(\xi )) - c{S'_ - }(\xi ) + \mu N - {\beta _W}{S_ - }(\xi ){W_ + }(\xi )\\ & - {\beta _I}f({S_ - }(\xi ),{\cal G} * * {I_ + }(\xi )) - (\mu + \kappa ){S_ - }(\xi ) + \theta {V_ - }(\xi )\\ \ge &- d{S_0}{M_1}{{\rm e}^{{\varepsilon _1}\xi }}\int_{\mathbb{R}} {\cal J}(y)({{\rm e}^{ - {\varepsilon _1}y}} - 1){\rm d}y + c{S_0}{M_1}{\varepsilon _1}{{\rm e}^{{\varepsilon _1}\xi }} + \mu N - {\beta _W}{S_0}{q_2}{{\rm e}^{{\lambda _c}\xi }}\\ &+ {\beta _W}{S_0}{M_1}{q_2}{{\rm e}^{({\lambda _c} + {\varepsilon _1})\xi }} - {\beta _I}{f_I}({S_0},0){\mathfrak{R}}({\lambda _c},c){q_1}{{\rm e}^{{\lambda _c}\xi }}\\ &- \frac{1}{2}{\beta _I}{f_{II}}({S_0},{\alpha _1}){[{\cal G} * * {I_ + }(\xi )]^2} - (\mu + \kappa ){S_0} + (\mu + \kappa ){S_0}{M_1}{{\rm e}^{{\varepsilon _1}\xi }} + \theta {V_0} - \theta {V_0}{M_1}{{\rm e}^{{\varepsilon _1}\xi }}\\ \ge\, &{\rm e}^{\varepsilon_1\xi}\Big\{\Big[cS_0\varepsilon_1+\mu N-{\rm d}S_0\int_{\mathbb{R}}\mathcal{J}(y)({\rm e}^{-\varepsilon_1y}-1){\rm d}y\Big]M_1\\ &-[\beta_WS_0q_2+\beta_If_I(S_0,0)\mathfrak{R}(\lambda_c,c)q_1]M_1^{-\frac{\lambda_c- \varepsilon_1}{\varepsilon_1}}\Big\}. \end{align*}

因此, 结合上式最后一个不等号的右边, 只需令 {M_1}{\varepsilon _1} = 1{M_1} \to + \infty, 则存在充分小的正数 \varepsilon_{1}<\lambda_{c}M_{1}>1 使得

\begin{align*} [cS_0\varepsilon_1+\mu N-{\rm d}S_0\int_{\mathbb{R}}\mathcal{J}(y) ({\rm e}^{-\varepsilon_1y}-1){\rm d}y]M_1 -[\beta_WS_0q_2+\beta_If_I(S_0,0)\mathfrak{R}(\lambda_c,c)q_1] M_1^{-\frac{\lambda_c-\varepsilon_1}{\varepsilon_1}}> 0, \end{align*}

即 (3.6) 式的第一个不等式成立. 同理, 利用 (3.8) 式可得 (3.6) 式的第二个不等式也成立. 于是, (3.6) 式成立.

引理 3.4 若存在充分小的 \varepsilon_{2} 满足 0<\varepsilon_{2}<\varepsilon_{1} 和充分大的正数 M_{2}>1 满足 - \frac{{\ln {M_2}}}{{{\varepsilon _2}}} < - \frac{{\ln {M_1}}}{{{\varepsilon _1}}}, 且 \frac{{{\beta _W}{S_0}{q_2}}}{{ - {\Theta _1}({\lambda _c} + {\varepsilon _2},c)}} < {q_1} < \frac{{ - {\Theta _2}({\lambda _c} + {\varepsilon _2},c)}}{{\alpha h'(0){\mathfrak{R}}({\lambda _c} + {\varepsilon _2},c)}}, 则对 \forall\xi\neq - \frac{{\ln {M_2}}}{{{\varepsilon _2}}}, 函数 I_{-}(\xi)W_{-}(\xi) 满足

\begin{matrix}\label{309} \begin{cases} &\hspace{-0.35cm}c{I'_ - }(\xi ) \le d (\mathcal{J}*{I_-}(\xi )-{I_ -}(\xi )) + {\beta _W}{S_ - }(\xi ){W_ - }(\xi ) + {\beta _I}f({S_ - }(\xi ),\mathcal{G}**{I_ - }(\xi ))\\ &~~~~~~~~~- (\mu + \gamma ){I_ - }(\xi ) + \sigma {\beta _I}g({V_ - }(\xi ),\mathcal{G} * * {I_ - }(\xi )),\\ &\hspace{-0.35cm}c{W'_ - }(\xi ) \le d (\mathcal{J} * {W_ - }(\xi ) - {W_ - }(\xi )) + \alpha h(\mathcal{G} * * {I_ - }(\xi )) - \delta {W_ - }(\xi ). \end{cases} \end{matrix}
(3.9)

\xi > - \frac{{\ln {M_2}}}{{{\varepsilon _2}}} 时, {I_ - }(\xi ) = {W_ - }(\xi ) = 0, 则由条件 (A_3)-(A_4) 和 (A_6) 可得, (3.9) 式成立. 当 \xi < - \frac{{\ln {M_2}}}{{{\varepsilon _2}}} 时, {I_ - }(\xi ) = {q_1}{{\rm e}^{{\lambda _c}\xi }}(1 - {M_2}{{\rm e}^{{\varepsilon _2}\xi }}), {W_ - }(\xi ) = {q_2}{{\rm e}^{{\lambda _c}\xi }}(1 - {M_2}{{\rm e}^{{\varepsilon _2}\xi }}), 由于 \xi < - \frac{{\ln {M_2}}}{{{\varepsilon _2}}} < - \frac{{\ln {M_1}}}{{{\varepsilon _1}}} < 0, 则 {S_ - }(\xi ) = {S_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}), {V_ - }(\xi ) = {V_0}(1 - {M_1}{{\rm e}^{{\varepsilon _1}\xi }}) 以及 \lim \limits_{\xi \rightarrow -\infty}S_{-}(\xi)=S_{0}, \lim \limits_{\xi \rightarrow -\infty}V_{-}(\xi)=V_{0}, \lim \limits_{\xi \rightarrow -\infty}I_{-}(\xi)=0, \lim \limits_{\xi \rightarrow -\infty}W_{-}(\xi)=0. 由此可知, 存在充分小的常数 {\bar \xi _0}, 使得对 \forall \xi < {\bar \xi _0}, 有 (S(\xi ),V(\xi ),I(\xi ),W(\xi )) \in O( {({S_0},{V_0},0,0),\frac{{{S_0} + {V_0}}}{2}} ), 其中 O( {({S_0},{V_0},0,0),\frac{{{S_0} + {V_0}}}{2}} ) 表示以 ({S_0},{V_0},0,0) 为球心, \frac{{{S_0} + {V_0}}}{2} 为半径的开球.

接下来, 再次利用Taylor公式并结合条件 (A_3)-(A_4) 和 (A_6), 可得

\begin{aligned} f\left(S_{-}(\xi), \mathcal{G} * * I_{-}(\xi)\right)= & f_{I}\left(S_{0}, 0\right) \mathcal{G} * * I_{-}(\xi)+f_{S I}\left(S_{1}(\xi), 0\right)\left(S_{-}(\xi)-S_{0}\right) \mathcal{G} * * I_{-}(\xi) \\ & +\frac{1}{2} f_{I I}\left(S_{-}(\xi), \alpha_{4}\right)\left[\mathcal{G} * * I_{-}(\xi)\right]^{2}, \end{aligned}
(3.10)
\begin{aligned} g\left(V_{-}(\xi), \mathcal{G} * * I_{-}(\xi)\right)= & g_{I}\left(V_{0}, 0\right) \mathcal{G} * * I_{-}(\xi)+g_{V I}\left(V_{1}(\xi), 0\right)\left(V_{-}(\xi)-V_{0}\right) \mathcal{G} * * I_{-}(\xi) \\ & +\frac{1}{2} g_{I I}\left(V_{-}(\xi), \alpha_{5}\right)\left[\mathcal{G} * * I_{-}(\xi)\right]^{2} \end{aligned}
(3.11)
h\left(\mathcal{G} * * I_{-}(\xi)\right)=h^{\prime}(0) \mathcal{G} * * I_{-}(\xi)+\frac{1}{2} h^{\prime \prime}\left(\alpha_{6}\right)\left[\mathcal{G} * * I_{-}(\xi)\right]^{2}
(3.12)

其中 {S_1}(\xi ) \in ({S_ - }(\xi ),{S_0}), {V_1}(\xi ) \in ({V_ - }(\xi ),{V_0}), {\alpha _4},{\alpha _5},{\alpha _6} \in (0,{\cal G} * * {I_ - }(\xi )). 从而, 由 0 < {\varepsilon _2} < {\varepsilon _1} < {\lambda _c}, \xi < 0, (2.7) 以及 (3.10)-(3.11) 式, 可知

\begin{align*} &d({\cal J} * {I_ - }(\xi ) - {I_ - }(\xi )) - c{I'_ - }(\xi ) + {\beta _W}{S_ - }(\xi ){W_ - }(\xi ) + {\beta _I}f({S_ - }(\xi ),{\cal G} * * {I_ - }(\xi ))\\ &- (\mu + \gamma ){I_ - }(\xi ) + \sigma {\beta _I}g({V_ - }(\xi ),{\cal G} * * {I_ - }(\xi ))\\ \ge \,&{{\rm e}^{{\lambda _c}\xi }}[ {{\Theta _1}({\lambda _c},c){q_1} + {\beta _W}{S_0}{q_2}} ] + {{\rm e}^{({\lambda _c} + {\varepsilon _2})\xi }}\{ - {M_2}[ {{\Theta _1}({\lambda _c} + {\varepsilon _2},c){q_1} + {\beta _W}{S_0}{q_2}} ]\\ &- {M_1}{{\rm e}^{({\varepsilon _1} - {\varepsilon _2})\xi }}[ {{\beta _W}{S_0}{q_2}} + {\beta_I}({S_0}{f_{SI}}({S_1}(\xi ),0) + \sigma {V_0}{g_{VI}}({V_1}(\xi ),0)) {{q_1}{\mathfrak{R}}({\lambda _c},c)} ]\\ &+ \frac{1}{2} {{{\rm e}^{({\lambda _c} - {\varepsilon _2})\xi }}[ {{\beta _I}({f_{II}}({S_ - }(\xi ),{\alpha _4}) + \sigma {g_{II}}({V_ - }(\xi ),{\alpha _5}))q_{1}^2{{\mathfrak{R}}^2}({\lambda _c},c)} ]} \}\\ \ge \,&{{\rm e}^{({\lambda _c} + {\varepsilon _2})\xi }}\{ - {M_2}[ {{\Theta _1}({\lambda _c} + {\varepsilon _2},c){q_1} + {\beta _W}{S_0}{q_2}} ]\\ &- {M_1}[ {{\beta _W}{S_0}{q_2} + {\beta _I}{H_1}({S_0} + \sigma {V_0}){q_1}{\mathfrak{R}}({\lambda _c},c)} ] - \frac{1}{2} {[ {{\beta _I}{H_1}(1 + \sigma )q_{1}^2{{\mathfrak{R}}^2}({\lambda _c},c)} ]} \}. \end{align*}

同理, 利用 (2.7) 和 (3.12) 式, 可知

\begin{align*} &d({\cal J} * {W_ - }(\xi ) - {W_ - }(\xi )) - c{W'_ - }(\xi ) + \alpha h({\cal G} * * {I_ - }(\xi )) - \delta {W_ - }(\xi )\\ \ge\, &{{\rm e}^{{\lambda _c}\xi }}[ {{\Theta _2}({\lambda _c},c){q_2} + \alpha h'(0){\mathfrak{R}}({\lambda _c},c){q_1}} ]\ \\ &+\!{{\rm e}^{({\lambda _c} + {\varepsilon _2})\xi }}\{ {\!-\!{M_2}[ {{\Theta _2}({\lambda _c}+{\varepsilon _2},c){q_2}} } {+\alpha h'(0){\mathfrak{R}}({\lambda _c}\!+\!{\varepsilon _2},c){q_1}} ]\!+\!\frac{1}{2} {\alpha {{\rm e}^{({\lambda _c}-{\varepsilon _2})\xi }}h''({\alpha _6})q_{1}^2{{\mathfrak{R}}^2}({\lambda _c},c)} \}\\ \ge \,&{{\rm e}^{({\lambda _c} + {\varepsilon _2})\xi }}\{ { - {M_2}[ {{\Theta _2}({\lambda _c} + {\varepsilon _2},c){q_2}} } { + \alpha h'(0){\mathfrak{R}}({\lambda _c} + {\varepsilon _2},c){q_1}} ] - \frac{1}{2} {\alpha {H_2}q_{1}^2{{\mathfrak{R}}^2}({\lambda _c},c)} \}, \end{align*}

因此, 要证 (3.9) 式成立, 只要 M_{2} 满足

\begin{align*} M_{2}&>\max\bigg\{1, M_{1}^{\frac{\varepsilon_{2}}{\varepsilon_{1}}}, \frac{\alpha H_2q_{1}^2\Re^2(\lambda_c,c)}{-2[\Theta_2(\lambda_c+\varepsilon_2,c)q_2+\alpha h^{\prime}(0)\Re(\lambda_c+\varepsilon_2,c)q_1]},\\ &~~~\frac{2M_{1}[\beta_{W}S_{0}q_{2}+\beta_{I}H_{1}(S_{0}+\sigma V_{0})q_{1}\Re(\lambda_{c},c)]+\beta_{I}H_{1}(1+\sigma)q_{1}^{2} \Re^{2}(\lambda_{c},c)}{-2[\Theta_{1}(\lambda_{c}+\varepsilon_{2},c)q_{1}+\beta_{W}S_{0}q_{2}]}\bigg\}, \end{align*}

其中

\begin{align*} {H_1} &= \mathop {\max } \Big\{ {f_{SI}}(S,I),{g_{VI}}(V,I),-{f_{II}}(S,I),\\ &~~~-{g_{II}}(V,I) : (S,V,I,W) \in O\Big( {({S_0},{V_0},0,0),\frac{{{S_0} + {V_0}}}{2}} \Big)\Big\},\\ {H_2}& = \mathop {\max } \{ {h''({\alpha _6})} : \alpha _6 \in (0, {\cal G} * * {I_ - }(\xi ))\}. \end{align*}

X > \max \{ {| {\frac{{\ln K}}{{{\lambda _c}}}} |,| { - \frac{{\ln {M_2}}}{{{\varepsilon _2}}}} |} \}, 定义集合

\begin{eqnarray*} {\Gamma _X} = \left\{ {\left[ \begin{array}{l} \phi (\xi )\\ \varphi (\xi )\\ \psi (\xi )\\ \chi (\xi ) \end{array} \right] \in C\left( {[ - X,X],{\mathbb{R}^4}} \right)\left| \begin{array}{l} {S_ - }(\xi ) \le \phi (\xi ) \le {S_ + }(\xi ),~~~\phi ( - X) = {S_ - }( - X),\\ {V_ - }(\xi ) \le \varphi (\xi ) \le {V_ + }(\xi ),~~~\varphi ( - X) = {V_ - }( - X),\\ {I_ - }(\xi ) \le \psi (\xi ) \le {I_ + }(\xi ),~~~~\psi ( - X) = {I_ - }( - X),\\ {W_ - }(\xi ) \le \chi (\xi ) \le {W_ + }(\xi ),~\chi ( - X) = {W_ - }( - X), \end{array} \right.} \right\}. \end{eqnarray*}

\forall\left( {\phi (\xi ),\varphi (\xi ),\psi (\xi ),\chi (\xi )} \right) \in {\Gamma _X}, 定义

\begin{eqnarray*} \tilde \phi (\xi ) = \left\{ \begin{array}{l} \phi (X),~~\, \xi > X,\\ \phi (\xi ),~~~\left| \xi \right| \le X,\\ {S_ - }(\xi ),~~\xi < - X,~~~~~ \end{array} \right. \tilde \varphi (\xi ) = \left\{ \begin{array}{l} \varphi (X),~~\,\xi > X,\\ \varphi (\xi ),~~~\left| \xi \right| \le X,\\ {V_ - }(\xi ),~~\xi < - X, \end{array} \right.\\ \tilde \psi (\xi ) = \left\{ \begin{array}{l} \psi (X),~~\,\xi > X,\\ \psi (\xi ),~~~\left| \xi \right| \le X,\\ {I_ - }(\xi ),~~\,\xi < - X,~~~~ \end{array} \right. \tilde \chi (\xi ) = \left\{ \begin{array}{l} \chi (X),~~~\,\xi > X,\\ \chi (\xi ),~~~~\left| \xi \right| \le X,\\ {W_ - }(\xi ),~~\xi < - X. \end{array} \right. \end{eqnarray*}

考虑如下初值问题

\begin{matrix}\label{313} \begin{cases} &\hspace{-0.35cm}cS'(\xi ) =d(\mathcal{J} * \tilde \phi (\xi )) + \mu N - {\beta _W}S(\xi )\chi (\xi ) - {\beta _I}f(\phi (\xi ),\mathcal{G} * * \tilde \psi (\xi ))\\ &~~~~~~~~- (d + \mu + \kappa )S(\xi ) + \theta \varphi (\xi ),\\ &\hspace{-0.35cm}cV'(\xi ) =d(\mathcal{J} * \tilde \varphi (\xi )) + \kappa \phi (\xi ) - \sigma {\beta _I}g(\varphi (\xi ),\mathcal{G} * * \tilde \psi (\xi )) - (d + \mu + \theta )V(\xi ),\\ &\hspace{-0.35cm}cI'(\xi ) =d(\mathcal{J} * \tilde \psi (\xi )) + {\beta _W}\phi (\xi )\chi (\xi ) + {\beta _I}f(\phi (\xi ),\mathcal{G} * * \tilde \psi (\xi ))\\ &~~~~~~~~- (d + \mu + \gamma )I(\xi ) + \sigma {\beta _I}g(\varphi (\xi ),\mathcal{G} * * \tilde \psi (\xi )),\\ &\hspace{-0.35cm}cW'(\xi ) =d(\mathcal{J} * \tilde \chi (\xi )) + \alpha h(\mathcal{G} * * \tilde \psi (\xi )) - (d + \delta )W(\xi ),\\ &\hspace{-0.35cm}S( - X) ={S_ - }( - X),V( - X) = {V_ - }( - X),I( - X) = {I_ - }( - X),W( - X) = {W_ - }( - X), \end{cases} \end{matrix}
(3.13)

由常微分方程理论[20]可知, (3.13) 式存在唯一解 ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )) 且满足

\begin{equation*} ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )) \in {C^1}({[ - X,X],\mathbb{R}{^4}}). \end{equation*}

\forall\left( {\phi (\xi ),\varphi (\xi ),\psi (\xi ),\chi (\xi )} \right) \in {\Gamma _X}, 定义算子 \boldsymbol{{\cal F}} = ({{\cal F}_1},{{\cal F}_2},{{\cal F}_3},{{\cal F}_4})

\begin{eqnarray*} {S_X}(\xi ) = {{\cal F}_1}(\phi, \varphi, \psi, \chi )(\xi ),{V_X}(\xi ) = {{\cal F}_2}(\phi, \varphi, \psi, \chi )(\xi ),\\ {I_X}(\xi ) = {{\cal F}_3}(\phi, \varphi, \psi, \chi )(\xi ),{W_X}(\xi ) = {{\cal F}_4}(\phi, \varphi, \psi, \chi )(\xi ). \end{eqnarray*}

引理 3.5 算子 \boldsymbol{{\cal F}}:{\Gamma _X} \to {\Gamma _X} 是全连续的.

利用引理 3.1 和引理 3.4 可知, 算子 \boldsymbol{{\cal F}} = ({{\cal F}_1},{{\cal F}_2},{{\cal F}_3},{{\cal F}_4}) 是从 \Gamma _X 映到 \Gamma _X 的. 下面证明算子 \boldsymbol{{\cal F}} 是全连续的. 对 \forall({\phi _i}(\xi ),{\varphi _i}(\xi ),{\psi _i}(\xi ),{\chi _i}(\xi )) \in {\Gamma _X}, i = 1, 2 , 记

\begin{eqnarray*} {S_{X,i}}(\xi ) = {{\cal F}_1}({\phi _i},{\varphi _i},{\psi _i},{\chi _i})(\xi ), {V_{X,i}}(\xi ) = {{\cal F}_2}({\phi _i},{\varphi _i},{\psi _i},{\chi _i})(\xi ), \\ {I_{X,i}}(\xi ) = {{\cal F}_3}({\phi _i},{\varphi _i},{\psi _i},{\chi _i})(\xi ), {W_{X,i}}(\xi ) = {{\cal F}_4}({\phi _i},{\varphi _i},{\psi _i},{\chi _i})(\xi ). \end{eqnarray*}

由 (3.13) 式可知,

\begin{equation}\label{314} \begin{cases} {S_X}(\xi ) = {S_ - }(X){{\rm e}^{\int_{ - X}^\xi { - \frac{{d + \mu + \kappa + {\beta _W}\chi (\tau )}}{c}{\rm d}\tau } }} + \frac{1}{c}\int_{ - X}^\xi {{{\rm e}^{\int_z^\xi { - \frac{{d + \mu + \kappa + {\beta _W}\chi (\tau )}}{c}{\rm d}\tau } }}} {f_\phi }(z){\rm d}z,\\[3mm] {V_X}(\xi ) = {V_ - }(X){{\rm e}^{ - \frac{{d + \mu + \theta }}{c}(\xi + X)}} + \frac{1}{c}\int_{ - X}^\xi {{{\rm e}^{ - \frac{{d + \mu + \theta }}{c}(\xi - z)}}} {f_\varphi }(z){\rm d}z,\\[3mm] {I_X}(\xi ) = {I_ - }(X){{\rm e}^{ - \frac{{d + \mu + \gamma }}{c}(\xi + X)}} + \frac{1}{c}\int_{ - X}^\xi {{{\rm e}^{ - \frac{{d + \mu + \gamma }}{c}(\xi - z)}}} {f_\psi }(z){\rm d}z,\\[3mm] {W_X}(\xi ) = {W_ - }(X){{\rm e}^{ - \frac{{d + \delta }}{c}(\xi + X)}} + \frac{1}{c}\int_{ - X}^\xi {{{\rm e}^{ - \frac{{d + \delta }}{c}(\xi - z)}}} {f_\chi }(z){\rm d}z, \end{cases} \end{equation}
(3.14)

其中

\begin{align*} {f_\phi }(z) &= d({\cal J} * \tilde \phi (z)) + \mu N - {\beta _I}f(\phi (z),{\cal G} * * \tilde \psi (z)) + \theta \varphi (z),\\ {f_\varphi }(z) &= d({\cal J} * \tilde \varphi (z)) + \kappa \phi (z) - \sigma {\beta _I}g(\varphi (z),{\cal G} * * \tilde \psi (z)),\\ {f_\psi }(z) &= d({\cal J} * \tilde \psi (z)) + {\beta _W}\phi (z)\chi (z) + {\beta _I}f(\phi (z),{\cal G} * * \tilde \psi (z)) + \sigma {\beta _I}g(\varphi (z),{\cal G} * * \tilde \psi (z)),\\ {f_\chi }(z) &= d({\cal J} * \tilde \chi (z)) + \alpha h({\cal G} * * \tilde \psi (z)). \end{align*}

由于 {\cal J} * \tilde \phi (z) = \int_{ - \infty }^{ - X} {{\cal J}(z - y){S_ - }(y){\rm d}y} + \int_{ - X}^X {{\cal J}(z - y)\phi (y){\rm d}y} + \int_X^{ + \infty } {{\cal J}(z - y)\phi (X){\rm d}y}, 所以

\begin{align*} | {{\cal J} * [{{\tilde \phi }_1}(z) - {{\tilde \phi }_2}(z)]} | &=\Big | \int_{ - X}^X {{\cal J}(z - y)[{\phi _1}(y) - {\phi _2}(y)]{\rm d}y} + \int_X^{ + \infty } {{\cal J}(z - y)[{\phi _1}(X) - {\phi _2}(X)]{\rm d}y} \Big| \\ &\le 2\mathop {\max }\limits_{y \in [ - X,X]} | {{\phi _1}(y) - {\phi _2}(y)} |, \end{align*}

类似可得

\begin{eqnarray*} | {{\cal J} * [{{\tilde \varphi }_1}(z)-{{\tilde \varphi }_2}(z)]} |\le2\mathop {\max }\limits_{y \in [ - X,X]} | {{\varphi _1}(y)-{\varphi _2}(y)} |,\\ | {{\cal J} * [{{\tilde \psi }_1}(z)- {{\tilde \psi }_2}(z)]} |\le2\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y)-{\psi _2}(y)} |, \\ | {{\cal J} * [{{\tilde \chi }_1}(z)-{{\tilde \chi }_2}(z)]} |\le2\mathop {\max }\limits_{y \in [ - X,X]} | {{\chi _1}(y)-{\chi _2}(y)} |,\\ | {{\cal G} * * [{{\tilde \psi }_1}(z)-{{\tilde \psi }_2}(z)]} |\le2\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y)-{\psi _2}(y)} |. \end{eqnarray*}

又因为对 \forall y\in[-X,X], 有 {\phi _i}(y) \le {S_ + }(y) \le {S_0}, {\varphi _i}(y) \le {V_ + }(y) \le {V_0}, {\psi _i}(y) \le {I_ + }(y) \le {q_1}K{\chi _i}(y) \le {W_ + }(y) \le {q_2}K, 从而

\begin{align*} \left| {{\phi _1}(z){\chi _1}(z) - {\phi _2}(z){\chi _2}(z)} \right| &\le \left| {{\phi _1}(z){\chi _1}(z) - {\phi _1}(z){\chi _2}(z)} \right| + \left| {{\phi _1}(z){\chi _2}(z) - {\phi _2}(z){\chi _2}(z)} \right|\\ &\le {S_0}\mathop {\max }\limits_{y \in [ - X,X]} \left| {{\chi _1}(y) - {\chi _2}(y)} \right| + {q_2}K\mathop {\max }\limits_{y \in [ - X,X]} \left| {{\phi _1}(y) - {\phi _2}(y)} \right|. \end{align*}

另外, 利用Lagrange 中值定理, 不难验证

\begin{align*} &| {f({\phi _1}(z),{\cal G} * * {{\tilde \psi }_1}(z)) - f({\phi _2}(z),{\cal G} * * {{\tilde \psi }_2}(z))} | \\ \le \,&{f_S}({\theta _1},{\theta _2})| {{\phi _1}(z) - {\phi _2}(z)} | + {f_I}({\theta _1},{\theta _2})| {{\cal G} * * [{{\tilde \psi }_1}(z) - {{\tilde \psi }_2}(z)]} |\\ \le \,&{M_3}\mathop {\max }\limits_{y \in [ - X,X]} | {{\phi _1}(y) - {\phi _2}(y)} | + 2{M_3}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} |,\\ &| {g({\varphi _1}(z),{\cal G} * * {{\tilde \psi }_1}(z)) - g({\varphi _2}(z),{\cal G} * * {{\tilde \psi }_2}(z))} | \\ \le\, &{g_V}({\theta _3},{\theta _4})| {{\varphi _1}(z) - {\varphi _2}(z)} | + {g_I}({\theta _3},{\theta _4})| {{\cal G} * * [{{\tilde \psi }_1}(z) - {{\tilde \psi }_2}(z)]} |\\ \le\, &{M_4}\mathop {\max }\limits_{y \in [ - X,X]} | {{\varphi _1}(y) - {\varphi _2}(y)} | + 2{M_4}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} | \end{align*}

\begin{align*} | {h({\cal G} * * {{\tilde \psi }_1}(\eta )) - h({\cal G} * * {{\tilde \psi }_2}(\eta ))} |&\le h'({\theta _5})| {{\cal G} * * [{{\tilde \psi }_1}(z) - {{\tilde \psi }_2}(z)]} |\\ &\le 2{M_5}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} |, \end{align*}

其中

\begin{align*} {M_3} &= \max \left\{ {{f_S}({\theta _1},{\theta _2}),{f_I}({\theta _1},{\theta _2}): {\theta _1} \in (0, {S_0}), {\theta _2} \in (0, {\cal G} * * {I_ + }(z))} \right\},\\ {M_4} &= \max \left\{ {{g_V}({\theta _3},{\theta _4}),{g_I}({\theta _3},{\theta _4}): {\theta _3} \in (0, {V_0}), {\theta _4} \in (0, {\cal G} * * {I_ + }(z))} \right\},\\ {M_5} &= \max \left\{ {h'({\theta _5}): {\theta _5} \in (0, {\cal G} * * {I_ + }(z))} \right\}. \end{align*}

因此, 对 \forall ({\phi _i},{\varphi _i},{\psi _i},{\chi _i}) \in {\Gamma _X}, i = 1, 2 , 有

\begin{align*} | {{f_{{\phi _1}}}(z) - {f_{{\phi _2}}}(z)} | &\le (2d + {\beta _I}{M_3})\mathop {\max }\limits_{y \in [ - X,X]} | {{\phi _1}(y) - {\phi _2}(y)} |\\ &~~~~ + 2{\beta _I}{M_3}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} | + \theta \mathop {\max }\limits_{y \in [ - X,X]} | {{\varphi _1}(y) - {\varphi _2}(y)} |,\\ | {{f_{{\varphi _1}}}(z) - {f_{{\varphi _2}}}(z)} | &\le (2d + \sigma {\beta _I}{M_4})\mathop {\max }\limits_{y \in [ - X,X]} | {{\varphi _1}(y) - {\varphi _2}(y)} | + \kappa \mathop {\max }\limits_{y \in [ - X,X]} | {{\phi _1}(y) - {\phi _2}(y)} |\\ &~~~~+ 2\sigma {\beta _I}{M_4}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} |,\\ | {{f_{{\psi _1}}}(z)\!-\!{f_{{\psi _2}}}(z)} |&\le2(d + {\beta _I}{M_3}\!+\!\sigma {\beta _I}{M_4})\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y)\!-\!{\psi _2}(y)} |\\ &~~~~+{\beta _W}{S_0}\mathop {\max }\limits_{y \in [ - X,X]} | {{\chi _1}(y)\!-\!{\chi _2}(y)} |\\ &~~~~+({\beta _W}{q_2}K\!+\!{\beta _I}{M_3})\mathop {\max }\limits_{y \in [ - X,X]} | {{\phi _1}(y)\!-\!{\phi _2}(y)} |\\ &~~~~+\sigma {\beta _I}{M_4}\mathop {\max }\limits_{y \in [ - X,X]} | {{\varphi _1}(y)\!-\! {\varphi _2}(y)} |,\\ | {{f_{{\chi _1}}}(z) - {f_{{\chi _2}}}(z)} | &\le 2d\mathop {\max }\limits_{y \in [ - X,X]} | {{\chi _1}(y) - {\chi _2}(y)} | + 2\alpha {M_5}\mathop {\max }\limits_{y \in [ - X,X]} | {{\psi _1}(y) - {\psi _2}(y)} |. \end{align*}

{S_{X,i}}(\xi ), {V_{X,i}}(\xi ), {I_{X,i}}(\xi ), {W_{X,i}}(\xi ) 和算子 \boldsymbol{{\cal F}} 的定义可知 \boldsymbol{{\cal F}} 是连续的. 另外, 由 (3.13)-(3.14) 式可知, 对 \forall\xi\in[-X,X], ( {\phi (\xi ),\varphi (\xi ),\psi (\xi ),\chi (\xi )} ) \in {\Gamma _X}, {S_{X}}(\xi ), {V_{X}}(\xi ), {I_{X}}(\xi ), {W_{X}}(\xi ), {S'_{X}}(\xi ), {V'_{X}}(\xi ), {I'_{X}}(\xi ){W'_{X}}(\xi ) 都是一致有界的, 从而 {S_{X}}(\xi ), {V_{X}}(\xi ), {I_{X}}(\xi ){W_{X}}(\xi ) 是等度连续的. 于是, 由 Ascoli-Arzela定理可得, 算子 \boldsymbol{{\cal F}} 是相对紧的. 从而, \boldsymbol{{\cal F}} 是全连续的.

不难验证, \Gamma _X 是有界闭凸集. 从而由引理 3.5 和Schauder不动点定理可知, 对 \forall\xi\in[-X,X], 存在 ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )) \in {\Gamma _X} 满足 ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi ))= \boldsymbol{{\cal F}}({S_X}(\xi ), {V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )).

定义空间

\begin{eqnarray*} {C^{1,1}} ( {[ - X,X]} ): = \{ \nu \in {C^1}( {[ - X,X]} )| ~ \nu ~ \text{和} ~ \nu' ~ \text{是} ~ \rm{Lipschitz} ~ \text{连续的} \} \end{eqnarray*}

及其上的范数

||\nu |{|_{{C^{1,1}}( {[ - X,X]} )}} = \mathop {\max }\limits_{x \in [ - X,X]} |\nu | + \mathop {\max }\limits_{x \in [ - X,X]} |\nu '| + \mathop {\sup }\limits_{x,y \in [ - X,X],x \ne y} \frac{{|\nu '(x) - \nu '(y)|}}{{|x - y|}}.

接下来, 为了建立系统 (2.1) 行波解的存在性, 还需建立下面的先验估计.

引理 3.6(先验估计) 对 \forall X > \max \{ {| {\frac{{\ln K}}{{{\lambda _c}}}} |,| { - \frac{{\ln {M_2}}}{{{\varepsilon _2}}}} |} \}, 存在不依赖于 X 的正常数 C, 使得 \begin{eqnarray*} ||{S_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C,||{V_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C,||{I_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C,||{W_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C. \end{eqnarray*}

因为 ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )) 是算子 \boldsymbol{{\cal F}} 的不动点, 由 (3.13) 式可知, 对 \forall\xi\in[-X,X], 函数 ({S_X}(\xi ),{V_X}(\xi ),{I_X}(\xi ),{W_X}(\xi )) 满足

\begin{matrix}\label{315} \begin{cases} &\hspace{-0.35cm}c S'_{X}(\xi ) = d({\cal J} * {{\tilde S}_X}(\xi )) + \mu N - {\beta _W}{S_X}(\xi ){W_X}(\xi ) - {\beta _I}f({S_X}(\xi ),{\cal G} * * {{\tilde I}_X}(\xi ))\\ &~~~~~~~~~\,- (d + \mu + \kappa ){S_X}(\xi ) + \theta {V_X}(\xi ),\\ &\hspace{-0.35cm}c V'_{X}(\xi )\!=\!d({\cal J} * {{\tilde V}_X}(\xi ))\!+\!\kappa {S_X}(\xi )\!-\!\sigma {\beta _I}g({V_X}(\xi ),{\cal G} * * {{\tilde I}_X}(\xi ))\!-\!(d + \mu + \theta ){V_X}(\xi ),\\ &\hspace{-0.35cm}c I'_{X}(\xi ) = d({\cal J} * {{\tilde I}_X}(\xi )) + {\beta _W}{S_X}(\xi ){W_X}(\xi ) + {\beta _I}f({S_X}(\xi ),{\cal G} * * {{\tilde I}_X}(\xi ))\\ &~~~~~~~~~- (d + \mu + \gamma ){I_X}(\xi ) + \sigma {\beta _I}g({V_X}(\xi ),{\cal G} * * {{\tilde I}_X}(\xi )),\\ &\hspace{-0.35cm}c W'_{X}(\xi ) = d({\cal J} * {{\tilde W}_X}(\xi )) + \alpha h({\cal G} * * {{\tilde I}_X}(\xi )) - (d + \delta ){W_X}(\xi ). \end{cases} \end{matrix}
(3.15)

又因为对 \forall\xi\in[-X,X], 有

\begin{matrix}\label{316} &&0 \le {S_ - }(\xi ) \le {S_X}(\xi ) \le {S_ + }(\xi ) \le {S_0}, 0 \le {V_ - }(\xi ) \le {V_X}(\xi ) \le {V_ + }(\xi ) \le {V_0}, \notag\\ &&0 \le {I_ - }(\xi ) \le {I_X}(\xi ) \le {I_ + }(\xi ) \le {q_1}K, 0 \le {W_ - }(\xi ) \le {W_X}(\xi ) \le {W_ + }(\xi ) \le {q_2}K, \end{matrix}
(3.16)

利用 (3.16) 式及条件 (A_3)-(A_4) 和 (A_6), 可得

\begin{aligned} \left|S_{X}^{\prime}(\xi)\right| \leq & \frac{d\left|J * \tilde{S}_{X}(\xi)\right|}{c}+\frac{\mu N}{c}+\frac{\beta_{W}\left|S_{X}(\xi) W_{X}(\xi)\right|}{c}+\frac{\beta_{I}\left|f\left(S_{X}(\xi), \mathcal{G} * * \tilde{I}_{X}(\xi)\right)\right|}{c} \\ & +\frac{(d+\mu+\kappa)\left|S_{X}(\xi)\right|}{c}+\frac{\theta\left|V_{X}(\xi)\right|}{c} \\ \leq & \frac{(2 d+\mu+\kappa) S_{0}+\mu N+\beta_{W} S_{0} q_{2} K+\beta_{I} f_{I}\left(S_{0}, 0\right) q_{1} K+\theta V_{0}}{c}:=L_{S}, \end{aligned}
(3.17)
| {V'_{X}(\xi )} | \le \frac{{(2d + \mu + \theta ){V_0} + \kappa {S_0} + \sigma {\beta _I}{g_I}({V_0},0){q_1}K}}{c}: = {L_V},
(3.18)
| {I'_{X}(\xi )} | \le \frac{{(2d + \mu + \gamma + {\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){q_1}K + {\beta _W}{S_0}{q_2}K}}{c}: = {L_I},
(3.19)
| {W'_{X}(\xi )} | \le \frac{{(2d + \delta ){q_2}K + \alpha h'(0){q_1}K}}{c}: = {L_W},
(3.20)

从而, 由 (3.17)-(3.20) 式可知, {S_{X}}(\xi ), {V_{X}}(\xi ), {I_{X}}(\xi ){W_{X}}(\xi ) 是Lipschitz连续的, 即对 \forall {\xi _1},{\rm{ }}{\xi _2} \in [ - X,X], 有

\begin{matrix}\label{321} &&| {{S_X}({\xi _1}) - {S_X}({\xi _2})} | \le {L_S}| {{\xi _1} - {\xi _2}} |,{\rm{ }}| {{V_X}({\xi _1}) - {V_X}({\xi _2})} | \le {L_V}| {{\xi _1} - {\xi _2}} |,\notag\\ &&| {{I_X}({\xi _1}) - {I_X}({\xi _2})} | \le {L_I}| {{\xi _1} - {\xi _2}} |,{\rm{ }}| {{W_X}({\xi _1}) - {W_X}({\xi _2})} | \le {L_W}| {{\xi _1} - {\xi _2}} |. \end{matrix}
(3.21)

利用 (3.15) 式的第一个方程可知

\begin{matrix}\label{322} c| {S'_{X}({\xi _1}) - {S'_X}({\xi _2})} | \le\, &d| {{\cal J} * [ {{{\tilde S}_X}({\xi _1}) - {{\tilde S}_X}({\xi _2})} ]} | + {\beta _W}| {{S_X}({\xi _1}){W_X}({\xi _1}) - {S_X}({\xi _2}){W_X}({\xi _2})} | \notag\\ &+ {\beta _I}| {f({S_X}({\xi _1}),{\cal G} * * {{\tilde I}_X}({\xi _1})) - f({S_X}({\xi _2}),{\cal G} * * {{\tilde I}_X}({\xi _2}))} | \notag\\ &+ (d + \mu + \kappa )| {{S_X}({\xi _1}) - {S_X}({\xi _2})} | + \theta | {{V_X}({\xi _1}) - {V_X}({\xi _2})} |. \end{matrix}
(3.22)

类似文献 [2,定理 2.8] 的讨论, 由 (3.16) 和 (3.21) 式及条件 (A_1) 可得

\begin{matrix}\label{323} | {{\cal J} * [ {{{\tilde S}_X}({\xi _1}) - {{\tilde S}_X}({\xi _2})} ]} | \le\, &\Big| {\int_{ - \infty }^{ - X} {( {{\cal J}({\xi _1} - y) - {\cal J}({\xi _2} - y)} ){S_ - }(y){\rm d}y} } \Big| \notag\\ &+ \Big| {\int_{ - X}^X {( {{\cal J}({\xi _1} - y) - {\cal J}({\xi _2} - y)} ){S_X}(y){\rm d}y} } \Big| \notag\\ &+ \Big| {\int_X^{ + \infty } {( {{\cal J}({\xi _1} - y) - {\cal J}({\xi _2} - y)} ){S_X}(X){\rm d}y} } \Big| \notag\\ \le &( {4{S_0}{{\| {\cal J} \|}_{{L^\infty }(\mathbb{R})}} + {S_0}M_1^2{{\rm e}^{ - {\varepsilon _1}X}}{L_{\cal J}} + {L_S}} )| {{\xi _1} - {\xi _2}} |, \end{matrix}
(3.23)

其中 L_{\mathcal{J}}\mathcal{J} (y) 的 Lipschitz常数且 {\left\| {\cal J} \right\|_{{L^\infty }(\mathbb{R})}} = \mathop {\sup }\limits_{y \in \mathbb{R}} \left| {{\cal J}(y)} \right|. 同时, 有

\begin{matrix}\label{324} &| {{S_X}({\xi _1}){W_X}({\xi _1}) - {S_X}({\xi _2}){W_X}({\xi _2})} | \notag\\ \le \,&| {{S_X}({\xi _1}){W_X}({\xi _1}) - {S_X}({\xi _1}){W_X}({\xi _2})} | + | {{S_X}({\xi _1}){W_X}({\xi _2}) - {S_X}({\xi _2}){W_X}({\xi _2})} | \notag\\ \le \,&{S_0}| {{W_X}({\xi _1}) - {W_X}({\xi _2})} | + {q_2}K| {{S_X}({\xi _1}) - {S_X}({\xi _2})} | \notag\\ \le \,&( {{L_W}{S_0} + {L_S}{q_2}K} )| {{\xi _1} - {\xi _2}} |. \end{matrix}
(3.24)

另一方面, 类似文献 [4, 引理 8], 利用 Lagrange中值定理及条件 (A_2)-(A_{3}) 可知,

\begin{matrix}\label{325} &| {f({S_X}({\xi _1}),{\cal G} * * {{\tilde I}_X}({\xi _1})) - f({S_X}({\xi _2}),{\cal G} * * {{\tilde I}_X}({\xi _2}))} | \notag \\ \le \,&{M_3}| {{S_X}({\xi _1}) - {S_X}({\xi _2})} | + {M_3}| {{\cal G} * * [ {{{\tilde I}_X}({\xi _1}) - {{\tilde I}_X}({\xi _2})} ]} | \notag \\ \le \,&{M_3}| {{S_X}({\xi _1}) - {S_X}({\xi _2})} | + {M_3}\Big| {\int_0^T {\int_{ - \infty }^{ - X} {( {{\cal G}({\xi _1} - y - cs) - {\cal G}({\xi _2} - y - cs)} ){I_ - }(y){\rm d}y{\rm d}s} } } \Big| \notag \\ &+ {M_3}\Big| {\int_0^T {\int_{ - X}^X {( {{\cal G}({\xi _1} - y - cs) - {\cal G}({\xi _2} - y - cs)} ){I_X}(y){\rm d}y{\rm d}s} } } \Big| \notag \\ &+ {M_3}\Big| {\int_0^T {\int_X^{ + \infty } {( {{\cal G}({\xi _1} - y - cs) - {\cal G}({\xi _2} - y - cs)} ){I_X}(X){\rm d}y{\rm d}s} } } \Big| \notag \\ \le\, &{M_3}( {{L_S} + T{L_{\cal G}}\int_{ - \infty }^{ - \frac{{\ln {M_2}}}{{{\varepsilon _2}}}} {{I_ - }(y){\rm d}y} + 3{q_1}KT{{\| {\cal G} \|}_{{L^\infty }([T] \times \mathbb{R})}} + {L_I}} )| {{\xi _1} - {\xi _2}} |, \end{matrix}
(3.25)

其中 L_{\mathcal{G}}\mathcal{G} (s,y) 的 Lipschitz 常数且 {\| {\cal G} \|_{{L^\infty }([T] \times \mathbb{R})}} = \mathop {\sup }\limits_{(s,y) \in ([T] \times \mathbb{R})} | {{\cal G}(s,y)} |. 因此, 由 (3.21)-(3.25) 式可知, S'_{X} 是 Lipschitz 连续的, 即对 \forall {\xi _1}, {\xi _2} \in [ - X,X], 存在常数 C_{s} > 0, 使得 |{S'_{X}({\xi _1}) - S'_{X}({\xi _2})} | \le {C_S}| {{\xi _1} - {\xi _2}} | 成立. 因此, 存在不依赖于 X 的常数 C > 0, 使得 ||{S_X}|{|_{{C^{1,1}}( {[ - X,X]} )}}\! \le\!C. 类似可得, ||{V_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C, ||{I_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C||{W_X}|{|_{{C^{1,1}}( {[ - X,X]} )}} \le C.

下面建立并证明当 R_{0}>1, c>c^{*} 时系统 (2.1) 行波解的存在性 (包括行波解的有界性和 \xi \rightarrow -\infty 时的渐近行为).

定理3.1R_{0}>1 和 (A_1)-(A_7) 成立, 则当 c>c^{*} 时, 系统 (2.2) 存在解 (S(\xi ),V(\xi ),I(\xi ),\\W(\xi )), 且满足

\mathop {\lim }\limits_{\xi \to - \infty } ( {S(\xi ),V(\xi ),I(\xi ),W(\xi )} )= ({S_0},{V_0},0,0),\quad \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}I(\xi ) = {q_1}

\mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}W(\xi ) = {q_2}. 而且, 对 \forall\xi \in \mathbb{R}, 有

\begin{matrix}\label{326} 0 < S(\xi ) < {S_0}, 0 < V(\xi ) < {V_0}, 0 < I(\xi ) < {q_1}K, 0 < W(\xi ) < {q_2}K. \end{matrix}
(3.26)

\forall n \in \mathbb{N}, 取满足 X_{n} > \max \{ {| {\frac{{\ln K}}{{{\lambda _c}}}} |,| { - \frac{{\ln {M_2}}}{{{\varepsilon _2}}}} |} \}\mathop {\lim }\limits_{n \to + \infty } {X_n} = + \infty 的单调递增序列 \{ {X_n}\}, 由引理 3.5 和Schauder不动点定理可知, 当 \xi \in [ - {X_n},{X_n}] 时, 存在 ({S_{{X_n}}}(\xi ),{V_{{X_n}}}(\xi ),\\{I_{{X_n}}}(\xi ),{W_{{X_n}}}(\xi )) \in {\Gamma _{{X_n}}} 满足引理 3.6 和 (3.15) 式. 于是, 对 \forall n \in \mathbb{N}, 有

\begin{matrix}\label{327} {\left\| {{S_{{X_n}}}} \right\|_{{C^{1,1}}([ - {X_n},{X_n}])}} \le C, {\left\| {{V_{{X_n}}}} \right\|_{{C^{1,1}}([ - {X_n},{X_n}])}} \le C, \notag \\ {\left\| {{I_{{X_n}}}} \right\|_{{C^{1,1}}([ - {X_n},{X_n}])}} \le C, {\left\| {{W_{{X_n}}}} \right\|_{{C^{1,1}}([ - {X_n},{X_n}])}} \le C. \end{matrix}
(3.27)

从而在 C_{\rm loc}^1(\mathbb{R}) 中, \{({S_{{X_n}}},{V_{{X_n}}},{I_{{X_n}}},{W_{{X_n}}})\} 存在收敛到 (S,V,I,W) \in {C^1}(\mathbb{R}) 的子列, 不妨将该子列仍记为 \{ ({S_{{X_n}}},{V_{{X_n}}},{I_{{X_n}}},{W_{{X_n}}})\}. 由条件 (A_1)-(A_2) 并利用Lebesgue控制收敛定理可知, (S,V,I,W) 满足行波系统 (2.2). 另外, 在 (3.27) 式中令 n \rightarrow +\infty, 可得

\begin{matrix}\label{328} {\left\| S \right\|_{{C^{1,1}}(\mathbb{R})}} \le C, {\left\| V \right\|_{{C^{1,1}}(\mathbb{R})}} \le C, {\left\| I \right\|_{{C^{1,1}}(\mathbb{R})}} \le C, {\left\| W \right\|_{{C^{1,1}}(\mathbb{R})}} \le C. \end{matrix}
(3.28)

定理 3.1 剩余结论的证明分以下两部分:

{\bf Part 1.} 证明 \mathop {\lim }\limits_{\xi \to - \infty } ( {S(\xi ),V(\xi ),I(\xi ),W(\xi )} ) = ({S_0},{V_0},0,0),\mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}I(\xi ) = {q_1}\mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}W(\xi ) = {q_2}.

因为 ({S_{{X_n}}},{V_{{X_n}}},{I_{{X_n}}},{W_{{X_n}}}) 满足 (3.16) 式, 所以 (S,V,I,W) 满足

\begin{matrix}\label{329} &0 \le {S_ - }(\xi ) \le {S}(\xi ) \le {S_ + }(\xi ) \le {S_0}, 0 \le {V_ - }(\xi ) \le {V}(\xi ) \le {V_ + }(\xi ) \le {V_0}, \notag\\ &0 \le {I_ - }(\xi ) \le {I}(\xi ) \le {I_ + }(\xi ) \le {q_1}K, 0 \le {W_ - }(\xi ) \le {W}(\xi ) \le {W_ + }(\xi ) \le {q_2}K. \end{matrix}
(3.29)

另外, 不难验证

\begin{align*} & \mathop {\lim }\limits_{\xi \to - \infty } {S_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {S_ + }(\xi ) = {S_0}, \mathop {\lim }\limits_{\xi \to - \infty } {V_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {V_ + }(\xi ) = {V_0},\\ & \mathop {\lim }\limits_{\xi \to - \infty } {I_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {I_ + }(\xi ) = 0, \mathop {\lim }\limits_{\xi \to - \infty } {W_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {W_ + }(\xi ) = 0,\\ & {q_1} = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}{I_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}I(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}{I_ + }(\xi ) = {q_1},\\ & {q_2} = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}{W_ - }(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}W(\xi ) = \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}{W_ + }(\xi ) = {q_2}, \end{align*}

最后, 由夹逼原理可得, \mathop {\lim }\limits_{\xi \to - \infty } ( {S(\xi ),V(\xi ),I(\xi ),W(\xi )} ) = ({S_0},{V_0},0,0), \mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}I(\xi ) = {q_1}\mathop {\lim }\limits_{\xi \to - \infty } {{\rm e}^{ - {\lambda _c}\xi }}W(\xi ) = {q_2}.

{\bf Part 2.} 证明对 \forall\xi\in\mathbb{R}, 有 0 < S(\xi ) < {S_0}, 0 < V(\xi ) < {V_0}, 0 < I(\xi ) < {q_1}K0 < W(\xi )< {q_2}K.

由 (3.29) 式可知, 只需证明 (3.29) 式的严格不等式成立.

先证对 \forall\xi\in\mathbb{R}, 有 S(\xi) > 0. 利用反证法, 若存在实数 \xi_{0} \in \mathbb{R}, 使得 S(\xi_{0}) = 0S'(\xi_{0}) = 0. 由 (3.29) 和 (2.2) 式的第一个方程并结合条件 (A_3) 可知,

\begin{matrix}\label{330} 0 = cS'({\xi _0}) =\, &d({\cal J} * S({\xi _0}) - S({\xi _0})) + \mu N - {\beta _W}S({\xi _0})W({\xi _0}) - {\beta _I}f(S({\xi _0}),{\cal G} * * I({\xi _0})) \notag\\ &- (\mu + \kappa )S({\xi _0}) + \theta V({\xi _0}) \notag\\ =\, &d({\cal J} * S({\xi _0})) + \mu N + \theta V({\xi _0}). \end{matrix}
(3.30)

因为对 \forall \xi \in ( - \infty, - \frac{{\ln {M_1}}}{{{\varepsilon _1}}}), 有 S(\xi ) \ge {S_ - }(\xi ) > 0, 所以 d({\cal J} * S({\xi})) + \mu N + \theta V({\xi}) > 0, 这与 (3.30) 式相矛盾. 从而对 \forall\xi \in \mathbb{R}, 有 S(\xi) > 0. 类似可得, 对 \forall\xi \in \mathbb{R}, 有 V(\xi) > 0, I(\xi) > 0W(\xi) > 0.

然后, 证明对 \forall\xi \in \mathbb{R}, 有 S(\xi) < S_{0}. 利用反证法, 若存在实数 \eta_{0} \in \mathbb{R}, 使得 S(\eta_{0}) = S_{0}S'(\eta_{0}) = 0. 由 (3.29) 和 (2.2) 式的第一个方程并结合条件 (A_3) 可知

\begin{matrix}\label{331} 0 = cS'({\eta _0}) = \,&d({\cal J} * S({\eta _0}) - S({\eta _0})) + \mu N - {\beta _W}S({\eta _0})W({\eta _0}) \notag\\ &- {\beta _I}f(S({\eta _0}),{\cal G} * * I({\eta _0})) - (\mu + \kappa )S({\eta _0}) + \theta V({\eta _0}) \notag\\ \le\, &d({\cal J} * S({\eta _0}) - {S_0}) + \mu N - {\beta _W}{S_0}W({\eta _0}) \notag\\ &- {\beta _I}f({S_0},{\cal G} * * I({\eta _0})) - (\mu + \kappa ){S_0} + \theta {V_0} < 0, \end{matrix}
(3.31)

这出现了矛盾. 从而对 \forall\xi \in \mathbb{R}, 有 S(\xi) < S_{0}. 类似可得, 对 \forall\xi \in \mathbb{R}, 有 V(\xi) < V_{0}, I(\xi) < q_{1}KW(\xi) < q_{2}K.

为了验证系统 (2.1) 行波解满足 \xi \rightarrow +\infty 时的渐近边界条件,还需要核函数 \mathcal{J}\mathcal{G} 满足下面的假设条件

(A_8) \mathcal{J}\mathcal{G} 关于空间变量分别具有紧支集,且 \mathcal{J} 的紧支集半径 R_{\mathcal{J}}\mathcal{G} 的紧支集半径 R_{\mathcal{G}} 满足: 0 < R_{\mathcal{G}} \leq R_{\mathcal{J}}.

定理3.2R_{0} > 1 和条件 (A_1)-(A_8) 成立, 则当 c>c^{*} 时, 对 \forall\xi \in \mathbb{R}, 系统 (2.2) 的解 ({S}(\xi ),{V}(\xi ),{I}(\xi ),{W}(\xi )) 满足渐近边界条件 \liminf \limits_{\xi \rightarrow +\infty}S(\xi)>0, \liminf \limits_{\xi \rightarrow +\infty}V(\xi)>0, \liminf \limits_{\xi \rightarrow +\infty}I(\xi)>0\liminf \limits_{\xi \rightarrow +\infty}W(\xi)>0.

S_{*} = \liminf \limits_{\xi \rightarrow +\infty}S(\xi), V_{*} = \liminf \limits_{\xi \rightarrow +\infty}V(\xi), I_{*} = \liminf \limits_{\xi \rightarrow +\infty}I(\xi), W_{*} = \liminf \limits_{\xi \rightarrow +\infty}W(\xi).

首先证明 S_{*} > 0. 利用反证法, 若 S_{*} = 0, 则存在某个序列 \{\xi_{n}\}, 使得当 n \rightarrow +\infty 时, 有 \xi_{n} \rightarrow +\inftyS(\xi_{n}) \rightarrow 0 成立. 定义 {S_n}(\xi ) = S(\xi + {\xi _n}), {V_n}(\xi ) = V(\xi + {\xi _n}), {I_n}(\xi ) = I(\xi + {\xi _n}){W_n}(\xi ) = W(\xi + {\xi _n}). 于是, 对 \forall n \in \mathbb{N}, ({S_n}(\xi ),{V_n}(\xi ),{I_n}(\xi ),{W_n}(\xi )) 满足 (2.2)-(2.3) 和 (3.28) 式. 因此, 在空间 C_{\rm loc}^1(\mathbb{R}) 中, \{ ({S_n},{V_n},{I_n},{W_n})\} 存在收敛到某个函数 ({S_\infty },{V_\infty },{I_\infty },{W_\infty }) \in {C^1}(\mathbb{R}) 的子列, 不妨将该子列仍记为 \{ ({S_n},{V_n},{I_n},{W_n})\}, 则当 n \rightarrow +\infty 时, 该子列在 C_{\rm loc}^1(\mathbb{R}) 上满足 {S_n}(\xi ) \to {S_\infty }(\xi ), {V_n}(\xi ) \to {V_\infty }(\xi ), {I_n}(\xi ) \to {I_\infty }(\xi ), {W_n}(\xi ) \to {W_\infty }(\xi ){S_\infty }(0) = 0, {S'_\infty }(0) = 0. 由 (3.26) 和 (2.2) 式的第一个方程并结合条件 (A_3) 可知, d\int_{\mathbb{R}} {{\cal J}(y)} {S_\infty }( - y){\rm d}y + \mu N + \theta {V_\infty }(0) = 0, 这与 \mu N + \theta {V_\infty }(0) > 0 相矛盾. 因此, S_{*} > 0. 类似可得, V_{*} > 0.

其次, 不难验证 I_{*} > 0 当且仅当 W_{*} > 0. 先证明当 I_{*} = 0 时, 有 W_{*} = 0.I_{*} = 0 时, 存在某个序列 \{ {\tilde \xi _n}\}, 使得当 n \rightarrow +\infty 时, 有 \tilde \xi _n \rightarrow +\infty, I({\tilde \xi _n}) \to {I_ * } = 0I'({\tilde \xi _n}) \to 0. 同理, 定义 {S_n}(\xi ) = S(\xi + {\tilde \xi _n}), {V_n}(\xi ) = V(\xi + {\tilde \xi _n}), {I_n}(\xi ) = I(\xi + {\tilde \xi _n}){W_n}(\xi ) = W(\xi + {\tilde \xi _n}). 由 (3.28) 式可知, 在 C_{\rm loc}^1(\mathbb{R}) 中, \{ ({S_n},{V_n},{I_n},{W_n})\} 存在收敛到某个函数 ({\tilde S_\infty },{\tilde V_\infty },{\tilde I_\infty },{\tilde W_\infty }) \in {C^1}(\mathbb{R}) 的子列, 不妨将该子列仍记为\{ ({S_n},{V_n},{I_n},{W_n})\}, 则当 n \rightarrow +\infty 时, 该子列在 C_{\rm loc}^1(\mathbb{R}) 上满足 {S_n}(\xi ) \to {\tilde S_\infty }(\xi ), {V_n}(\xi ) \to {\tilde V_\infty }(\xi ), {I_n}(\xi ) \to {\tilde I_\infty }(\xi ), {W_n}(\xi ) \to {\tilde W_\infty }(\xi ){\tilde I_\infty }(0) = 0, {\tilde I'_\infty }(0) = 0. 由 (3.26) 和 (2.2) 式的第三个方程可知, d\int_{\mathbb{R}} {{\cal J}(y)} {\tilde I_\infty }( - y){\rm d}y + {\beta _W}{\tilde S_\infty }(0){\tilde W_\infty }(0) = 0, 因此 {\tilde W_\infty }(0) = 0. 由于 {\tilde W_\infty }(0) = \mathop {\lim }\limits_{n \to + \infty } W({\tilde \xi _n}) \ge {W_ * }, 所以 W_{*} = 0. 类似可得, 当 W_{*} = 0 时, 有 I_{*} = 0. 从而, I_{*} = 0 当且仅当 W_{*} = 0, 即 I_{*} > 0 当且仅当 W_{*} > 0.

下证 I_{*} > 0. 可以断言: 若存在某个充分小的正数 \hat \varepsilon > 0, 使得 I(\xi ) \le \hat \varepsilon, 则对 \forall \xi \in \mathbb{R}, 有 I'(\xi ) > 0. 若断言成立, 则有 I_{*} > 0. 利用反证法, 若对 \forall n \in \mathbb{N}, 存在某个序列 \{ {\hat \xi _n}\}, 当 n \rightarrow +\infty 时, 有 {\hat \xi _n} \rightarrow +\infty, I({\hat \xi _n}) \to 0I'({\hat \xi _n}) \leq 0 成立. 由上述分析可知, 当 n \rightarrow +\infty 时, 有 W({\hat \xi _n}) \to 0. 定义 {S_n}(\xi ) = S(\xi + {\hat \xi _n}), {V_n}(\xi ) = V(\xi + {\hat \xi _n}), {I_n}(\xi ) = I(\xi + {\hat \xi _n}){W_n}(\xi ) = W(\xi + {\hat \xi _n}), 则当 n \rightarrow +\infty 时, 在 C_{\rm loc}^1(\mathbb{R}) 上有 {I_n}(0) = I({\hat \xi _n}) \to 0{W_n}(0) = W({\hat \xi _n}) \to 0. 利用解对初值的连续性可知, 当 n \rightarrow +\infty 时, 有 {I_n}(\xi ) \to 0{W_n}(\xi ) \to 0. 从而当 n \rightarrow +\infty 时, 由条件 (A_2) 和 (A_8) 可得 {\cal G} * * {I_n}(\xi ) \to 0. 由 (2.2) 式的第三个方程结合 Taylor公式及条件 (A_3)-(A_4) 可知

\begin{align*} c\left| {I'_{n}(\xi )} \right| \le\, &d({\cal J} * {I_n}(\xi ) + {I_n}(\xi )) + {\beta _W}{S_n}(\xi ){W_n}(\xi )\\ &+ ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){\cal G} * * {I_n}(\xi ) + (\mu + \gamma ){I_n}(\xi ), \end{align*}

这蕴含着: 当 n \rightarrow +\infty 时, 在 C_{\rm loc}^1(\mathbb{R}) 上有 {I'_n}(\xi ) \to 0. 又因为对 \forall n \in \mathbb{N}, 序列 S_{n} (\xi)V_{n} (\xi) 满足

\begin{align*} c{S'_n}(\xi ) = \,&d({\cal J} * {S_n}(\xi ) - {S_n}(\xi )) + \mu N - {\beta _W}{S_n}(\xi ){W_n}(\xi )\\ &- {\beta _I}f({S_n}(\xi ),{\cal G} * * {I_n}(\xi )) - (\mu + \kappa ){S_n}(\xi ) + \theta {V_n}(\xi ),\\ c{V'_n}(\xi ) =\, &d({\cal J} * {V_n}(\xi ) - {V_n}(\xi )) + \kappa {S_n}(\xi ) - \sigma {\beta _I}g({V_n}(\xi ),{\cal G} * * {I_n}(\xi )) - (\mu + \theta ){V_n}(\xi ). \end{align*}

由 (3.28) 式可知, \{S_{n}\}\{V_{n}\}C_{\rm loc}^1(\mathbb{R}) 中存在收敛到某些函数 {S_{\infty}}{V_{\infty}} 的子列, 不妨将该子列仍记为 \{S_{n}\}\{V_{n}\}, 则当 n \rightarrow +\infty 时, 在 C_{\rm loc}^1(\mathbb{R}) 上有 S_{n}(\xi) \rightarrow S_{\infty}(\xi)V_{n}(\xi) \rightarrow V_{\infty}(\xi), 且 S_{\infty}(\xi)V_{\infty}(\xi) 满足

c{S'_\infty }(\xi ) = d({\cal J} * {S_\infty }(\xi ) - {S_\infty }(\xi )) + \mu N - (\mu + \kappa ){S_\infty }(\xi ) + \theta {V_\infty }(\xi ),
(3.32)
c{V'_\infty }(\xi ) = d({\cal J} * {V_\infty }(\xi ) - {V_\infty }(\xi )) + \kappa {S_\infty }(\xi ) - (\mu + \theta ){V_\infty }(\xi ).
(3.33)

{s_0} = \mathop {\inf }\limits_{\xi \in \mathbb{R}} {S_\infty }(\xi ), {v_0} = \mathop {\inf }\limits_{\xi \in \mathbb{R}} {V_\infty }(\xi ), 则存在某个序列 \{ {\varsigma _n}\}, 使得当 n \rightarrow +\infty 时, 有 {S_\infty }({\varsigma _n}) \to {s_0}{V_\infty }({\varsigma _n}) \to {v_0} 成立. 那么, {\phi _n}(\xi ) = {S_\infty }(\xi + {\varsigma _n}){\varphi _n}(\xi ) = {V_\infty }(\xi + {\varsigma _n})C_{\rm loc}^1(\mathbb{R}) 中存在收敛到 {\phi _\infty }(\xi ){\varphi _\infty }(\xi ) 的子列, 不妨将该子列仍记为 {\phi _n}(\xi ){\varphi _n}(\xi ), 因此 {\phi _n}(\xi ) \to {\phi _\infty }(\xi ), {\varphi _n}(\xi ) \to {\varphi _\infty }(\xi ), 其中 {\phi _\infty }(\xi ){\varphi _\infty }(\xi ) 满足 (3.32) 和 (3.33) 式. 由于 {\phi _\infty }(0) = {s_0}, {\varphi _\infty }(0) = {v_0}, {\phi '_\infty }(0) = 0 以及 {\varphi '_\infty }(0) = 0, 利用 (3.32) 和 (3.33) 式可知, \mu N - (\mu + \kappa ){\phi _\infty }(\xi ) + \theta {\varphi _\infty }(\xi ) \le 0\kappa {\phi _\infty }(\xi ) - (\mu + \theta ){\varphi _\infty }(\xi ) \le 0, 即 {\phi _\infty }(0) \ge \frac{{N(\mu + \theta )}}{{\mu + \kappa + \theta }} = {S_0}{\varphi _\infty }(0) \ge \frac{{N\kappa }}{{\mu + \kappa + \theta }} = {V_0}. 因为 {S_\infty } \le {S_0}, {V_\infty } \le {V_0}, 所以 {\phi _\infty }(0) = {S_0}, {\varphi _\infty }(0) = {V_0}. 从而, 对 \forall \xi \in \mathbb{R}, 有 {S_\infty }(\xi ) = {S_0}{V_\infty }(\xi ) = {V_0}.

定义 {\psi _n}(\xi ) = \frac{{{I_n}(\xi )}}{{{I_n}(0)}} = {{\rm e}^{\int_0^\xi {\frac{{{I'_n}(z)}}{{{I_n}(z)}}{\rm d}z} }}, 由 (2.2) 式的第三个方程可得

\begin{align*} c\frac{{{I'_n}(\xi )}}{{{I_n}(\xi )}} = \,&d\int_{\mathbb{R}} {{\cal J}(y)\frac{{{I_n}(\xi - y)}}{{{I_n}(\xi )}}{\rm d}y + \frac{{{\beta _W}{S_n}(\xi ){W_n}(\xi )}}{{{I_n}(\xi )}}}\\ &+ \frac{{{\beta _I}f({S_n}(\xi ),{\cal G} * * {I_n}(\xi ))}}{{{\cal G} * * {I_n}(\xi )}}\int_0^T {\int_{\mathbb{R}} {{\cal G}(s,y)\frac{{{I_n}(\xi - y - cs)}}{{{I_n}(\xi )}}} } {\rm d}y{\rm d}s\\ &- (d + \mu + \gamma ) + \frac{{\sigma {\beta _I}g({V_n}(\xi ),{\cal G} * * {I_n}(\xi ))}}{{{\cal G} * * {I_n}(\xi )}}\int_0^T{\int_{\mathbb{R}} {{\cal G}(s,y)\frac{{{I_n}(\xi - y - cs)}}{{{I_n}(\xi )}}} } {\rm d}y{\rm d}s, \end{align*}

从而, 有 {\psi '_n}(\xi ) = \frac{{{I'_n}(\xi )}}{{{I_n}(0)}} = \frac{{{I'_n}(\xi )}}{{{I_n}(\xi )}}{\psi _n}(\xi ) 以及

\begin{matrix}\label{334} c{\psi '_n}(\xi ) =\, &d({\cal J} * {\psi _n}(\xi )) + \frac{{{\beta _W}{S_n}(\xi ){W_n}(\xi )}}{{{I_n}(\xi )}}{\psi _n}(\xi ) + \frac{{{\beta _I}f({S_n}(\xi ),{\cal G} * * {I_n}(\xi ))}}{{{\cal G} * * {I_n}(\xi )}}{\cal G} * * {\psi _n}(\xi ) \notag\\ &- (d + \mu + \gamma ){\psi _n}(\xi ) + \frac{{\sigma {\beta _I}g({V_n}(\xi ),{\cal G} * * {I_n}(\xi ))}}{{{\cal G} * * {I_n}(\xi )}}{\cal G} * * {\psi _n}(\xi ). \end{matrix}
(3.34)

类似文献 [21,引理 3.11] 的证明过程可知, 存在与 n 无关的正常数 C_{1}, 满足 \frac{{{I'_n}(\xi )}}{{{I_n}(\xi )}} < {C_1}, \int_{\mathbb{R}} {{\cal J}(y)\frac{{{I_n}(\xi - y)}}{{{I_n}(\xi )}}{\rm d}y} < {C_1}\int_0^T {\int_{\mathbb{R}} {{\cal G}(s,y)\frac{{{I_n}(\xi - y - cs)}}{{{I_n}(\xi )}}} } {\rm d}y{\rm d}s < {C_1}. 因此, \{\psi_{n}\}\{{\psi '_n}\}C_{\rm loc}^1(\mathbb{R}) 中一致有界, 从而 \{\psi_{n}\} 存在收敛到 \psi_{\infty} 的子列, 不妨将该子列仍记为 \{\psi_{n}\}, 则当 n \rightarrow +\infty 时, 在 C_{\rm loc}^1(\mathbb{R}) 中有 \psi_{n}(\xi) \to \psi_{\infty}(\xi), 同时也有 \psi'_{n}(\xi) \to \psi'_{\infty}(\xi). 在 (3.34) 式中令 n \rightarrow +\infty, 利用 Taylor公式及条件 (A_3)-(A_4) 可得

\begin{matrix}\label{335} c{\psi '_\infty }(\xi ) =\, &d({\cal J} * {\psi _\infty }(\xi )) + \frac{{{\beta _W}{S_\infty }(\xi ){W_\infty }(\xi )}}{{{I_\infty }(\xi )}}{\psi _\infty }(\xi ) \notag\\ &+ ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0)){\cal G} * * {\psi _\infty }(\xi ) - (d + \mu + \gamma ){\psi _\infty }(\xi ). \end{matrix}
(3.25)

下证 {\psi _\infty }(\xi ) > 0. 利用反证法, 若存在实数 {\hat \xi _0} \in \mathbb{R}, 使得 {\psi _\infty }({\hat \xi _0}) = 0{\psi'_\infty }({\hat \xi _0}) = 0. 由 (3.35) 式可知

\begin{align*} &d\int_{\mathbb{R}} {{\cal J}(y){\psi _\infty }({{\hat \xi }_0} - y){\rm d}y} + ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0))\\ &\times\int_0^T {\int_{\mathbb{R}} {\cal G} } (s,y){\psi _\infty }({\hat \xi _0} - y - cs){\rm d}y{\rm d}s = 0, \end{align*}

这蕴含了对 \forall \xi \in \mathbb{R}, 有 {\psi _\infty }(\xi ) = 0, 这与 {\psi _\infty }(0) = 1 是矛盾的. 因此, 对 \forall \xi \in \mathbb{R}, 有 {\psi _\infty }(\xi ) > 0.

Z(\xi ) = \frac{{{\psi'_\infty }(\xi )}}{{{\psi _\infty }(\xi )}}, 则 Z(\xi ) 满足

\begin{align*} cZ(\xi ) = \,&d\int_{\mathbb{R}} {{\cal J}(y){{\rm e}^{\int_\xi ^{\xi - y} {Z(\eta ){\rm d}\eta } }}{\rm d}y} + \frac{{{\beta _W}{S_\infty }(\xi ){W_\infty }(\xi )}}{{{I_\infty }(\xi )}}\\ &+ ({\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0))\iint_{B} {{\cal G}(s,y){{\rm e}^{\int_\xi ^{\xi - y - cs} {Z(\eta ){\rm d}\eta } }}{\rm d}y {\rm d}s} - (d + \mu + \gamma ), \end{align*}

其中 B = \{ (s,y)|(s,y) \in [T] \times [ - {R_{\cal G}},{R_{\cal G}}]\}. 另外, 不难得到 Z(\xi ) > - \frac{{d + \mu + \gamma }}{c}: = - {C_2}. 定义集合 {B_1} = \{ (s,y) \in B| - {R_{\cal G}} \le y + cs \le {R_{\cal G}}\}{B_2} = \{ (s,y) \in B| - {R_{\cal G}} \le y + cs \le 0\}, 则 {B_2} \subset {B_1} \subset B

\begin{align*} \iint_{B} {{\cal G}(s,y){{\rm e}^{\int_\xi ^{\xi - y - cs} {Z(\eta ){\rm d}\eta } }}{\rm d}y {\rm d}s} \geq \iint_{{B_2}} {{\cal G}(s,y){{\rm e}^{\int_\xi ^{\xi - y - cs} {Z(\eta ){\rm d}\eta } }}{\rm d}y {\rm d}s} > 0. \end{align*}

从而, 只要

{\beta _I}{f_I}({S_0},0) + \sigma {\beta _I}{g_I}({V_0},0) > \frac{{2(d + \mu + \gamma - d\int_{ - \infty }^0 {{\cal J}(y){{\rm e}^{{C_2}y}}{\rm d}y)} }}{{\iint_{{B_2}} {{\cal G}(s,y){{\rm e}^{{C_2}(y + cs)}}{\rm d}y {\rm d}s}}},

Z(\xi ) > 0. 于是, 由 \psi _{\infty }(\xi ) > 0Z(\xi ) 的定义可知, 对 \forall \xi \in \mathbb{R}, 有 \psi'_{\infty}(\xi ) > 0. 另外, 由 0 < {\psi '_\infty }(0) = \mathop {\lim }\limits_{n \to + \infty } {\psi '_n}(0) = \mathop {\lim }\limits_{n \to + \infty } \frac{{{I'_n}(0)}}{{{I_n}(0)}} 可知, 对充分大的 n, 有 I'({\hat \xi _n}) = {I_n}(0) > 0, 这与 I'({\hat \xi _n}) \le 0 矛盾. 因此, {I_{*}} > 0.

下面为了建立当 R_0>1, c=c^* 时系统 (2.1) 行波解的存在性, 还需要假设条件

(A_9) 系统 (2.1) 存在唯一的地方病平衡点 E^*:=(S^*,V^*,I^*,W^*), 其中 S^*>0, V^*>0, I^*>0, W^*>0. 条件 (A_9) 是建立当 R_0>1, c=c^* 时系统 (2.1) 行波解存在性时地方病平衡点所需要的条件.

定理3.3R_{0}>1 和 (A_1)-(A_9) 成立, 则当 c=c^* 时, 对 \forall\xi\in\mathbb{R}, 系统 (2.2) 存在解 (S(\xi),V(\xi),I(\xi),W(\xi)) 满足 0<S(\xi)<S_0, 0<V(\xi)<V_0, 0<I(\xi)<q_1K0<W(\xi)<q_2K 以及边界条件 (2.3) 和 (2.4).

\forall k\in\mathbb{N}, 取单调递减的序列 \{c_k\} 满足 c^*<c_k\leq c^*+1\lim\limits_{k\to+\infty}c_k=c^*, 并假设 (S_k(\xi),V_k(\xi),I_k(\xi),W_k(\xi))c=c_k 时 (2.2) 式的解, 则由定理 3.1 可知, (S_k(\xi),V_k(\xi),I_k(\xi),W_k(\xi)) 满足 (3.26) 和 (3.28) 式.

进一步, 类似文献 [22,定理 3.19] 的讨论可得, \liminf\limits_{k\to+\infty}\left\|I_k\right\|_{L^\infty(\mathbb{R})}>0. 另外, 由 I_k(-\infty)=0I_{k}(\xi)>0 可知, 存在序列 \{\eta_k\}0<\tilde{\varepsilon}<\min\{\hat{\varepsilon},I^*\}, 使得对 \forall k\in\mathbb{N}\forall\xi<\eta_k, 有

\begin{matrix}\label{336} I_k(\eta_k)=\tilde{\varepsilon},~I_k(\xi)<\tilde{\varepsilon}. \end{matrix}
(3.36)

定义 \tilde{S}_{k}\left(\xi\right)=S_{k}\left(\xi+\eta_{k}\right),\tilde{V}_{k}\left(\xi\right)=V_{k}\left(\xi+\eta_{k}\right),\tilde{I}_{k}\left(\xi\right)=I_{k}\left(\xi+\eta_{k}\right),\tilde{W}_{k}\left(\xi\right)=W_{k}\left(\xi+\eta_{k}\right). 由 (3.28) 式可知, 在 C_{\rm loc}^1(\mathbb{R}) 中, \{(\tilde{S}_k,\tilde{V}_k,\tilde{I}_k,\tilde{W}_k)\} 存在收敛到某个 (S,V,I,W)\in C^1(\mathbb{R}) 的子列, 不妨将该子列仍记为 \{(\tilde{S}_k,\tilde{V}_k,\tilde{I}_k,\tilde{W}_k)\}, 则当 k\to+\infty 时, 该子列在 C_{\rm loc}^1(\mathbb{R}) 上有 (\tilde{S}_k(\xi),\tilde{V}_k(\xi),\tilde{I}_k(\xi),\tilde{W}_k(\xi))\to(S(\xi),V(\xi),I(\xi),W(\xi)), 其中 (S(\xi),V(\xi),I(\xi),W(\xi))c=c^* 时 (2.2) 式的解, 且 I(0)=\tilde{\varepsilon}. 此外, 对 \forall\xi{\in}\mathbb{R}, 有

\begin{matrix}\label{337} 0\leq S(\xi)\leq S_0,~0\leq V(\xi)\leq V_0,~0\leq I(\xi)\leq q_1K,~0\leq W(\xi)\leq q_2K. \end{matrix}
(3.37)

下证 (3.37) 式的严格不等式成立. 若存在实数 \tilde{\xi}_0\in\mathbb{R}, 满足 I(\tilde{\xi}_0)=0I^{\prime}(\tilde{\xi}_0)=0. 由 (2.2) 式的第三个方程及条件 (A_3)-(A_4) 可知,

\begin{matrix}\label{338} 0=cI^{\prime}(\tilde{\xi}_0)=\,&d(\mathcal{J}*I(\tilde{\xi}_0)-I(\tilde{\xi}_0))+\beta_WS(\tilde{\xi}_0)W(\tilde{\xi}_0)\notag\\ &+\beta_{I}f(S(\tilde{\xi}_0),\mathcal{G}**I(\tilde{\xi}_0))-(\mu+\gamma)I(\tilde{\xi}_0)+\sigma\beta_{I}g(V(\tilde{\xi}_0),\mathcal{G}**I(\tilde{\xi}_0))\notag\\ =\,&d(\mathcal{J}*I(\tilde{\xi}_0))+\beta_WS(\tilde{\xi}_0)W(\tilde{\xi}_0). \end{matrix}
(3.38)

因为 I(0)=\tilde{\varepsilon}>0, 所以 d(\mathcal{J}*I(0))+\beta_{W}S(0)W(0)>0, 这与 (3.38) 式相矛盾. 因此, 对 \forall\xi\in\mathbb{R}, 有 I(\xi)>0. 类似于得到(3.30), (3.31) 和 (3.38) 式的证明思路, 对 \forall\xi\in\mathbb{R}, 不难得到 0<S(\xi)<S_0, 0<V(\xi)<V_0, I(\xi)<q_1K0<W(\xi)<q_2K.

最后, 证明 (2.2) 式的解 (S(\xi),V(\xi),I(\xi),W(\xi)) 满足 (2.3) 和 (2.4) 式. 从定理 3.2 的证明过程不难看出 (2.4) 式成立. 结合 \tilde{\varepsilon} 的定义和 (3.36) 式可得, 当 \xi<0 时, 有 I(\xi)\leq\tilde{\varepsilon}<\hat{\varepsilon}. 于是, 由 I(\xi) 的有界性可知, I(-\infty):=\lim\limits_{\xi\to-\infty}I(\xi) 存在. 此外, 还需证明 I(-\infty)=0. 为此, 利用反证法, 若 I(-\infty)>0, 类似文献 [19,引理 3.10] 的证明可得, I(-\infty)=I^{*}>\tilde{\varepsilon}, 这与 I(\xi)\leq\tilde{\varepsilon} 相矛盾. 因此 I(-\infty)=0, 从而 I^{\prime}(-\infty)=0. 在 (2.2) 式的第三个方程中令 \xi\rightarrow-\infty , 则有 W(-\infty)=0. 下面证明 S(-\infty)V(-\infty) 的存在性. 若 \underline{S}:=\liminf\limits_{\xi\to-\infty}S(\xi)<\limsup\limits_{\xi\to-\infty}S(\xi):=\overline{S}\underline{V}:=\liminf\limits_{\xi\to-\infty}V(\xi)<\limsup\limits_{\xi\to-\infty}V(\xi):=\overline{V}, 则存在序列 \{\tilde{\eta}_k\} 满足当 k\to+\infty 时, \tilde{\eta}_k\to-\infty, S(\tilde{\eta}_k)\to\underline{S}, V(\tilde{\eta}_k)\to\underline{V}, S^{\prime}(\tilde{\eta}_k)\to0 以及 V^{\prime}(\tilde{\eta}_k)\to0. 于是, 由 (2.2) 式的前两个方程, I(-\infty)=0, W(-\infty)=0 和Fatou引理可知, \mu N-(\mu+\kappa)\underline{S}+\theta\underline{V}=d(\underline{S}-\lim\limits_{k\to+\infty}\mathcal{J}*S(\tilde{\eta}_k))\leq0\kappa\underline{S}-(\mu+\theta)\underline{V}=d(\underline{V}-\lim\limits_{k\to+\infty}\mathcal{J}*V(\tilde{\eta}_k))\leq0, 即 \underline{S}\geq S_0\underline{V}\geq V_0, 这与 \underline{S}<\overline{S}\leq S_0\underline{V}<\overline{V}\leq V_0 相矛盾. 从而 S(-\infty)V(-\infty) 存在, 且满足 S(-\infty)=\underline{S}>0V(-\infty)=\underline{V}>0. 最后, 利用文献 [23,引理 2.3]{23} 可得, S(-\infty)=S_0V(-\infty)=V_0.

4 行波解的不存在性

本节利用双边 Laplace变换和反证法研究当 R_0>1, 0<c<c_* 时系统 (2.1) 行波解的不存在性.

定理4.1R_0>1 和(A_1)-(A_7) 成立, 则当 0<c<c_* 时, 系统 (2.2) 不存在满足边界条件 (2.3) 和 (2.4) 的解.

利用反证法, 若对 \forall \xi {\in} \mathbb{R}, 系统 (2.2) 存在满足边界条件 (2.3) 和 (2.4) 的解 (S(\xi),V(\xi),\\ I(\xi),W(\xi)). 利用 Taylor公式, 条件(A_3)-(A_4) 及 (A_7) 并结合边界条件 (2.3) 可知, 存在实数 \xi^{*}\in\mathbb{R}, 使得当 \xi<\xi^{*} 时, 有

\beta_If(S(\xi),\mathcal{G}**I(\xi))+\sigma\beta_Ig(V(\xi),\mathcal{G}**I(\xi))>\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}2\mathcal{G}**I(\xi).

因此, 由 (2.2) 式的第三个方程可得,

\begin{matrix}\label{401} cI^{\prime}(\xi)\geq \,& d(\mathcal{J}*I(\xi)-I(\xi))+\frac{\beta_If_I(S_0,0)+\sigma\beta_I g_I(V_0,0)+\mu+\gamma}2[\mathcal{G}**I(\xi)-I(\xi)] \notag\\ &+\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2I(\xi), \end{matrix}
(4.1)

对 (4.1) 式从 -\infty \xi 积分可知,

\begin{matrix}\label{402} &~~~~c[I(\xi)-I(-\infty)] \\ &\geq d\int_{-\infty}^{\xi}[\mathcal{J}*I(\eta)-I(\eta)]{\rm d}\eta+\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}{2}\notag\\ &~~~\times{\int_{-\infty}^{\xi}[\mathcal{G}**I(\eta)-I(\eta)]{\rm d}\eta}+\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2{\int_{-\infty}^{\xi}}I(\eta){\rm d}\eta. \end{matrix}
(4.2)

定义 P(\xi):=\int_{-\infty}^{\xi}I(\eta){\rm d}\eta. 由Fubini 定理可知, \int_{-\infty}^{\xi}\mathcal{J}*I(\eta){\rm d}\eta=\mathcal{J}*P(\xi)\int_{-\infty}^{\xi}\mathcal{G}**I(\eta){\rm d}\eta=\mathcal{G}**P(\xi). 因此, 由 (4.2) 式可得,

\begin{matrix}\label{403} &\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2P(\xi)\notag\\ \leq\,& cI(\xi)-d[\mathcal{J}*P(\xi)-P(\xi)]-\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}2[\mathcal{G}**P(\xi)-P(\xi)]. \end{matrix}
(4.3)

再对 (4.3) 式从 -\infty \xi 积分, 有

\begin{matrix}\label{404} &\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2{\int_{-\infty}^\xi P(\eta){\rm d}\eta}\notag\\ \leq\,& c\int_{-\infty}^{\xi}I(\eta){\rm d}\eta-d\int_{-\infty}^{\xi}[\mathcal{J}*P(\eta)-P(\eta)]{\rm d}\eta\notag\\ &-\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}2\int_{-\infty}^{\xi}[\mathcal{G}**P(\eta)-P(\eta)]{\rm d}\eta\mathrm{.} \end{matrix}
(4.4)

由微积分学基本定理和 Fubini 定理, 不难得到

\begin{matrix}\label{405} &\int_{-\infty}^{\xi}[\mathcal{J}*P(\eta)-P(\eta)]{\rm d}\eta\notag\\ =&\int_{-\infty}^{\xi}\int_{\mathbb{R}}\mathcal{J}(y)[P(\eta-y)-P(\eta)]{\rm d}y{\rm d}\eta=\int_{\mathbb{R}}\int_{-\infty}^{\xi}\mathcal{J}(y)\int_0^1(-y)P'(\eta-\omega y){\rm d}\omega {\rm d}\eta {\rm d}y\notag\\ =&\int_{\mathbb{R}}\int_0^1(-y)\mathcal{J}(y){\int_{-\infty}^\xi P'(\eta-\omega y){\rm d}\eta {\rm d}\omega {\rm d}y}=\int_{\mathbb{R}}(-y)\mathcal{J}(y){\int_0^1P(\xi-\omega y){\rm d}\omega {\rm d}y}. \end{matrix}
(4.5)

同理可得,

\begin{matrix}\label{406} \int_{-\infty}^\xi[\mathcal{G}**P(\eta)-P(\eta)]{\rm d}\eta=\int_0^T\int_{\mathbb{R}}(-(y+cs))\mathcal{G}(s,y)\int_0^1P(\xi-\omega(y+cs)){\rm d}\omega {\rm d}y{\rm d}s. \end{matrix}
(4.6)

将 (4.5), (4.6) 式代入 (4.4)式可知,

\begin{matrix}\label{407} &\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2{\int_{-\infty}^{\xi}}P(\eta){\rm d}\eta \notag\\ \leq\,& cP(\xi)+d\int_{\mathbb{R}}y\mathcal{J}(y)\int_0^1P(\xi-\omega y){\rm d}\omega dy+\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}2\notag\\ &\times{\int_0^T}\int_{\mathbb{R}}(y+cs)\mathcal{G}(s,y){\int_0^1}P(\xi-\omega(y+cs)){\rm d}\omega {\rm d}y{\rm d}s. \end{matrix}
(4.7)

P(\xi) 的定义可知, P'(\xi)=I(\xi)>0, 因此 P(\xi) 是非减的, 从而 yP(\xi-\omega y) 关于 \omega(\omega\in[0,1], y\in\mathbb{R}) 是单调递减的, 所以对 \forall\xi\in\mathbb{R}, 有 yP(\xi-\omega y)\leq yP(\xi)(y+cs)P(\xi-\omega(y+cs))\leq(y+cs)P(\xi). 又因为 \mathcal{J}(y)=\mathcal{J}(-y)\mathcal{G}(s,y)=\mathcal{G}(s,-y), 从而 \int_{\mathbb{R}}y\mathcal{J}(y){\rm d}y=0\int_0^T\int_\mathbb{R}y\mathcal{G}(s,y){\rm d}y{\rm d}s=0. 因此, 利用 (4.7) 式可得

\begin{matrix}\label{408} &\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}2\int_{-\infty}^{\xi}P(\eta){\rm d}\eta \notag\\ \leq\, & cP(\xi)\!+\!d\int_{\mathbb{R}}y\mathcal{J}(y)P(\xi){\rm d}y\!+\!\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)+\mu+\gamma}2 \\ &\times{\int_0^T}\int_{\mathbb{R}}(y+cs)\mathcal{G}(s,y)P(\xi){\rm d}y{\rm d}s\notag\\ =\,&c[y){\rm d}y{\rm d}s]P(\xi):=C_3P(\xi). \end{matrix}
(4.8)

\forall\omega_{0}>0, 利用 P(\xi) 的非减性, 可得

\begin{matrix}\label{409} \int_{-\infty}^\xi P(\eta){\rm d}\eta=\int_0^{+\infty}P(\xi-\eta){\rm d}\eta\geq\int_0^{\omega_0}P(\xi-\eta){\rm d}\eta>\omega_0P(\xi-\omega_0)\mathrm{.} \end{matrix}
(4.9)

那么, 由 (4.8), (4.9) 式可知对 \forall\xi<\xi^*,有

\frac{\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0)-\mu-\gamma}{2}\omega_0P(\xi-\omega_0)<C_3P(\xi)

成立. 于是, 存在正实数 \omega_{1}>0, 使得 P(\xi-\omega_1)<\frac{P(\xi)}2. 定义 Q(\xi)=P(\xi){\rm e}^{-\mu_0\xi}, 则当 \mu_0\in(0,\lambda_c) 时, 只要 \mu_0<\frac{\ln2}{\omega_{1}}, 就有 Q(\xi-\omega_1)<Q(\xi).从而, 取 0<\mu_0<\min\{\lambda_c,\frac{\ln2}{\omega_1},\varepsilon_2\}, 则当 \xi\to-\infty 时, Q(\xi) 是有界的. 因此, 存在正数 P_{0}>0, 使对 \forall\xi\in\mathbb{R}, 有 P(\xi){\rm e}^{-\mu_0\xi}\leq P_0. 另外, 根据 P(\xi) 的定义可知, \sup\limits_{\xi\in\mathbb{R}}\{I(\xi){\rm e}^{-\mu_0\xi}\}<+\infty. 由条件 (A_1)-(A_2), 不难得到

(\mathcal{J} * I(\xi)) \mathrm{e}^{-\mu_{0} \xi}=\int_{\mathbb{R}} \mathcal{J}(y) \mathrm{e}^{-\mu_{0} y} I(\xi-y) \mathrm{e}^{-\mu_{0}(\xi-y)} \mathrm{d} y<+\infty
(4.10)
(\mathcal{G} * * I(\xi)) \mathrm{e}^{-\mu_{0} \xi}=\int_{0}^{T} \int_{\mathbb{R}} \mathcal{G}(s, y) \mathrm{e}^{-\mu_{0}(y+c s)} I(\xi-y-c s) \mathrm{e}^{-\mu_{0}(\xi-y-c s)} \mathrm{d} y \mathrm{~d} s<+\infty
(4.11)

下面, 定义非负增函数 \vartheta(x)\in C^\infty(\mathbb{R},[0,1]) 满足

\begin{align*} \begin{cases}\vartheta(x)=0,~x\leq-2,\\ \vartheta(x)=1,~x\geq-1,&\end{cases} \end{align*}

且对 \forall n\in\mathbb{N}, 令 \vartheta_n(x)=\vartheta(\frac xn).\nu\in(0,\mu_0), 将 (2.2) 式的第四个方程两侧同乘以 {\rm e}^{-\nu\xi}\vartheta_n(\xi) 并在 \mathbb{R} 上积分, 可得

\begin{matrix}\label{412} c\int_{\mathbb{R}}W^{\prime}(\xi){\rm e}^{-\nu\xi}\vartheta_n(\xi){\rm d}\xi=\,&d\int_{\mathbb{R}}\left[\mathcal{J}*W(\xi)-W(\xi)\right]{\rm e}^{-\nu\xi}\vartheta_n(\xi){\rm d}\xi\notag\\ &+\alpha\int_{\mathbb{R}}h(\mathcal{G}**I(\xi)){\rm e}^{-\nu\xi}\vartheta_n(\xi){\rm d}\xi-\delta\int_{\mathbb{R}}W(\xi){\rm e}^{-\nu\xi}\vartheta_n(\xi){\rm d}\xi. \end{matrix}
(4.12)

另外, 容易验证

\int_{\mathbb{R}} \mathcal{J} * W(\xi) \mathrm{e}^{-\nu \xi} \vartheta_{n}(\xi) \mathrm{d} \xi \leq \int_{\mathbb{R}} W(\xi) \mathrm{e}^{-\nu \xi} \mathrm{d} \xi \int_{\mathbb{R}} \mathcal{J}(y) \mathrm{e}^{-\nu y} \mathrm{~d} y
(4.13)
\int_{\mathbb{R}} W^{\prime}(\xi) \mathrm{e}^{-\nu \xi} \vartheta_{n}(\xi) \mathrm{d} \xi=\nu \int_{\mathbb{R}} W(\xi) \mathrm{e}^{-\nu \xi} \vartheta_{n}(\xi) \mathrm{d} \xi-\int_{\mathbb{R}} W(\xi) \mathrm{e}^{-\nu \xi} \vartheta_{n}^{\prime}(\xi) \mathrm{d} \xi
(4.14)

从而, 将 (4.13), (4.14) 式代入 (4.12) 式并结合 \lim\limits_{n\to+\infty}\vartheta_n(\xi)=1\lim\limits_{n\to+\infty}\vartheta_n^{\prime}(\xi)=0 可得

\begin{matrix}\label{415} (c\nu+\delta-d\int_{\mathbb{R}}\mathcal{J}(y)({\rm e}^{-\nu y}-1){\rm d}y)\int_{\mathbb{R}}W(\xi){\rm e}^{-\nu\xi}{\rm d}\xi\leq\alpha\int_{\mathbb{R}}h(\mathcal{G}**I(\xi)){\rm e}^{-\nu\xi}{\rm d}\xi. \end{matrix}
(4.15)

根据 \Theta_2(\lambda,c) 的定义可知, 对 \forall\nu\in(0,\mu_0), 有

\Theta_2(\nu,c)=d\int_{\mathbb{R}}\mathcal{J}(y)({\rm e}^{-\nu y}-1){\rm d}y-c\nu-\delta<0.

因此, 在 (4.15) 式中令 n\to+\infty , 利用 Taylor公式和条件 (A_{6}) 可得,

\int_{\mathbb{R}}W(\xi){\rm e}^{-\nu\xi}{\rm d}\xi\leq\frac\alpha{-\Theta_{2}(\nu,c)}\int_{\mathbb{R}}h^{\prime}(0)\mathcal{G}**I(\xi){\rm e}^{-\nu\xi}{\rm d}\xi,

则对 \forall\nu\in(0,\mu_0), 有 \int_{\mathbb{R}}W(\xi){\rm e}^{-\nu\xi}{\rm d}\xi<+\infty . 进一步, 从 (2.2) 式的第三个方程可知, 对 \forall\xi\in\mathbb{R}, 有 I^{\prime}(\xi){\rm e}^{-\mu_0\xi}<+\infty 成立, 从而可得 \sup\limits_{\xi\in\mathbb{R}}\{I^{\prime}(\xi){\rm e}^{-\mu_0\xi}\}<+\infty . 注意到, (2.2) 式的第三个方程等价于

\begin{matrix}\label{416} &d(\mathcal{J}*I(\xi)\!-\!I(\xi))\!-\!cI^{\prime}(\xi)\!+\!\beta_{W}S(\xi)W(\xi)\!+\!(\beta_{I}f_{I}(S_{0},0)\!+\!\sigma\beta_{I}g_{I}(V_{0},0))\mathcal{G}**I(\xi)\!-\!(\mu+\gamma)I(\xi)\notag\\ =&(\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0))\mathcal{G}**I(\xi)-\beta_If(S(\xi),\mathcal{G}**I(\xi))-\sigma\beta_Ig(V(\xi),\mathcal{G}**I(\xi)). \end{matrix}
(4.16)

为了方便, 记 H(\xi)=(\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0))\mathcal{G}**I(\xi)-\beta_If(S(\xi), \mathcal{G}**I(\xi))-\sigma\beta_Ig(V(\xi), \mathcal{G}**I(\xi)). 从而 (4.16) 式可以写为

\begin{matrix}\label{417} &d(\mathcal{J}*I(\xi)-I(\xi))-cI^{\prime}(\xi)+(\beta_If_I(S_0,0)+\sigma\beta_Ig_I(V_0,0))\mathcal{G}**I(\xi)-(\mu+\gamma)I(\xi)\notag\\ =&H(\xi)-\beta_WS(\xi)W(\xi). \end{matrix}
(4.17)

由条件 (A_3)-(A_4) 可知, \bar{f}(S,0)=f_I(S,0)\bar{g}(V,0)=g_I(V,0), 并且存在正数 M_{\bar{f}}M_{\bar{g}}, 使得对 \forall I>0, 有 \left|\bar{f}_I(S,I)\right|\leq M_{\bar{f}}\left|\bar{g}_I(S,I)\right|\leq M_{\bar{g}}.\bar{M}_{\bar{f}}=\max\limits_{S\in[S_0]}\bar{f}_{S}(S,I), \bar{M}_{\bar{g}}=\max\limits_{V\in[V_0]}\bar{g}_{V}(V,I). 由 Lagrange中值定理可得

\begin{matrix}\label{418} H(\xi)&=\left[\beta_I\bar{f}(S_0,0)+\sigma\beta_I\bar{g}(V_0,0)-\beta_I\bar{f}(S(\xi),\mathcal{G}**I(\xi))-\sigma\beta_I\bar{g}(V(\xi),\mathcal{G}**I(\xi))\right]\mathcal{G}**I(\xi)\notag\\ &\leq\left[(\beta_IM_{\bar{f}}+\sigma\beta_IM_{\bar{g}})G**I(\xi)+\beta_I\bar{M}_{\bar{f}}(S_0-S(\xi))+\sigma\beta_I\bar{M}_{\bar{g}}(V_0-V(\xi))\right]\mathcal{G}**I(\xi)\mathrm{.} \end{matrix}
(4.18)

U(\xi)=S_0-S(\xi), 则对 \forall\xi\in\mathbb{R}, 有 0\leq U(\xi)\leq S_0, 且 \lim\limits_{\xi\to-\infty}U(\xi)=0. 由 (2.2) 式的第一个方程可知

\begin{matrix}\label{419} cU^{\prime}(\xi)&=d(\mathcal{J}*U(\xi)-U(\xi))-\mu N+\beta_WS(\xi)W(\xi)\\ &~~~+\beta_If\left(S(\xi),\mathcal{G}**I(\xi)\right)+(\mu+\kappa)S(\xi)-\theta V(\xi). \end{matrix}
(4.19)

\bar{\nu}\in(0,\mu_0), 将 (4.19) 式两侧同乘以 {\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi) 并在 \mathbb{R} 上积分, 可得

\begin{matrix}\label{420} c\int_{\mathbb{R}}U^{\prime}(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\notag \leq\,& d\int_{\mathbb{R}}[\mathcal{J}*U(\xi)-U(\xi)]{\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi-\int_{\mathbb{R}}\mu N{\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\\ &+\beta_WS_0\int_{\mathbb{R}}W(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\notag \!+\!\beta_I\int_{\mathbb{R}}f\left(S(\xi),\mathcal{G}**I(\xi)\right){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\\ &+(\mu+\kappa){\int_{\mathbb{R}}}S(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi-\theta{\int_{\mathbb{R}}}V(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi. \end{matrix}
(4.20)

注意到, 对某个常数 r, 有

\begin{align*} \int_{\mathbb{R}}\mathcal{J}*U(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi=&\int_{\mathbb{R}}U(y){\rm e}^{-\bar{\nu}y}\int_{\mathbb{R}}\mathcal{J}(\xi-y){\rm e}^{-\bar{\nu}(\xi-y)}\vartheta_n(\xi){\rm d}\xi {\rm d}y\notag\\ =&\int_{\mathbb{R}}U(y){\rm e}^{-\bar{\nu}y}\Big\{\int_{-\infty}^r\mathcal{J}(z){\rm e}^{-\bar{\nu}z}\vartheta_n(z+y){\rm d}z\\ &+\int_r^{+\infty}\mathcal{J}(z){\rm e}^{-\bar{\nu}z}\vartheta_n(z+y){\rm d}z\Big\}{\rm d}y. \end{align*}

取常数 m_{1} 满足 1<m_1<1+\frac{c\bar{\nu}}d, 则 \int_r^{+\infty}\mathcal{J}(z){\rm d}z<m_1 显然成立. 由 \mathcal{J}(\cdot) 的连续性可知, 存在常数 \bar{\nu}_0>0, 使得对 \forall\bar{\nu}\in(0,\bar{\nu}_0), 有 \int_r^{+\infty}\mathcal{J}(z){\rm e}^{-\bar{\nu}z}{\rm d}z\leq m_1{\rm e}^{\bar{\nu}r}.m_{2}=\int_{-\infty}^{r}\mathcal{J}(z){\rm e}^{-\bar{\nu}z}{\rm d}z, 则

\begin{matrix}\label{421} \int_{\mathbb{R}}\mathcal{J}*U(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\leq\int_{\mathbb{R}}U(y){\rm e}^{-\bar{\nu}y}(m_1{\rm e}^{\bar{\nu}r}+m_2){\rm d}y. \end{matrix}
(4.21)

类似 (4.14) 式, 有

\begin{matrix}\label{422} \int_{\mathbb{R}}U^{\prime}(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi=\bar{\nu}\int_{\mathbb{R}}U(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi-\int_{\mathbb{R}}U(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n^{\prime}(\xi){\rm d}\xi. \end{matrix}
(4.22)

另外, 利用 Taylor公式并结合条件 (A_3) 和 (4.11) 式可知, 存在不依赖于 n 的常数 \tilde{M}>0, 有

\begin{matrix}\label{423} &-\int_{\mathbb{R}}\mu N{\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi+\beta_WS_0\int_{\mathbb{R}}W(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi+\beta_I\int_{\mathbb{R}}f(S(\xi),\mathcal{G}**I(\xi)){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi \notag\\ &+(\mu+\kappa)\int_\mathbb{R}S(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi-\theta\int_{\mathbb{R}}V(\xi){\rm e}^{-\bar{\nu}\xi}\vartheta_n(\xi){\rm d}\xi\leq\tilde{M}. \end{matrix}
(4.23)

将 (4.21)-(4.23) 式代入 (4.20) 式并结合 \lim\limits_{n\to+\infty}\vartheta_n(\xi)=1\operatorname*{lim}\limits_{n\rightarrow+\infty}\vartheta_{n}^{\prime}(\xi)=0 可知, \tilde{M}\geq[c\bar{\nu}+d-d(m_1{\rm e}^{\bar{\nu}r}+m_2)]\int_{\mathbb{R}}U(\xi){\rm e}^{-\bar{\nu}\xi}{\rm d}\xi . 选取 \bar{\nu}<\min\{\mu_0,{\bar\nu}_{0}\} 和充分小的 r, 使得 b:=c\bar{\nu}+d-d(m_1{\rm e}^{\bar{\nu}r}+m_2)>0, 则有 \int_{\mathbb{R}}U(\xi){\rm e}^{-\bar{\nu}\xi}{\rm d}\xi\leq\tilde{M}b^{-1}:=\tilde{M}_1, 这蕴含着 S_0-S(\xi)\leq\tilde{M}_1{\rm e}^{\bar{\nu}\xi}. 同理可知, 存在正常数 \tilde{M}_2>0, 使得 V_0-V(\xi)\leq\tilde{M}_2{\rm e}^{\bar{\nu}\xi}. 因此, 由 (4.18) 式可知

\begin{align*} H(\xi)\leq[(\beta_IM_{\bar{f}}+\sigma\beta_IM_{\bar{g}})\mathcal{G}**I(\xi)+\beta_I\tilde{M}_1{\rm e}^{\bar{\nu}\xi}+\sigma\beta_I\tilde{M}_2{\rm e}^{\bar{\nu}\xi}]\mathcal{G}**I(\xi). \end{align*}

\xi\leq-\frac{\ln M_1}{\varepsilon_1} 时, 定义

\bar{H}(\xi)=(\beta_IM_{\bar{f}}+\sigma\beta_IM_{\bar{g}})\mathcal{G}**I(\xi)+\beta_I\tilde{M}_1{\rm e}^{\bar{\nu}\xi}+\sigma\beta_I\tilde{M}_2{\rm e}^{\bar{\nu}\xi}.

由 (4.11) 式和 \bar{\mu}_0<\bar{\nu} 可得

\begin{align*} \sup_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{\bar{H}(\xi){\rm e}^{-\bar{\mu}_0\xi}\}\leq\,&(\beta_IM_{\bar{f}}+\sigma\beta_IM_{\bar{g}})\sup_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{\mathcal{G}**I(\xi){\rm e}^{-\bar{\mu}_0\xi}\}\notag\\ &+(\beta_I\tilde{M}_1+\sigma\beta_I\tilde{M}_2)\sup_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{{\rm e}^{(\bar{\nu}-\bar{\mu}_0)\xi}\}\\ <\,&+\infty. \end{align*}

则有

\sup\limits_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{H(\xi){\rm e}^{-(\mu_0+\bar{\mu}_0)\xi}\}\leq\sup\limits_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{\bar{H}(\xi){\rm e}^{-\bar{\mu}_0\xi}\}\sup\limits_{\xi\leq-\frac{\ln M_1}{\varepsilon_1}}\{\mathcal{G}**I(\xi){\rm e}^{-\mu_0\xi}\}<+\infty.

因为 H(\xi) 是有界的, 所以 \sup\limits_{\xi\in\mathbb{R}}\{H(\xi){\rm e}^{-(\mu_0+\bar{\mu}_0)\xi}\}<+\infty .

接下来, 对 (4.17) 式两边进行 Laplace变换可得

\begin{matrix}\label{424} \Theta_1(\lambda,c)\mathcal{L}(\lambda)=\int_{\mathbb{R}}[H(\xi)-\beta_WS(\xi)W(\xi)]{\rm e}^{-\lambda\xi}{\rm d}\xi, \end{matrix}
(4.24)

其中 \mathcal{L}(\lambda)=\int_{\mathbb{R}}I(\xi){\rm e}^{-\lambda\xi}{\rm d}\xi 表示 I(\xi) 的双边 Laplace变换, 且 0<\operatorname{Re}\lambda<\mu_0. 由 Laplace变换的性质[24]可知, (4.24) 式的右边在 \lambda\in\mathbb{C}, 0<\operatorname{Re}\lambda<+\infty 上有定义. 当 c\in(0,c_*) 时, 由引理 2.1 可知, 对 \forall\lambda>0, 有 \Theta_1(\lambda,c)>0, 于是, \mathcal{L}(\lambda) 的定义域为 \lambda\in\mathbb{C}0<\operatorname{Re}\lambda<+\infty. 另一方面, 利用 \Theta_1(\lambda,c) 的定义和引理 2.1 可知, 对 \forall c\in(0,c_*), 当 \lambda\rightarrow+\infty 时, 有 \Theta_1(\lambda,c)\to+\infty , 这与 (4.24) 式右边的有界性相矛盾, 从而假设不成立.

参考文献

秦双钰.

霍乱传染病行波解的上下解计算

重庆工商大学学报 (自然科学版), 2021, 38(5): 97-101

[本文引用: 2]

Qin S Y.

Calculation of upper and lower solutions of travelling wave solutions for cholera diseases

Journal of Chongqing Technology and Business University (Natural Science Edition), 2021, 38(5): 97-101

[本文引用: 2]

Zhu C C, Li W T, Yang F Y.

Traveling waves in a nonlocal dispersal SIRH model with relapse

Computers and Mathematics with Applications, 2017, 73(8): 1707-1723

[本文引用: 2]

杨瑜.

一类非局部扩散的 SIR 模型的行波解

数学物理学报, 2022, 42A(5): 1409-1415

[本文引用: 1]

Yang Y.

Traveling wave solutions of a class of SIR model with nonlocal diffusion

Acta Math Sci, 2022, 42A(5): 1409-1415

[本文引用: 1]

邹霞.

具有时空时滞的非局部扩散 SIR 模型的行波解

应用数学和力学, 2018, 39(5): 611-630

[本文引用: 2]

Zou X.

Traveling wave solutions for nonlocal dispersal SIR models with spatio-temporal delays

Applied Mathematics and Mechanics, 2018, 39(5): 611-630

[本文引用: 2]

Bates P W, Fife P C, Ren X, Wang X F.

Traveling waves in a convolution model for phase transitions

Archive for Rational Mechanics and Analysis, 1997, 138: 105-136

[本文引用: 1]

Coville J, Dupaigne L.

Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Analysis: Theory

Methods and Applications, 2005, 60(5): 797-819

[本文引用: 1]

Coville J.

On uniqueness and monotonicity of solutions of non-local reaction diffusion equation

Annali di Matematica Pura ed Applicata, 2006, 185: 461-485

[本文引用: 1]

Yang F Y, Li Y, Li W T, Wang Z C.

Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model

Discrete and Continuous Dynamical Systems-Series B, 2013, 18(7): 1969-1993

[本文引用: 2]

杨炜明, 廖书, 方芳.

带有非局部扩散项的霍乱传染病模型行波解的存在性

应用数学学报, 2021, 44(3): 440-458

DOI:10.12387/C2021032      [本文引用: 6]

In this paper, we study a nonlocal dispersal cholera model. The existence of traveling wave solutions is obtained by applying Schauder’s fixed point theorem with upperlower solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> > <i>c</i><sup>&#42;</sup>. Moreover, we construct suitable Lyapunov function to analyze the boundary asymptotic behavior of traveling wave solutions at +∞. Finally, we show the existence of the traveling wave solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> = <i>c</i><sup>&#42;</sup>.

Yang W M, Liao S, Fang F.

Traveling waves in a nonlocal dispersal cholera model

Acta Mathematicae Applicatae Sinica, 2021, 44(3): 440-458

DOI:10.12387/C2021032      [本文引用: 6]

In this paper, we study a nonlocal dispersal cholera model. The existence of traveling wave solutions is obtained by applying Schauder’s fixed point theorem with upperlower solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> > <i>c</i><sup>&#42;</sup>. Moreover, we construct suitable Lyapunov function to analyze the boundary asymptotic behavior of traveling wave solutions at +∞. Finally, we show the existence of the traveling wave solutions in the case of <i>R</i><sub>0</sub> > 1 with <i>c</i> = <i>c</i><sup>&#42;</sup>.

廖书, 方章英.

带非局部扩散项的一般性霍乱模型的行波解

应用数学, 2023, 36(2): 327-342

[本文引用: 4]

Liao S, Fang Z Y.

Traveling wave solution of a general cholera model with non-local diffusion

Mathematica Applicata, 2023, 36(2): 327-342

[本文引用: 4]

Liao S, Yang W M, Fang F.

Traveling waves for a cholera vaccination model with nonlocal dispersal

Mathematical Methods in the Applied Sciences, 2021, 44(6): 5150-5171

DOI:10.1002/mma.7099      [本文引用: 4]

In this paper, we study the existence and nonexistence of a nonlocal dispersal cholera model with vaccination. First, we explore the existence of traveling wave solution when R-0 > 1 and c >= c* by using the Schauder's fixed-point theorem associated with the upper-lower solutions. Moreover, the Lyapunov functional is used to show the boundary asymptotic behavior of traveling wave solution. Furthermore, in the case when R-0 > 1 and c < c*, we show that the model system has nonexistence of traveling wave solution on the basis of the Laplace transform. At last, we discuss how the spatial movement and vaccination affect the minimal wave speed.

Zhang R, Liu S Q.

Traveling waves for SVIR epidemic model with nonlocal dispersal

Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682

DOI:10.3934/mbe.2019079      PMID:30947437      [本文引用: 3]

In this paper, we studied an SVIR epidemic model with nonlocal dispersal and delay, and we find that the existence of traveling wave is determined by the basic reproduction number ℜ₀ and minimal wave speed c. By applying Schauder's fixed point theorem and Lyapunov functional, the existence and boundary asymptotic behaviour of traveling wave solutions is investigated for ℜ₀>1 and c>c. The existence of traveling waves is obtained for ℜ₀>1 and c=c by employing a limiting argument. We also show that the nonexistence of traveling wave solutions by Laplace transform. Our results imply that (i) the diffusion and infection ability of infected individuals can accelerate the wave speed; (ii) the latent period and successful rate of vaccination can slow down the wave speed.

李孝武, 杨赟瑞, 刘凯凯.

一类时滞非局部扩散 SVIR 模型单稳行波解的稳定性

浙江大学学报 (理学版), 2023, 50(3): 273-286

[本文引用: 3]

Li X W, Yang Y R, Liu K K.

Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay

Journal of Zhejiang University (Science Edition), 2023, 50(3): 273-286

[本文引用: 3]

Britton N F.

Aggregation and the competitive exclusion principle

Journal of Theoretical Biology, 1989, 136(1): 57-66

PMID:2779260      [本文引用: 1]

A mathematical model for aggregation in a single animal population is set up. It relies on two premises. First, there is an advantage to individuals in the population in grouping together, for example for social purposes or to reduce the risk of predation. Second, the intra-specific competition at a point depends not simply on the population density at that point but on the average population density near the point, since the animals may move to find resources. The model is then extended to competing populations, and inter-specific competition is also assumed to depend on an average population density. It is shown that the resulting aggregation may lead to the co-existence of populations one of which would otherwise be excluded by the other. This finding is discussed with regard to the Competitive Exclusion Principle.

Britton N F.

Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model

SIAM Journal on Applied Mathematics, 1990, 50(6): 1663-1688

[本文引用: 1]

Smith H L, Thieme H R.

Strongly order preserving semiflows generated by functional differential equations

Journal of Differential Equations, 1991, 93(2): 332-363

[本文引用: 1]

Zhou J L, Yang Y.

Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay

Discret Contin Dyn Syst Ser B, 2017, 22(4): 1719-1741

[本文引用: 2]

Yang Y R, Yang Y, Ma Z Y.

Traveling waves for a nonlocal dispersal SIR model with renewal and spatio-temporal delay

Applicable Analysis, 2023, 102(4): 1038-1058

[本文引用: 3]

Yang L, Yang Y R, Song X.

Traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal

Acta Mathematica Scientia, 2022, 42(2): 715-736

DOI:10.1007/s10473-022-0218-5      PMID:35132292      [本文引用: 4]

This paper deals mainly with the existence and asymptotic behavior of traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal based on Schauder's fixed-point theorem and analysis techniques, which generalize the results of nonlocal SIRH models without relapse and delay. In particular, the difficulty of obtaining the asymptotic behavior of traveling waves for the appearance of spatio-temporal delay is overcome by the use of integral techniques and analysis techniques. Finally, the more general nonexistence result of traveling waves is also included.Supplementary material is available in the online version of this article at 10.1007/s10473-022-0218-5.© Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences 2022.

Wu J. Theory and Applications of Partial Functional Differential Equations. New York: Springer, 2012

[本文引用: 1]

吴维新. 几类反应扩散传染病和病毒感染模型的行波解研究. 乌鲁木齐: 新疆大学, 2022

[本文引用: 1]

Wu W X. Study on Traveling Wave Solutions of Several Kinds of Reaction-Diffusion Epidemic Models. Urumqi: Xinjiang University, 2022

[本文引用: 1]

Yang F Y, Li W T, Wang J B. Wave propagation for a class of non-local dispersal non-cooperative systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150(4): 1965-1997

[本文引用: 1]

Wu J, Zou X.

Traveling wave fronts of reaction-diffusion systems with delay

Journal of Dynamics and Differential Equations, 2001, 13: 651-687

[本文引用: 1]

Widder D V. The Laplace Transform. Cambridge: Cambridge University Press, 1941

[本文引用: 1]

/