[1] 秦双钰. 霍乱传染病行波解的上下解计算. 重庆工商大学学报 (自然科学版), 2021, 38(5): 97-101 Qin S Y.Calculation of upper and lower solutions of travelling wave solutions for cholera diseases. Journal of Chongqing Technology and Business University (Natural Science Edition), 2021, 38(5): 97-101 [2] Zhu C C, Li W T, Yang F Y.Traveling waves in a nonlocal dispersal SIRH model with relapse. Computers and Mathematics with Applications, 2017, 73(8): 1707-1723 [3] 杨瑜. 一类非局部扩散的 SIR 模型的行波解. 数学物理学报, 2022, 42A(5): 1409-1415 Yang Y.Traveling wave solutions of a class of SIR model with nonlocal diffusion. Acta Math Sci, 2022, 42A(5): 1409-1415 [4] 邹霞. 具有时空时滞的非局部扩散 SIR 模型的行波解. 应用数学和力学, 2018, 39(5): 611-630 Zou X.Traveling wave solutions for nonlocal dispersal SIR models with spatio-temporal delays. Applied Mathematics and Mechanics, 2018, 39(5): 611-630 [5] Bates P W, Fife P C, Ren X, Wang X F.Traveling waves in a convolution model for phase transitions. Archive for Rational Mechanics and Analysis, 1997, 138: 105-136 [6] Coville J, Dupaigne L.Propagation speed of travelling fronts in non local reaction-diffusion equations. Nonlinear Analysis: Theory, Methods and Applications, 2005, 60(5): 797-819 [7] Coville J.On uniqueness and monotonicity of solutions of non-local reaction diffusion equation. Annali di Matematica Pura ed Applicata, 2006, 185: 461-485 [8] Yang F Y, Li Y, Li W T, Wang Z C.Traveling waves in a nonlocal dispersal Kermack-Mckendrick epidemic model. Discrete and Continuous Dynamical Systems-Series B, 2013, 18(7): 1969-1993 [9] 杨炜明, 廖书, 方芳. 带有非局部扩散项的霍乱传染病模型行波解的存在性. 应用数学学报, 2021, 44(3): 440-458 Yang W M, Liao S, Fang F.Traveling waves in a nonlocal dispersal cholera model. Acta Mathematicae Applicatae Sinica, 2021, 44(3): 440-458 [10] 廖书, 方章英. 带非局部扩散项的一般性霍乱模型的行波解. 应用数学, 2023, 36(2): 327-342 Liao S, Fang Z Y.Traveling wave solution of a general cholera model with non-local diffusion. Mathematica Applicata, 2023, 36(2): 327-342 [11] Liao S, Yang W M, Fang F.Traveling waves for a cholera vaccination model with nonlocal dispersal. Mathematical Methods in the Applied Sciences, 2021, 44(6): 5150-5171 [12] Zhang R, Liu S Q.Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682 [13] 李孝武, 杨赟瑞, 刘凯凯. 一类时滞非局部扩散 SVIR 模型单稳行波解的稳定性. 浙江大学学报 (理学版), 2023, 50(3): 273-286 Li X W, Yang Y R, Liu K K.Stability of monostable traveling waves for a class of SVIR models with nonlocal diffusion and delay. Journal of Zhejiang University (Science Edition), 2023, 50(3): 273-286 [14] Britton N F.Aggregation and the competitive exclusion principle. Journal of Theoretical Biology, 1989, 136(1): 57-66 [15] Britton N F.Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model. SIAM Journal on Applied Mathematics, 1990, 50(6): 1663-1688 [16] Smith H L, Thieme H R.Strongly order preserving semiflows generated by functional differential equations. Journal of Differential Equations, 1991, 93(2): 332-363 [17] Zhou J L, Yang Y.Traveling waves for a nonlocal dispersal SIR model with general nonlinear incidence rate and spatio-temporal delay. Discret Contin Dyn Syst Ser B, 2017, 22(4): 1719-1741 [18] Yang Y R, Yang Y, Ma Z Y.Traveling waves for a nonlocal dispersal SIR model with renewal and spatio-temporal delay. Applicable Analysis, 2023, 102(4): 1038-1058 [19] Yang L, Yang Y R, Song X.Traveling waves in a SIRH model with spatio-temporal delay and nonlocal dispersal. Acta Mathematica Scientia, 2022, 42(2): 715-736 [20] Wu J.Theory and Applications of Partial Functional Differential Equations. New York: Springer, 2012 [21] 吴维新. 几类反应扩散传染病和病毒感染模型的行波解研究. 乌鲁木齐: 新疆大学, 2022 Wu W X.Study on Traveling Wave Solutions of Several Kinds of Reaction-Diffusion Epidemic Models. Urumqi: Xinjiang University, 2022 [22] Yang F Y, Li W T, Wang J B.Wave propagation for a class of non-local dispersal non-cooperative systems. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 2020, 150(4): 1965-1997 [23] Wu J, Zou X.Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations, 2001, 13: 651-687 [24] Widder D V. The Laplace Transform.Cambridge: Cambridge University Press, 1941 |