数学物理学报, 2024, 44(6): 1665-1688

基于拟共形理论的分数阶多尺度微分同胚图像配准

王慧楠,, 韩欢,*

武汉理工大学数学系 武汉 430070

Multi-Scale Approach for Diffeomorphic Image Registration with Fractional-Order Regularization Based on Quasiconformal Theory

Wang Huinan,, Han Huan,*

Department of Mathematics, Wuhan University of Technology, Wuhan 430070

通讯作者: *韩欢, Email: hanhuan11@whut.edu.cn

收稿日期: 2023-10-18   修回日期: 2024-04-30  

基金资助: 国家自然科学基金(11901443)
湖北省自然科学基金(2022CFB379)

Received: 2023-10-18   Revised: 2024-04-30  

Fund supported: National Natural Science Foundation of China(11901443)
Natural Science Foundation of Hubei Province of China(2022CFB379)

作者简介 About authors

王慧楠,Email:whn@whut.edu.cn

摘要

图像配准领域存在着两大挑战: (1) 网格重叠现象; (2) 贪婪配准问题不适定. 针对这两大挑战, 该文提出了一个基于拟共形理论的多尺度分数阶微分同胚图像配准模型, 该模型在无网格重叠及先验正则项的前提下, 得到了相似性度量泛函的一个光滑极小值点. 此外, 该文证明了所提模型解的存在性及多尺度方法的收敛性, 并通过数值实验验证了所提算法能有效避免网格重叠并得到较好的配准结果.

关键词: 微分同胚; 多尺度; 拟共形理论; 分数阶; 图像配准

Abstract

Two significant challenges relating to image registration include the issue of mesh folding and the unresolved problem of greedy registration. To tackle these challenges, a multi-scale approach for diffeomorphic image registration model with fractional-order regularization based on quasiconformal theory is proposed in this paper. It employs fractional-order differential to achieve a smooth energy functional minima without mesh folding and a priori regular terms. Furthermore, the existence of solution for the proposed model and the convergence of the multi-scale approach are proved. And numerical tests are performed to demonstrate that the proposed algorithm effectively eliminates mesh folding and generates superior registration results.

Keywords: Diffeomorphic; Multi-scale; Quasiconformal theory; Fractional-order regularization; Image registration

PDF (2521KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王慧楠, 韩欢. 基于拟共形理论的分数阶多尺度微分同胚图像配准[J]. 数学物理学报, 2024, 44(6): 1665-1688

Wang Huinan, Han Huan. Multi-Scale Approach for Diffeomorphic Image Registration with Fractional-Order Regularization Based on Quasiconformal Theory[J]. Acta Mathematica Scientia, 2024, 44(6): 1665-1688

1 引言

图像作为人类感知世界的视觉基础, 是人类获取信息、表达信息、传递信息的重要手段. 近年来,图像处理已经成为了众多学者关注的热门课题. 作为图像处理的一个重要分支, 图像配准已经被广泛地应用于遥感数据分析、计算机视觉、医学影像等领域[1-6]. 在不同的领域当中, 图像配准手段是有差异的, 因此对图像配准领域进行深入研究是很有必要的.

所谓图像配准, 是指寻找一种空间变换, 使得待配准图像与目标图像的对应点达到空间上的一致. 设 $ \Omega $$ \mathbb{R}^{2} $ 中的有界开区域, 定义该区域上的两幅图像 $ T $, $ D:\Omega\to\mathbb{R} $, $ T $, $ D $ 分别为待配准图像和目标图像, 则图像配准表示在待配准图像 $ T $ 上添加一个形变场 $\boldsymbol{h}(\boldsymbol{x})\triangleq\boldsymbol{x}+ \boldsymbol{u}(\boldsymbol{x}) $, 使得形变后的图像 $ T\circ\boldsymbol{h} $ 与目标图像 $ D $ 尽可能相似, 其中 $ \boldsymbol{x} $ 表示恒同映射, $ \boldsymbol{u}(\boldsymbol{x}) $ 为位移场. 数学上来说, 配准就是寻找一个两幅图像间的几何形变 $ \boldsymbol{h} $, 使得 $ T( {\boldsymbol{h}(\boldsymbol{x} )} ) $$ D(\boldsymbol{x}) $ 的距离尽可能小.

基于以上论述, 图像配准问题可转化为能量泛函的优化问题. 即, 寻找最优的位移场 $ \boldsymbol{u}:\Omega\to\mathbb{R} $, 使得以下能量泛函达到最小

$\begin{equation} \boldsymbol{u}=\arg \mathop{\inf }\limits_{\boldsymbol{u}}S(\boldsymbol{u}) + \eta {R_0}(\boldsymbol{u}), \end{equation}$

其中 $ S(\boldsymbol{u})=\int_{\Omega}{{\left[ {T({\boldsymbol{x}+\boldsymbol{u}( \boldsymbol{x})} )-D(\boldsymbol{x} )}\right]}^2}{\rm d}\boldsymbol{x} $ 为数据项; $ {R_0}(\boldsymbol{u}) $ 表示正则项, 用于对位移场 $ \boldsymbol{u}(\boldsymbol{x}) $ 作先验估计, 以排除不合理的解; $ \eta $ 用来平衡数据项和正则项.

基于框架 (1.1), 学者们提出了许多图像配准模型[7-14]. 在这些模型中, $ {R_0}(\boldsymbol{u}) $ 只包含 $ \boldsymbol{u} $ 的整阶导数. 作为分形理论的数学基础, 分数阶微积分有望被引入图像配准模型. 始创于 Leibnize 和 Euler 的分数阶微积分是一个古老而又新颖的课题[15]. 继他们的开创性工作之后, 许多关于分数阶微积分的理论成果相继问世[16,17]. 此外, 文献 [12,18] 中的数值实验结果也证明, 相较于整数阶导数, 分数阶导数可以更精确地模拟许多问题. 引入分数阶导数正则项, 人们提出了多种分数阶图像配准模型[12,17,19]. 受上述文献启发, 本文考虑基于分数阶导数的图像配准模型.

值得注意的是, 上述大部分图像配准模型及方法并不能保证形变场是微分同胚的. 即, 形变场是存在重叠的, 会产生负体积, 这与物理规律是相违背的. 因此必须给定相关约束条件来避免网格重叠现象的产生. 在没有网格重叠现象的情况下, 形变场 $ \boldsymbol{h} $ 是双射, 即形变场 $ \boldsymbol{h} $ 的 Jacobian 行列式大于零. 为了消除网格重叠现象, 研究者开始在关注形变场 $ \boldsymbol{h} $ 的 Jacobian 行列式的基础上研究微分同胚图像配准, 即通过判断 $ \boldsymbol{h} $ 的 Jacobian 行列式是否大于 0 来判断图像配准的过程中是否有网格重叠现象的产生.Haber 和 Modersitzki[20]通过限制形变场 Jacobian 行列式等于 1, 提出了一种保体积的配准模型. Zhang 和 Chen[14]为了克服网格重叠, 对形变场 $ \boldsymbol{h} $ 的 Jacobian 行列式提出了不等式约束. 此外, 为了消除网格重叠, 许多学者引入了 Beltrami 系数来诱导拟共形或共形图像配准模型[21-23], 证明了形变场 $ \boldsymbol{h} $ 的 Beltrami 系数模小于 1 与形变场 $ \boldsymbol{h} $ 的 Jacobian 行列式大于 0 等价, 从而通过限制形变场 $ \boldsymbol{h} $ 的 Beltrami 系数模小于 1 来保证映射是微分同胚的. 以此为理论基础, Lui 等人[21]提出了一个变分框架, 以获得基于特征点图像配准的最优拟共形映射. 作为补充, Lui 等人[22]利用 Beltrami 全流形获得了平面之间的最优映射. 另外, 在文献 [11,23]中分别利用直接和间接的 Beltrami 约束提出了两种图像配准模型. 拟共形或共形模型取得了非常令人满意的配准结果. 因此, 在本文中, 考虑在微分同胚配准模型加入拟共形理论以消除图像配准中的网格重叠现象.

上述这些模型都是在对形变场作了先验估计的前提下进行的, 即通过极小化 $ S(\boldsymbol{u}) + \eta {R_0}(\boldsymbol{u}) $ 来得到最优的位移场. 然而图像配准的最终目的是寻找相似性度量的全局极小, 即, 贪婪配准问题. 为了能够在不含正则项的情况下直接寻找 $ S(\boldsymbol{u}) $ 的全局极小, Han 等人[24]在 2021 年为二维微分同胚图像配准模型构建了一种多尺度图像配准方法. 该方法在没有正则化的情况下实现了数据项的平滑最小化并证明了多尺度方法解的存在性和收敛性.

然而, 文献 [24] 中只是在共形集合上寻找相似性度量的全局极小. 为了在更大的集合上解决贪婪配准问题 (例如, 在 $ \det(\nabla(\boldsymbol{h}))>0 $ 上), 本文给出了如下分数阶微分同胚图像配准模型

$\begin{equation} \boldsymbol{u}=\arg \mathop{\inf }\limits_{\boldsymbol{u}\in \mathcal{A}}E(\boldsymbol{u}), \end{equation}$

其中 $ \mathcal{A}=\big\{ {\boldsymbol{u}={{\big( {{u_1},{u_2}} \big)}^T} \in {{[H_0^\alpha (\Omega)]}^2}:\det \big( {\nabla \big( {\boldsymbol{x+u}( \boldsymbol{x})} \big)} \big) > 0,\alpha > 2} \big\} $, $ E(\boldsymbol{u})= S(\boldsymbol{u}) + \eta {R_0}(\boldsymbol{u}) $, $ S(\boldsymbol{u})=\int_{\Omega}{{\left[ {T\big({\boldsymbol{x}+\boldsymbol{u}( \boldsymbol{x})} \big)-D(\boldsymbol{x} )}\right]}^2}{\rm d}\boldsymbol{x} $, $ {R_0}(\boldsymbol{u}) = \int_{\Omega }{{{\left| {\nabla ^\alpha }\boldsymbol{u} \right|}^2}{\rm d}\boldsymbol{x}} $, $ \eta>0 $, $ \Omega \triangleq \big( {0,1} \big) \times \big( {0,1} \big) $, $ \alpha>2 $ 是为了使得 $ \mathcal{A} $ 中的一阶偏导数有意义 (这是因为由 Sobolev 嵌入定理可知, $H_0^\alpha (\Omega)\hookrightarrow C^1(\Omega) $), 给定 $ \boldsymbol{x}=\big( {{x_1},{x_2}} \big) \in \Omega, i = 1,2 $, 和函数 $ g:\Omega \to\mathbb{R} $, 则其分数阶偏导数定义为

$\begin{equation} \left \{ \begin{array}{l} \frac{{{\partial ^\alpha }g( \boldsymbol{x} )}}{{\partial x_i^\alpha }} \triangleq \frac{1}{{\Gamma \big( {\left\lfloor \alpha \right\rfloor + 1 - \alpha } \big)}}{\big( {\frac{\partial }{{\partial {x_i}}}} \big)^{\left\lfloor \alpha \right\rfloor + 1}}\int_0^{{x_i}} {\frac{{{g^{(i)}}\big( {\boldsymbol{x},t} \big)}}{{{{\big( {{x_i} - t} \big)}^{\alpha - \left\lfloor \alpha \right\rfloor }}}}} {\rm d}t,\\[3mm] \frac{{{\partial ^{\alpha *}}g( \boldsymbol{x})}}{{\partial x_i^{\alpha *}}} \triangleq \frac{1}{{\Gamma \big( {\left\lfloor \alpha \right\rfloor + 1 - \alpha } \big)}}{\big( { - \frac{\partial }{{\partial {x_i}}}} \big)^{\left\lfloor \alpha \right\rfloor + 1}}\int_{{x_i}}^1 {\frac{{{g^{(i)}}\big( {\boldsymbol{x},t} \big)}}{{{{\big( {t - {x_i}} \big)}^{\alpha - \left\lfloor \alpha \right\rfloor }}}}} {\rm d}t, \end{array} \right. \end{equation}$

其中 $ {\nabla ^\alpha }\boldsymbol{u}={\big( {\frac{{{\partial ^\alpha }{u_i}}}{{\partial x_j^\alpha }}} \big)_{2 \times 2}},i,j=1,2 $, $ \Gamma (s) = \int_0^{ + \infty } {{t^{s - 1}}{{\rm e}^{ - t}}{\rm d}t} $, $ \left\lfloor \cdot \right\rfloor $ 是向下取整函数, 并且 $ {g^{(1)}}\big( {\boldsymbol{x},t} \big) = g( {t,{x_2}} ) $, $ {g^{(2)}}\big( {\boldsymbol{x},t} \big) = g\big( {{x_1},t} \big) $. 关于这两个分数阶导数的详情可参见文献 [12,17].

注 1.1 本文的结构如下: 在第二章中介绍了拟共形理论的相关知识, 给出了多尺度分数阶微分同胚图像配准模型, 并证明了该模型解的存在性及收敛性; 在第三章中提出了一种松弛的拟共形多尺度模型及其对应的数值计算方法; 第四章通过实验来论证第三章所提出算法的有效性; 在文章的最后对本文进行了总结.

2 模型及其理论分析

2.1 相关理论知识

在介绍模型之前, 我们首先介绍有关拟共形映射和 Beltrami 系数的一些基本理论知识.

给定映射 $ f:\mathbb{C}\to\mathbb{C} $, $ z = {x_1} + i{x_2} \mapsto f\big( z \big) = {y_1}\big( {{x_1},{x_2}} \big) + i{y_2}\big( {{x_1},{x_2}} \big) $, 若映射 $ f $ 满足以下 Beltrami 方程

$\begin{equation} \frac{{\partial f}}{{\partial \overline z }} = \mu \big( f \big)\frac{{\partial f}}{{\partial z}}, \end{equation}$

且复值函数 $ \mu \big( f \big) $ 满足 $ {\left\| \mu \right\|_\infty } < 1 $, 则称映射 $ f $ 为拟共形映射, $ \mu $ 被称作 Beltrami 系数.

由 Beltrami 系数 $ \mu = \mu \big( f \big) = {f_{\overline z }}/{f_z} $ 定义, $ \mu $ 可由

$\begin{equation} \left \{ \begin{array}{l} {f_{\overline z }} = \frac{{\partial f}}{{\partial \overline z }} \equiv \frac{1}{2}\big( {\frac{{\partial f}}{{\partial {x_1}}} - i\frac{{\partial f}}{{\partial {x_2}}}} \big) = \frac{{{{\big( {{y_1}} \big)}_{{x_1}}} + {{\big( {{y_2}} \big)}_{{x_2}}}}}{2} + i\frac{{{{\big( {{y_2}} \big)}_{{x_1}}} - {{\big( {{y_1}} \big)}_{{x_2}}}}}{2}, \\[3mm] {f_z} = \frac{{\partial f}}{{\partial z}} \equiv \frac{1}{2}\big( {\frac{{\partial f}}{{\partial {x_1}}} + i\frac{{\partial f}}{{\partial {x_2}}}} \big) = \frac{{{{\big( {{y_1}} \big)}_{{x_1}}} - {{\big( {{y_2}} \big)}_{{x_2}}}}}{2} + i\frac{{{{\big( {{y_2}} \big)}_{{x_1}}} + {{\big( {{y_1}} \big)}_{{x_2}}}}}{2} \end{array} \right. \end{equation}$

计算得到, 这里 $ {\big( {{y_i}} \big)_{{x_j}}} = \frac{{\partial {y_i}}}{{\partial {x_j}}},i,j = 1,2 $. 计算可知,

$\begin{equation} {\left| \mu \right|^2} = \frac{{{{\big( {{{\big( {{y_1}} \big)}_{{x_1}}} - {{\big( {{y_2}} \big)}_{{x_2}}}} \big)}^2} + {{\big( {{{\big( {{y_2}} \big)}_{{x_1}}} + {{\big( {{y_1}} \big)}_{{x_2}}}} \big)}^2}}}{{{{\big( {{{\big( {{y_1}} \big)}_{{x_1}}} + {{\big( {{y_2}} \big)}_{{x_2}}}} \big)}^2} + {{\big( {{{\big( {{y_2}} \big)}_{{x_1}}} - {{\big( {{y_1}} \big)}_{{x_2}}}} \big)}^2}}} = \frac{{\left\| {\nabla f} \right\|_F^2 - 2\det \nabla f}}{{\left\| {\nabla f} \right\|_F^2 + 2\det \nabla f}}, \end{equation}$

这里 $ \left\| \cdot \right\| $ 表示 F 范数. 由上式可知 $ {\left| \mu \right|^2} < 1 \Leftrightarrow \det \nabla f > 0 $.

关于拟共形理论的更多详细知识, 可以查询文献 [25-27].

注 2.1 形变场 $ \boldsymbol{h}\big(\boldsymbol{x}\big)=\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ) = {\big( {{h_1}\big( {{x_1},{x_2}} \big),{h_2}\big( {{x_1},{x_2}} \big)} \big)^T} $, 位移场 $ \boldsymbol{u}( \boldsymbol{x}) = \boldsymbol{h}(\boldsymbol{x} ) - \boldsymbol{x} = {\big( {{u_1}( \boldsymbol{x} ),{u_2}( \boldsymbol{x} )} \big)^T} $, 故

$\begin{equation*} \begin{aligned} {\left| {\mu ( \boldsymbol{h} )} \right|^2} &= \frac{{{{\big( {{{\big( {{h_1}} \big)}_{{x_1}}} - {{\big( {{h_2}} \big)}_{{x_2}}}} \big)}^2} + {{\big( {{{\big( {{h_2}} \big)}_{{x_1}}} + {{\big( {{h_1}} \big)}_{{x_2}}}} \big)}^2}}}{{{{\big( {{{\big( {{h_1}} \big)}_{{x_1}}} + {{\big( {{h_2}} \big)}_{{x_2}}}} \big)}^2} + {{\big( {{{\big( {{h_2}} \big)}_{{x_1}}} - {{\big( {{h_1}} \big)}_{{x_2}}}} \big)}^2}}} \\ &= \frac{{{{\big( {{\partial _{{x_1}}}{u_1} - {\partial _{{x_2}}}{u_2}} \big)}^2} + {{\big( {{\partial _{{x_1}}}{u_2} + {\partial _{{x_2}}}{u_1}} \big)}^2}}}{{{{\big( {{\partial _{{x_1}}}{u_1} + {\partial _{{x_2}}}{u_2} + 2} \big)}^2} + {{\big( {{\partial _{{x_1}}}{u_2} - {\partial _{{x_2}}}{u_1}} \big)}^2}}}.\\ \end{aligned} \end{equation*}$

注 2.2 从以上拟共形理论 $ \det \big( {\nabla \boldsymbol{h}} \big) > 0 \Leftrightarrow {\left| {\mu ( \boldsymbol{h} )} \right|^2} < 1 $ 可知, 为了达到消除网格重叠的目的, 除直接控制形变场 $ \boldsymbol{h}( \boldsymbol{x} )=\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ) $ 的雅可比行列式外, 控制其 Beltrami 系数也是一个很好的选择, 它提供了相同但间接的控制. 因此, 对于在第一章提出的对位移场 $ \boldsymbol{u}(\boldsymbol{x}) $ 的限制空间 $ \mathcal{A}=\big\{{\boldsymbol{u}={{\big({{u_1},{u_2}}\big)}^T}\in{{[H_0^\alpha(\Omega)]}^2}:\det \big({\nabla\big({\boldsymbol{x+u}\big(\boldsymbol{x}\big)}\big)}\big)>0,\alpha>2}\big\} $, 其等价于 $ \mathcal{A} =\big\{{\boldsymbol{u}={{\big({{u_1},{u_2}} \big)}^T}\in{{[H_0^\alpha(\Omega)]}^2}:{{\left| \mu \right|}^2} =\frac{{{{\big({{\partial_{{x_1}}}{u_1}-{\partial_{{x_2}}}{u_2}}\big)}^2}+{{\big({{\partial_{{x_1}}}{u_2}+{\partial_{{x_2}}}{u_1}} \big)}^2}}}{{{{\big( {{\partial _{{x_1}}}{u_1} + {\partial _{{x_2}}}{u_2}+2}\big)}^2}+{{\big({{\partial _{{x_1}}}{u_2}-{\partial_{{x_2}}}{u_1}}\big)}^2}}}<1,\alpha>2}\big\} $. 本文从第三章之后对位移场 $ \boldsymbol{u} $ 的限制空间均为 $ \mathcal{A} =\big\{ {\boldsymbol{u}= {{\big( {{u_1},{u_2}} \big)}^T} \in {{[H_0^\alpha (\Omega)]}^2}:{{\left| \mu \right|}^2} < 1,\alpha> 2} \big\} $.

2.2 多尺度微分同胚图像配准模型

受文献 [24] 启发, 为了能够在不含正则项的情况下直接寻找 $ S(\boldsymbol{u}) $ 的全局极小值点, 本文采用多尺度方法来寻找能量泛函 $ S(\boldsymbol{u}) $ 的全局最小值. 该方法表述如下

第 1 步: 求解下列变分问题

$\begin{equation} {\boldsymbol{u}^0} = \arg \mathop {\inf }\limits_{\boldsymbol{u} \in \mathcal{A}} {\lambda _0}\int_\Omega {{{\left[ {T\big( {\boldsymbol{x + u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} + {\eta _0}{R_0}(\boldsymbol{u}), \end{equation}$

其中 $ {\lambda _0} > 0,{\eta _0} > 0 $, $ \overline{{\boldsymbol{h}_0}} ( \boldsymbol{x} ) \triangleq \boldsymbol{x} + {\boldsymbol{u}^0}( \boldsymbol{x} ) $ 为第 1 步获得的形变;

第 2 步: 将 $ T \circ \overline {{\boldsymbol{h}_0}} ( \cdot) $ 作为新的待配准图像, 再与目标图像 $ D(\cdot ) $ 进行配准, 即求解以下变分问题的解

$\begin{equation} {\boldsymbol{u}^1} = \arg \mathop {\inf }\limits_{\boldsymbol{u} \in \mathcal{A}} {\lambda _1}\int_\Omega {{{\left[ {T \circ \overline {{\boldsymbol{h}_0}} \big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} + {\eta _1}{R_0}(\boldsymbol{u}), \end{equation}$

其中 $ {\lambda _1} > 0,{\eta _1} > 0 $, $ {\boldsymbol{h}_1}( \boldsymbol{x} ) \triangleq \boldsymbol{x} + {\boldsymbol{u}^1}( \boldsymbol{x} ) $ 为第 2 步获得的形变, $ \overline {{\boldsymbol{h}_1}} ( \boldsymbol{x} ) \triangleq \overline {{\boldsymbol{h}_0}} \circ {\boldsymbol{h}_1}( \boldsymbol{x} ) $ 为前两步复合获得的形变;

$\cdots\cdots$

第 n+1 步: 依次进行, 最后求解以下变分问题的解

$\begin{equation} {\boldsymbol{u}^n} = \arg \mathop {\inf }\limits_{\boldsymbol{u} \in \mathcal{A}} {\lambda _n}\int_\Omega {{{\left[ {T \circ \overline {{\boldsymbol{h}_{n - 1}}} \big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} + {\eta _n}{R_0}(\boldsymbol{u}), \end{equation}$

其中 $ n \geqslant 1 $, $ {\lambda _n} > 0,{\eta _n} > 0 $, 为第 n+1 步获得的形变, $ \overline {{\boldsymbol{h}_n}} ( \boldsymbol{x} ) \triangleq \overline {{\boldsymbol{h}_{n - 1}}} \circ {\boldsymbol{h}_n}( \boldsymbol{x} ) \triangleq \overline {{\boldsymbol{h}_0}} \circ {\boldsymbol{h}_1} \circ \cdots \circ {\boldsymbol{h}_n}( \boldsymbol{x} ) $ 为前 n 步复合获得的形变.

$ {Z_n}\big( \boldsymbol{u} \big) = {\lambda _n}\int_\Omega {{{\left[ {T \circ \overline {{\boldsymbol{h}_{n - 1}}} \big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} + {\eta _n}{R_0}(\boldsymbol{u}) $, $ n \geqslant 1 $, 尺度为 n+1, 加形变场比不加形变场配准误差更小, 因此自然有 $ {Z_n}\big( {{\boldsymbol{u}^n}} \big) \leqslant {Z_n}\big( \boldsymbol{0} \big) $, 即

${\lambda _n}\int_\Omega {{{\left[ {T \circ \overline {{\boldsymbol{h}_n}} ( \boldsymbol{x} ) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} + {\eta _n}{R_0}({\boldsymbol{u}^n}) \leqslant {\lambda _n}\int_\Omega {{{\left[ {T \circ \overline {{\boldsymbol{h}_{n - 1}}} ( \boldsymbol{x} ) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}}. $

因为 $ {R_0}({\boldsymbol{u}^n}) > 0 $, 以及 $ {\lambda _n} > 0,{\eta _n} > 0 $, 所以有

$\left\| {T \circ \overline {{\boldsymbol{h}_n}} (\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 \leqslant \left\| {T \circ \overline {{\boldsymbol{h}_{n - 1}}} (\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2.$

综上可知, $ \left\| {T \circ \overline {{\boldsymbol{h}_n}} (\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 $ 是单调递减有下界的序列.

为证明以上多尺度方法解的存在性和收敛性, 定义 $ {\phi _0} = \mathop {\lim }\limits_{n \to + \infty } \left\| {T \circ \overline {{\boldsymbol{h}_n}} (\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 $, $ {\delta _0} = \mathop {\inf }\limits_{\boldsymbol{u} \in \mathcal{A}} \left\| {T \circ \boldsymbol{h}(\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 $, 并给出以下定理.

定理 2.1 假设 $ \mathop {\max }\limits_{\boldsymbol{x} \in \Omega } \left| {T( \boldsymbol{x} )} \right| < M < + \infty $, $ \mathop {\max }\limits_{\boldsymbol{x} \in \Omega } \left| {D( \boldsymbol{x} )} \right| < M < + \infty $, 且 $ T $$ \boldsymbol{x} $ 处的不连续点构成一个零测度集, 则变分问题 (2.6) 存在解.

该定理中解的存在性证明是变分法中的一个标准过程, 该过程主要分为两步: 第一步, 证明 $ {Z_n}\big( \boldsymbol{u} \big) $ 的弱下半连续性; 第二步, 根据文献 [28] 中第 2.1.2 节, 即可得变分问题 (2.6) 的解的存在性. 具体证明过程与文献 [29] 中的定理 2.2 的证明类似, 因此不再予以详细证明.

定理 2.2$ B = B( \Omega ),M,{\lambda _n},{\eta _n} $ 为参数, 满足关系式 $ \mathop {\lim }\limits_{n \to + \infty } \frac{{{\eta _n}{B^{4n - 3}}{M^{{4^n}}}}}{{{\lambda _n}}} = 0 $, 那么有 $ {\phi _0} = {\delta _0} $ 成立, 其中参数 $ B = B( \Omega ) $ 取决于 $ \Omega $, $ M $ 取决于微分同胚形变场.

为了证明上述定理, 先介绍几个引理. 同时为证明方便, 对于任意 $ \boldsymbol{f}:\Omega \to \Omega $, 定义 $ Y( \boldsymbol{f}) = \boldsymbol{f} - I $. 其中 $ I $ 单位映射, 有 $ Y( \boldsymbol{f})( \boldsymbol{x} ) = \boldsymbol{f}( \boldsymbol{x} ) - \boldsymbol{x} $.$ \boldsymbol{f}( \boldsymbol{x} ) = \boldsymbol{x + u}( \boldsymbol{x} ) $ 时, 有 $ Y( \boldsymbol{f})( \boldsymbol{x} ) = \boldsymbol{u}( \boldsymbol{x} ) $.

引理 2.1 (i) 若 $ \boldsymbol{f} $, $ \boldsymbol{g} $ 是保微分同胚的映射, 则 $ \boldsymbol{f} \circ \boldsymbol{g} $ 也保微分同胚;

(ii) 若 $ \boldsymbol{f} $, $ \boldsymbol{g} :\Omega \to \Omega, Y( \boldsymbol{f}),Y\big( \boldsymbol{g} \big) \in \mathcal{A} $, 则有 $ Y(\boldsymbol{f} \circ \boldsymbol{g}) \in \mathcal{A} $.

(i) 设 $ \boldsymbol{f}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ),\boldsymbol{g}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} ) $, 则有

$\boldsymbol{f} \circ \boldsymbol{g}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} ) + \boldsymbol{u}\big( {\boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} )} \big).$

因为 $ Y( \boldsymbol{f}) \in \mathcal{A} $, 有 $ \det \big( {\nabla \big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big)} \big) > 0 $. 所以 $ \det(\nabla(\boldsymbol{f}(\boldsymbol{x})))>0 $. 同理 $ \det(\nabla(\boldsymbol{g}(\boldsymbol{x})))>0 $.

$\begin{equation*} \begin{aligned} \det \big( {\nabla\big( \boldsymbol{f} \circ \boldsymbol{g}( \boldsymbol{x}) \big)} \big) &=\left| {\begin{array}{*{20}{c}} {1+\frac{{\partial {u_1}}}{{\partial {g_1}}}}& {\frac{{\partial {u_1}}}{{\partial {g_2}}}} \\[3mm] {\frac{{\partial {u_2}}}{{\partial {g_1}}}}& {1 + \frac{{\partial {u_2}}}{{\partial {g_2}}}} \end{array}} \right|\left| {\begin{array}{*{20}{c}} {1 + \frac{{\partial {v_1}}}{{\partial {x_1}}}}& {\frac{{\partial {v_1}}}{{\partial {x_2}}}} \\[3mm] {\frac{{\partial {v_2}}}{{\partial {x_1}}}}& {1 + \frac{{\partial {v_2}}}{{\partial {x_2}}}} \end{array}} \right|> 0. \end{aligned} \end{equation*}$

上式证明了多尺度算法无网格重叠;

(ii) 由 $ \mathcal{A} $ 的定义可知, 要证 $ Y(\boldsymbol{f} \circ \boldsymbol{g}) \in \mathcal{A} $, 即证

$\begin{equation} \det \big( {\nabla \big( {\boldsymbol{x} + Y\big( {\big( {\boldsymbol{f} \circ \boldsymbol{g}} \big)( \boldsymbol{x} )} \big)} \big)} \big) = \det \big( {\nabla \big( {\boldsymbol{f} \circ \boldsymbol{g}( \boldsymbol{x} )} \big)} \big) > 0. \end{equation}$

由 (i) 可知, 显然成立.

引理 2.2$ \boldsymbol{u}( \boldsymbol{x} ) \in \mathcal{A} $, 则有 $ {\left\| {\nabla \boldsymbol{u}} \right\|^2} \geqslant 2\det \big( {\nabla \boldsymbol{u}} \big) $.

$ 0 \leqslant {\lambda _1} \leqslant {\lambda _2} $ 是矩阵 $ \nabla {\boldsymbol{u}^T}\nabla \boldsymbol{u} $ 的特征值, 则 $ {\left\| {\nabla \boldsymbol{u}} \right\|^2} = {\lambda _1} + {\lambda _2},\det \big( {\nabla \boldsymbol{u}} \big) = {\big( {{\lambda _1}{\lambda _2}} \big)^{\frac{1}{2}}} $,根据柯西不等式, 知 $ {\lambda _1} + {\lambda _2} \geqslant 2{\big( {{\lambda _1}{\lambda _2}} \big)^{\frac{1}{2}}} $, 即 $ {\left\| {\nabla \boldsymbol{u}} \right\|^2} \geqslant 2\det \big( {\nabla \boldsymbol{u}} \big) $.

引理 2.3$ \boldsymbol{h}:\Omega \to \Omega, \boldsymbol{h}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ) $, 且 $ \boldsymbol{u}(\boldsymbol{x})\in \mathcal{A} $, 则存在 $ \boldsymbol{g}:\Omega \to \Omega $, $ \boldsymbol{g}( \boldsymbol{x} ) = {\boldsymbol{h}^{ - 1}}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} ) $, 其中 $ \boldsymbol{v}( \boldsymbol{x} ) \in \mathcal{A} $, 并且有以下两个式子成立: $ \boldsymbol{u}( \boldsymbol{x} ) = - \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big),\boldsymbol{v}( \boldsymbol{x} ) = - \boldsymbol{u}\big( {\boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} )} \big) $.

因为 $ \boldsymbol{g}( \boldsymbol{x} ) = {\boldsymbol{h}^{ - 1}}( \boldsymbol{x} ) $, 所以有

$\begin{equation} \boldsymbol{x}= \boldsymbol{g}\big( {\boldsymbol{h}( \boldsymbol{x} )} \big) = \boldsymbol{h}( \boldsymbol{x} ) + \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big) = \boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ) + \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big). \end{equation}$

由 (2.8) 式可得,

$\begin{equation} \boldsymbol{u}( \boldsymbol{x} ) = - \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big). \end{equation}$

同理, 有

$\begin{equation} \boldsymbol{v}( \boldsymbol{x} ) = - \boldsymbol{u}\big( {\boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} )} \big). \end{equation}$

又因为 $ \boldsymbol{u}( \boldsymbol{x} ) \in \mathcal{A} $, 故 $ \boldsymbol{v}( \boldsymbol{x} ) \in \mathcal{A} $.

引理 2.4$ Y\big( \boldsymbol{g} \big) \in \mathcal{A} $, 则

$ \int_\Omega {\boldsymbol{f}\big( \boldsymbol{g} \big){\rm d}\boldsymbol{x}} \leqslant C{R_0}\big( {{\boldsymbol{g}^{ - 1}}} \big)\int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big){\rm d}\boldsymbol{y}},$

其中 $ {R_0}\big( \boldsymbol{u} \big) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} $.

$ \boldsymbol{y = g}( \boldsymbol{x} ) $, 由引理 2.3 可知, 存在逆映射 $ {\boldsymbol{g}^{ - 1}}:\Omega \to \Omega $, 使得 $ \boldsymbol{x}={\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big) $. 根据积分的变量替换, 可得

$\begin{equation} \int_\Omega {\boldsymbol{f}\big( \boldsymbol{g} \big){\rm d}\boldsymbol{x}} = \int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big)\det \big( {\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \big){\rm d}\boldsymbol{y}}. \end{equation}$

根据引理 2.3 知逆映射 $ {\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big) \in \mathcal{A} $, 由引理 2.2 可得

$\begin{equation} {\left\| \nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big) \right\|^2} \geqslant \det \big( {\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \big). \end{equation}$

由 Sobolev 嵌入定理知 $ H_0^\alpha ( \Omega ) $ 是紧嵌入到 $ {C^1}( \Omega ) $ 中的, 可推导出

$\begin{equation} \max {\left\| {\nabla _{\boldsymbol{y}}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big) \right\|^2} \leqslant \left\| {\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \right\|_{{C^1}( \Omega )}^2 \leqslant {C_1}\left\| {{\nabla ^\alpha }{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \right\|_{{L^2}( \Omega )}^2 = {C_1}{R_0}\big( {{\boldsymbol{g}^{ - 1}}} \big). \end{equation}$

所以

$ \begin{align*} \int_\Omega {\boldsymbol{f}\big( \boldsymbol{g} \big){\rm d}\boldsymbol{x}} &= \int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big)\det \big( {{\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)}} \big){\rm d}\boldsymbol{y}} \leqslant \frac{1}{2}\int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big){{\left\| {\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \right\|}^2}{\rm d}\boldsymbol{y}} \\ &\leqslant \frac{1}{2}\max\limits_{\boldsymbol{y} \in \Omega} {\left\| {\nabla _{\boldsymbol{y}}{\boldsymbol{g}^{ - 1}}\big( \boldsymbol{y} \big)} \right\|^2}\int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big){\rm d}\boldsymbol{y}} \leqslant C{R_0}\big( {{\boldsymbol{g}^{ - 1}}} \big)\int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big){\rm d}\boldsymbol{y}}, \end{align*}$

其中 $ C,{C_1} $ 为参数.

引理 2.5$ \boldsymbol{p}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ),Y\big( \boldsymbol{q} \big) \in \mathcal{A} $, 则

${R_0}\big( {Y\big( {\boldsymbol{p}\circ\boldsymbol{q}} \big)} \big) \leqslant 2\left[ {{R_0}\big( {Y\big( \boldsymbol{q} \big)} \big) + C{R_0}\big( {{\boldsymbol{q}^{\boldsymbol{ - 1}}}} \big){R_0}\big( {Y\big( \boldsymbol{p} \big)} \big)} \right].$

$ \boldsymbol{p} \circ \boldsymbol{q} = \boldsymbol{p}\big( \boldsymbol{q} \big) = \boldsymbol{q} + \boldsymbol{u}\big( \boldsymbol{q} \big) = \boldsymbol{x} + Y\big( \boldsymbol{q} \big) + \boldsymbol{u}\big( \boldsymbol{q} \big) $ 知, $ Y\big( {\boldsymbol{p} \circ \boldsymbol{q}} \big) = Y\big( \boldsymbol{q} \big) + \boldsymbol{u}\big( \boldsymbol{q} \big) $, 结合 $ {\left| {a + b} \right|^2} \leqslant 2{\left| a \right|^2} + 2{\left| b \right|^2} $, 可得

$\begin{align*} {R_0}\big( {Y\big( {\boldsymbol{p}\circ\boldsymbol{q}} \big)} \big) &= {R_0}\big( {Y\big( \boldsymbol{q} \big) + \boldsymbol{u}\big( \boldsymbol{q} \big)} \big) = {\left\| {{\nabla ^\alpha }\big( {Y\big( \boldsymbol{q} \big) + \boldsymbol{u}\big( \boldsymbol{q} \big)} \big)} \right\|^2} \\ &\leqslant 2{\left\| {{\nabla ^\alpha }Y\big( \boldsymbol{q} \big)} \right\|^2} + 2{\left\| {{\nabla ^\alpha }\boldsymbol{u}\big( \boldsymbol{q} \big)} \right\|^2} = 2{R_0}\big( {Y\big( \boldsymbol{q} \big)} \big) + 2{\int_\Omega {\left| {{\nabla ^\alpha }\boldsymbol{u}\big( \boldsymbol{q} \big)} \right|} ^2}{\rm d}\boldsymbol{x}. \end{align*}$

$ \boldsymbol{f}( \boldsymbol{x} ) = {\left| {{\nabla ^\alpha }\boldsymbol{u}\big( \boldsymbol{q} \big)} \right|^2}, \boldsymbol{g}( \boldsymbol{x} ) = \boldsymbol{q}( \boldsymbol{x} ) $, 由引理 2.4 知

$\begin{equation} {\int_\Omega {\left| {{\nabla ^\alpha }\boldsymbol{u}\big( \boldsymbol{q} \big)} \right|} ^2}{\rm d}\boldsymbol{x} \leqslant C{R_0}\big( {{\boldsymbol{q}^{ - 1}}} \big)\int_\Omega {\boldsymbol{f}\big( \boldsymbol{y} \big){\rm d}\boldsymbol{y}} \leqslant C{R_0}\big( {{\boldsymbol{q}^{ - 1}}} \big){R_0}\big( {Y\big( \boldsymbol{p} \big)} \big). \end{equation}$

综上, 可得 $ {R_0}\big( {Y\big( {\boldsymbol{p} \circ \boldsymbol{q}} \big)} \big) \leqslant 2\left[ {{R_0}\big( {Y\big( \boldsymbol{q} \big)} \big) + C{R_0}\big( {{\boldsymbol{q}^{ - 1}}} \big){R_0}\big( {Y\big( \boldsymbol{p} \big)} \big)} \right] $.

引理 2.6$ \boldsymbol{h}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} ), \boldsymbol{g}( \boldsymbol{x} ) = {\boldsymbol{h}^{ - 1}}( \boldsymbol{x} ) = \boldsymbol{x} + \boldsymbol{v}( \boldsymbol{x} ), \boldsymbol{u,v} \in \mathcal{A} $, 则

${R_0}\big( \boldsymbol{u} \big) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} \leqslant C{R_0}\big( \boldsymbol{g} \big){R_0}\big( {Y\big( \boldsymbol{g} \big)} \big).$

由引理 2.3 可知, $ \boldsymbol{u}( \boldsymbol{x} ) = - \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big) $, 所以有

$\begin{equation} {R_0}\big( \boldsymbol{u} \big) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} = \int_\Omega {{{\left| {{\nabla ^\alpha }\big( { - \boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big)} \big)} \right|}^2}{\rm d}\boldsymbol{x}} = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big)} \right|}^2}{\rm d}\boldsymbol{x}}. \end{equation}$

$ \boldsymbol{f}( \boldsymbol{x} ) = {\left| {{\nabla ^\alpha }\boldsymbol{v}( \boldsymbol{x} )} \right|^2} $, 则 $ \boldsymbol{f}\big( {\boldsymbol{h}( \boldsymbol{x} )} \big) = {\left| {{\nabla ^\alpha }\boldsymbol{v}\big( {\boldsymbol{x} + \boldsymbol{u}( \boldsymbol{x} )} \big)} \right|^2} $, 由引理 2.4 知

$\begin{equation} {R_0}\big( \boldsymbol{u} \big) = \int_\Omega {\boldsymbol{f}\big( {\boldsymbol{h}( \boldsymbol{x} )} \big){\rm d}\boldsymbol{x}} \leqslant C{R_0}\big( {{\boldsymbol{h}^{ - 1}}} \big){R_0}\big( {Y\big( \boldsymbol{g} \big)} \big). \end{equation}$

证毕.

引理 2.7 对任意的 $ \xi, {\xi _1},{\xi _2} \geqslant 0 $, 存在函数 $ \rho :\mathbb{R} \to \mathbb{R} $, 并定义

$\rho \big( \xi \big) = \left\{ {\begin{array}{ll} 1,&{\text{ }}0 \leqslant \xi \leqslant 1, \\ \xi, &{\text{ }}1 < \xi. \end{array}} \right.$

则其满足

(i) $ \rho \big( \xi \big) \geqslant \xi $;

(ii) $ {\rho ^n}\big( \xi \big) = \rho \big( \xi \big) $, $ \rho \big( {{\xi ^n}} \big) = {\left[ {\rho \big( \xi \big)} \right]^n}(n \in {\mathbb{N}}^ +) $,这里 $ {\rho ^n} $ 表示函数 $ \rho $$ n $ 次复合;

(iii) 对于 $ c \geqslant 1 $$ \rho \big( {c\xi } \big) \leqslant c\rho \big( \xi \big) $;

(iiii) 若 $ {\xi _1} \leqslant {\xi _2} $, 有 $ \rho \big( {{\xi _1}} \big) \leqslant \rho \big( {{\xi _2}} \big) $.

根据引理 2.7 中对函数 $ \rho $ 的定义, 引理 2.7 不难证得, 这里不再赘述.

介绍完上述 7 个引理后, 接下来证明定理 2.2

$ {\delta _0} $ 代表图像配准达到的最优结果, $ {\phi _0} $ 表示尺度趋于无穷大时的配准结果, 故自然有 $ {\delta _0} \leqslant {\phi _0} $ 成立, 因此只需证明 $ {\delta _0} \geqslant {\phi _0} $.

用反证法, 假设 $ {\delta _0} < {\phi _0} $, 那么存在 $ 0 < {C_1} < 1 $, 使得 $ {\delta _0} < {C_1}{\phi _0} < {\phi _0} $.$ {\delta _0} $ 的定义, 存在 $ \widetilde {\boldsymbol{h}}( \boldsymbol{x} ) = \boldsymbol{x} + \widetilde{\boldsymbol{u}}( \boldsymbol{x} ),Y\big( {\widetilde{ \boldsymbol{h}}} \big) \in \mathcal{A} $, 使得

$\begin{equation} \left\| {T \circ \widetilde {\boldsymbol{h}}(\cdot ) - D(\cdot )} \right\|_{{L^2} ( \Omega )}^2 < {C_1}{\phi _{\text{0}}}. \end{equation}$

$ \boldsymbol{h}={\big( {{\boldsymbol{h}_{n - 1}}} \big)^{ - 1}} \circ \widetilde {\boldsymbol{h}} $, 由引理 2.1 和引理 2.3 知 $ Y\big( {{{\big( {{\boldsymbol{h}_{n - 1}}} \big)}^{ - 1}}} \big) \in \mathcal{A}, Y( \boldsymbol{h} ) \in \mathcal{A} $, 则

$\begin{align*} & {\lambda _n}\left\| {T \circ \overline {{\boldsymbol{h}_n}} (\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 + {\eta _n}{R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) \\ &\leqslant {\lambda _n}\left\| {T \circ \widetilde{ \boldsymbol{h}}(\cdot ) - D(\cdot )} \right\|_{{L^2}( \Omega )}^2 + {\eta _n}{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big) \\ &\leqslant {\lambda _n}{C_1}{\phi _{\text{0}}} + {\eta _n}{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big). \end{align*}$

也就是说,

$\begin{equation} {\lambda _n}\big( {1 - {C_1}} \big){\phi _{\text{0}}} + {\eta _n}{R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) \leqslant {\eta _n}{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big). \end{equation}$

这表明 $ {R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) \leqslant {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big) $.

因为 $ Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big) \in \mathcal{A} $, $ Y\big( {{\boldsymbol{h}_n}} \big) \in \mathcal{A} $, 有

$\begin{align*} & {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_n}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) \\ &= {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} \circ {\boldsymbol{h}_n}} \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) = {R_0}\big( {Y\big( {\boldsymbol{h}_n}^{ - 1} \circ {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big) \\ &\leqslant 2\big({R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) + C{R_0}\big( {{\big( {{\big( \overline {{\boldsymbol{h}_{n - 1}}} \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)}^{ - 1}} \big){R_0}\big( {Y\big( {{\boldsymbol{h}_n}^{ - 1}} \big)} \big) \big), \end{align*}$

且有

$\begin{equation} {R_0}\big( {Y\big( {{\boldsymbol{h}_n}^{ - 1}} \big)} \big) \leqslant C{R_0}\big( {{\boldsymbol{h}_n}} \big){R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) \leqslant C{R_0}\big( {{\boldsymbol{h}_n}} \big){R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big), \end{equation}$

以及

$\begin{equation} {R_0}\big( {{\boldsymbol{h}_n}} \big) = {R_0}\big( {\boldsymbol{x} + Y\big( {{\boldsymbol{h}_n}} \big)} \big) \leqslant 2{R_0}( \boldsymbol{x} ) + 2{R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) = 2{R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) + \overline C, \end{equation}$

其中 $ \overline C = 2{R_0}( \boldsymbol{x} ) = 2\int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{x}} \right|}^2}{\rm d}\boldsymbol{x}} $.结合 (2.19) 和 (2.20) 式可知

$\begin{align*} {R_0}\big( {Y\big( {{\boldsymbol{h}_n}^{ - 1}} \big)} \big) &\leqslant C{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)\left[ {2{R_0}\big( {Y\big( {{\boldsymbol{h}_n}} \big)} \big) + \overline C } \right] \\ &\leqslant C{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)\left[ {2{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) + \overline C } \right] \\ &= 2C{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]^2} + C\overline C {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big). \end{align*}$

由引理 2.6 可知

$ \begin{align*} {R_0}{\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)^{ - 1}} &= {R_0}\big( {\boldsymbol{x} + Y\big( {{{\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)}^{ - 1}}} \big)} \big) \\ & \leqslant 2{R_0}( \boldsymbol{x} ) + 2{R_0}\big( {Y\big( {{{\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)}^{ - 1}}} \big)} \big) \\ &\leqslant 2{R_0}\big( {Y\big( {{{\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)}^{ - 1}}} \big)} \big) + \overline C \\ &\leqslant C{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big){R_0}\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big) + \overline C \\ &\leqslant 2C{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)\big( {{R_0}( \boldsymbol{x} ) + {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big)} \big) + \overline C \\ & \leqslant C{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]^2} + \widetilde{ C}{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big) + \overline{\overline C}. \end{align*}$

综上可得

$ \begin{align*} & {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_n}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) \\ &\leqslant 2\left[ {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big) + C{R_0}\big( {{\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)}^{ - 1}} \big){R_0}\big( {Y\big( {{\boldsymbol{h}_n}^{ - 1}} \big)} \big)\right] \\ & \leqslant 2 R_0 \big( Y\big( \big( \overline {\boldsymbol{h}_{n - 1} } \big)^{ - 1} \circ \widetilde{ \boldsymbol{h}} \big) \big) + 2\Big [C\left[ R_0 \big( Y\big( \big( \overline { \boldsymbol{h}_{n - 1}} \big)^{ - 1} \circ \widetilde{ \boldsymbol{h}} \big) \big) \right]^2\\ & + \widetilde{ C}{R_0}\big( Y\big( \big( \overline {\boldsymbol{h}_{n - 1}} \big)^{ - 1} \circ \widetilde {\boldsymbol{h}} \big) \big) + \overline{\overline C} \Big] \Big[ 2C\left[ R_0\big( Y\big( \big( \overline {\boldsymbol{h}_{n - 1} } \big)^{ - 1} \circ \widetilde {\boldsymbol{h}} \big) \big) \right]^2 \\ & + C\overline C {R_0}\big( Y\big( \big( \overline {\boldsymbol{h}_{n - 1}} \big)^{ - 1} \circ \widetilde {\boldsymbol{h}} \big) \big) \Big] \\ &\leqslant {B_4}{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big)} \right]^4} + {B_3}{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]^3} \\ & + {B_2}{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]^2} + {B_1}{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]^1} \\ &= \sum\limits_{k = 1}^4 {{B_k}{{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]}^k}} \leqslant \sum\limits_{k = 1}^4 {{B_k}\rho \big( {{\left[ {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \right]}^k} \big)} \\ &\leqslant {\sum\limits_{k = 1}^4 {{B_k}\left[ {\rho \big( {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big)} \big)} \right]} ^4} \leqslant B{\left[ {\rho \big( {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \big)} \right]^4}, \end{align*}$ 其中 $ B = B( \Omega ) = \max \left\{ {\sum\limits_{k = 1}^4 {\left| {{B_k}} \right|,1} } \right\} $.

因此

$\begin{equation*} \begin{aligned} {R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_n}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big) &\leqslant {B^5}{\left[ {\rho \big( {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big)} \big)} \right]^{{4^2}}} \\ & \leqslant \cdots \\ &\leqslant {B^{4n - 3}}{\left[ {\rho \big( {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde{ \boldsymbol{h}} \big)} \big)} \big)} \right]^{{4^n}}} \\ &\triangleq {B^{4n - 3}}{M^{{4^n}}}, \\ \end{aligned} \end{equation*}$

其中 $ M \triangleq \rho \big( {{R_0}\big( {Y\big( {{\big( {\overline {{\boldsymbol{h}_{n - 1}}} } \big)}^{ - 1}} \circ \widetilde {\boldsymbol{h}} \big)} \big)} \big). $

因此

$\begin{equation} {\lambda _n}\big( {1 - {C_1}} \big){\phi _{\text{0}}} + {\eta _n}{R_0}\big( {{\boldsymbol{u}_n}} \big) \leqslant {\eta _n}{B^{4n - 3}}{M^{{4^n}}}, \end{equation}$

$\begin{equation} \frac{{{\lambda _n}\big( {1 - {C_1}} \big){\phi _{\text{0}}}}}{{{\eta _n}}} + {R_0}\big( {{\boldsymbol{u}_n}} \big) \leqslant {B^{4n - 3}}{M^{{4^n}}}. \end{equation}$

这与 $ \mathop {\lim }\limits_{n \to + \infty } \frac{{{\eta _n}{B^{4n - 3}}{M^{{4^n}}}}}{{{\lambda _n}}} = 0 $ 矛盾, 因此 $ {\delta _0} = {\phi _0} $.

故定理2.2得证.

注 2.3 由定理 2.2 可知, 多尺度方法 (2.4)--(2.6) 是收敛的, 当尺度 $ n \to + \infty $ 时, 多尺度模型与以下变分问题

$\begin{equation} \boldsymbol{u = }\arg \mathop {\inf }\limits_{\boldsymbol{u} \in \mathcal{A}} S\big( \boldsymbol{u} \big) \end{equation}$

等价, (2.23) 式配准的结果与参数 $ \lambda, \eta, \alpha $ 无关, 这表明所提出的算法具有鲁棒性.

3 基于拟共形理论的数值求解方法

3.1 基于拟共形映射的配准模型

为了克服多尺度模型 (2.6) 中的非线性不等式约束 $ \det(\nabla(\boldsymbol{h}))>0 $, 本节拟借助于拟共形理论, 将原问题近似转化为以下无约束的变分问题

$\begin{equation} {\boldsymbol{u}^n} = \arg \mathop {\inf }\limits_{\boldsymbol{u} \in {{\left[ {H_0^\alpha ( \Omega )} \right]}^2}} {Z_n}\big( \boldsymbol{u} \big) + \Theta {R_1}\big( \boldsymbol{u} \big), \end{equation}$

其中 $ \Theta $ 是一个充分大的数, $ {R_1}\big( \boldsymbol{u} \big) = \int_\Omega {\frac{1}{{{{\big( {{{\left| \mu \right|}^2} - 1} \big)}^2}}}{\rm d}\boldsymbol{x}} $, $ {{\left| \mu \right|}^2} =\frac{{{{\big({{\partial_{{x_1}}}{u_1}-{\partial_{{x_2}}}{u_2}}\big)}^2}+{{\big({{\partial_{{x_1}}}{u_2}+{\partial_{{x_2}}}{u_1}} \big)}^2}}}{{{{\big( {{\partial _{{x_1}}}{u_1} + {\partial _{{x_2}}}{u_2}+2}\big)}^2}+{{\big({{\partial _{{x_1}}}{u_2}-{\partial_{{x_2}}}{u_1}}\big)}^2}}} $.

注 3.1 关于模型(3.1)解的存在性可以采用定理2.1的方法进行证明. 同样地, 令 $ R\big( \boldsymbol{u} \big) = \gamma {R_0}\big( \boldsymbol{u} \big) + \Theta {R_1}\big( \boldsymbol{u} \big) $, 可以采用定理2.2同样的方法来证明松弛多尺度模型(3.1)解的收敛性. 进一步地, 基于解的存在性和收敛性, 可以得出当 $ n $ 充分大时, 模型(3.1) 仍与参数无关, 且能寻找泛函 $ S\big( \boldsymbol{u} \big) $ 的全局极小值. 另外, 参数 $ \Theta $ 对于整体和局部都具有十分重要的意义: 对于整个多尺度方法而言, 参数 $ \Theta $ 充分大可以将 $ \boldsymbol{u} $ 近似地限制到集合 $ \mathcal{A} $ 中去.

3.2 数值计算方法

3.2.1 离散化

我们使用有限差分法将模型(3.1)离散在区域 $ \Omega = \left[ {0,1} \right] \times \left[ {0,1} \right] $ 上. 对于 $ n \in {{\mathbb{N}}^ + } $, 定义 $ h = \frac{1}{n} $, $ 0 \leqslant i \leqslant n $, $ 0 \leqslant j \leqslant n $, $ {x^{i,j}} = (x_1^i,x_2^j) \triangleq (ih,jh) $, $ {u^{i,j}} = \big( {u_1^{i,j},u_2^{i,j}} \big) = \big( {{u_1}\big( {x_1^i,x_2^j} \big),{u_2}\big( {x_1^i,x_2^j} \big)} \big),$ 因此, 将区域 $ \Omega $ 分割成如下网格

$ {\Omega _h} = \left\{ {{x_{i,j}} \in \Omega |{x_{i,j}} = (x_1^i,x_2^j) \triangleq (ih,jh),0 \leqslant i \leqslant n,0 \leqslant j \leqslant n} \right\}.$

另外, 为了方便, 记

$ \left\{ \begin{gathered} X = {\big( {x_1^0, \cdots, x_1^n, \cdots, x_1^0, \cdots, x_1^n,x_2^0, \cdots, x_2^0, \cdots, x_2^n, \cdots, x_2^n} \big)^T} \in {\mathbb{R}}^{2{{(n+1)}^2} \times 1}, \hfill \\ U = {\big( {u_1^{0,0}, \cdots, u_1^{n,0}, \cdots, u_1^{0,n}, \cdots, u_1^{n,n},u_2^{0,0}, \cdots, u_2^{n,0}, \cdots, u_2^{0,n}, \cdots, u_2^{n,n}} \big)^T} \in {\mathbb{R}}^{2{{(n+1)}^2} \times 1}, \hfill \\ \frac{{{\partial ^\alpha }{u_l}\big( {x_1^i,x_2^j} \big)}}{{\partial {x_p}^\alpha }} = \frac{{{\partial ^\alpha }u_l^{i,j}}}{{\partial {x_p}^\alpha }} = \partial _{{x_p},\alpha }^{i,j}{u_l}{\text{ }} \quad p,l = 1,2 \quad 0\leqslant i,j \leqslant n, \hfill \\ {\partial _\alpha }U = \left( \begin{gathered} \partial _{{x_1},\alpha }^{0,0}{u_1}, \cdots, \partial _{{x_1},\alpha }^{n,0}{u_1}, \cdots, \partial _{{x_1},\alpha }^{0,n}{u_1}, \cdots, \partial _{{x_1},\alpha }^{n,n}{u_1},\hfill\\ \partial _{{x_1},\alpha }^{0,0}{u_2}, \cdots, \partial _{{x_1},\alpha }^{n,0}{u_2}, \cdots, \partial _{{x_1},\alpha }^{0,n}{u_2}, \cdots, \partial _{{x_1},\alpha }^{n,n}{u_2}, \hfill \\ \partial _{{x_2},\alpha }^{0,0}{u_1}, \cdots, \partial _{{x_2},\alpha }^{n,0}{u_1}, \cdots, \partial _{{x_2},\alpha }^{0,n}{u_1}, \cdots, \partial _{{x_2},\alpha }^{n,n}{u_1},\hfill\\ \partial _{{x_2},\alpha }^{0,0}{u_2}, \cdots, \partial _{{x_2},\alpha }^{n,0}{u_2}, \cdots, \partial _{{x_2},\alpha }^{0,n}{u_2}, \cdots, \partial _{{x_2},\alpha }^{n,n}{u_2} \hfill \\ \end{gathered} \right)^T \hfill \\ \,= {\big( {{\partial _\alpha }{U_{11}}^T,{\partial _\alpha }{U_{12}}^T,{\partial _\alpha }{U_{21}}^T,{\partial _\alpha }{U_{22}}^T} \big)^T} \in\mathbb{R}^{4{{(n + 1)}^2} \times 1}, \hfill \\ {\partial _\alpha }{U_{pl}} = {\Big( {\frac{{{\partial ^\alpha }u_l^{0,0}}}{{\partial {x_p}^\alpha }}, \cdots, \frac{{{\partial ^\alpha }u_l^{n,0}}}{{\partial {x_p}^\alpha }}, \cdots, \frac{{{\partial ^\alpha }u_l^{0,n}}}{{\partial {x_p}^\alpha }}, \cdots, \frac{{{\partial ^\alpha }u_l^{n,n}}}{{\partial {x_p}^\alpha }}} \Big)^T} \hfill \\ \, = {\big( {\partial _{{x_p},\alpha }^{0,0}{u_l}, \cdots, \partial _{{x_p},\alpha }^{n,0}{u_l}, \cdots, \partial _{{x_p},\alpha }^{0,n}{u_l}, \cdots, \partial _{{x_p},\alpha }^{n,n}{u_l}} \big)^T} \in {\mathbb{R}^{{{(n + 1)}^2} \times 1}}{\text{ }} \quad p,l = 1,2. \hfill \\ \end{gathered} \right.$

数据项 SSD 的离散化

首先是对模型 (3.1) 中数据项 $ S(\boldsymbol{u}) = \int_\Omega {{{\left[ {T\big( {\boldsymbol{x + u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} $ 的离散. 根据图1(a) 及数值积分中的中点法则, 可以得到

$\begin{equation} \begin{aligned} S(\boldsymbol{u}) &= \int_\Omega {{{\left[ {T\big( {\boldsymbol{x + u}( \boldsymbol{x} )} \big) - D( \boldsymbol{x} )} \right]}^2}{\rm d}\boldsymbol{x}} \\ &\approx {h^2}\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 0}^{n - 1}} {{{\left[ {T\big( {x^{i + \frac{1}{2},j + \frac{1}{2}}}+u^{i + \frac{1}{2},j + \frac{1}{2}}\big)- D\big( {{x^{i + \frac{1}{2},j + \frac{1}{2}}}} \big)} \right]}^2} }. \\ \end{aligned} \end{equation}$

图1

图1   单元中心分割: $ \Omega_{i,j} $


$ \overrightarrow D = \overrightarrow D \big( {PX} \big) \in \mathbb{R}^{{n^2} \times 1} $ 为离散化的目标图像, $ \overrightarrow T = \overrightarrow T \big( {PX + PU} \big) \in \mathbb{R}^{{n^2} \times 1} $ 为离散化的目标图像. 其中 $ P \in \mathbb{R}^{2{n^2} \times 2{{(n+1)}^2}} $ 是从 $ U $ 的节点网络转移到单元中心位置的平均矩阵. 因此, 对于数据项的离散, 可以得到如下式子

$\begin{equation} S(\boldsymbol{u}) \approx {h^2}{\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big)^T}\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big). \end{equation}$

带分数阶正则项 $ R_0(\boldsymbol{u}) $ 的离散化

接下来, 我们对带分数阶导数的正则项 $ {R_0}(\boldsymbol{u}) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} $ 进行离散化处理.

$\begin{equation} {R_0}(\boldsymbol{u}) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} \\ = \int_\Omega {{{\big( {\frac{{{\partial ^\alpha }{u_1}}}{{\partial {x_1}^\alpha }}} \big)}^2} + } {\big( {\frac{{{\partial ^\alpha }{u_1}}}{{\partial {x_2}^\alpha }}} \big)^2} + {\big( {\frac{{{\partial ^\alpha }{u_2}}}{{\partial {x_1}^\alpha }}} \big)^2} + {\big( {\frac{{{\partial ^\alpha }{u_2}}}{{\partial {x_2}^\alpha }}} \big)^2}{\rm d}\boldsymbol{x}, \\ \end{equation}$

根据图1(b) 及数值积分中的中点法则, 可以得到

$\begin{equation*} \left\{\begin{aligned} &\int_{\Omega_{i,j}^{x_1}}{{\big( {\frac{{{\partial ^\alpha }{u_l}}}{{\partial {x_1}^\alpha }}} \big)}^2}{\rm d}\boldsymbol{x} \approx h^2{{\big( {\partial _{{x_1},\alpha }^{i + \frac{1}{2},j}{u_l}} \big)}^2} \quad 1\leqslant j\leqslant n-1, & l=1,2,\\ &\int_{\Omega_{i,j}^{x_1}}{{\big( {\frac{{{\partial ^\alpha }{u_l}}}{{\partial {x_1}^\alpha }}} \big)}^2}{\rm d}\boldsymbol{x}\approx \frac{h^2}{2}{{\big( {\partial _{{x_1},\alpha }^{i + \frac{1}{2},j}{u_l}} \big)}^2} \quad j=0,n, & l=1,2.\\ \end{aligned}\right. \end{equation*}$

同理, 对于 $ \int_{\Omega_{i,j}^{x_2}}{{\big( {\frac{{{\partial ^\alpha }{u_l}}}{{\partial {x_2}^\alpha }}} \big)}^2}{\rm d}\boldsymbol{x} $, $ l=1,2 $, 可以得到类似的结果.

另外, 对于 $ {\partial _{{x_1},\alpha }{u_l}} $$ {\partial _{{x_2},\alpha }{u_l}} $, $ l=1,2 $, 用

$\begin{equation*} \partial _{x{}_1,\alpha }^{i + \frac{1}{2},j}{u_l} \approx \frac{{\partial _{{x_{{}_1}},\alpha }^{i,j}{u_l} + \partial _{{x_{{}_1}},\alpha }^{i + 1,j}{u_l}}}{2}\quad \partial _{x{}_2,\alpha }^{i,j + \frac{1}{2}}{u_l} \approx \frac{{\partial _{{x_{{}_2}},\alpha }^{i,j}{u_l} + \partial _{{x_{{}_2}},\alpha }^{i,j + 1}{u_l}}}{2} \end{equation*}$

来估计.

因此, 可以得到

$\begin{equation*} \begin{aligned} &{R_0}(\boldsymbol{u}) = \int_\Omega {{{\left| {{\nabla ^\alpha }\boldsymbol{u}} \right|}^2}{\rm d}\boldsymbol{x}} \\ &\approx\sum\limits_{l = 1}^2 {\sum\limits_{i = 0}^{n - 1}{{\sum\limits_{j = 1}^{n - 1}}}{{h^2}{{\big( {\partial _{{x_1},\alpha }^{i + \frac{1}{2},j}{u_l}} \big)}^2}} +\sum\limits_{l = 1}^2{\sum\limits_{i = 0}^{n - 1} {\frac{{{h^2}}}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i + \frac{1}{2},0}{u_l}} \big)}^2}}}+ \sum\limits_{l = 1}^2{\frac{{{h^2}}}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i + \frac{1}{2},n}{u_l}} \big)}^2}}}\\ &+\sum\limits_{l = 1}^2 {\sum\limits_{j = 0}^{n - 1} {\sum\limits_{i = 1}^{n - 1} {{h^2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{i,j + \frac{1}{2}}{u_l}} \big)}^2}} + \sum\limits_{l = 1}^2{\sum\limits_{j = 0}^{n - 1}}{\frac{{{h^2}}}{2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{0,j + \frac{1}{2}}{u_l}} \big)}^2}} +\sum\limits_{l = 1}^2{\frac{{{h^2}}}{2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{n,j + \frac{1}{2}}{u_l}} \big)}^2}}}}\\ &\approx \frac{1}{4}{h^2}\left[ {\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 1}^{n - 1} {{{\big( {\partial _{{x_1},\alpha }^{i,j}{u_1}\!+\! \partial _{{x_1},\alpha }^{i + 1,j}{u_1}} \big)}^2}\! +\! \sum\limits_{i = 0}^{n - 1} {\frac{1}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i,0}{u_1}\! +\! \partial _{{x_{{}_1}},\alpha }^{i + 1,0}{u_1}} \big)}^2}\! +\! \frac{1}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i,n}{u_1}\! +\! \partial _{{x_{{}_1}},\alpha }^{i + 1,n}{u_1}} \big)}^2}} } } } \right] \\ &+ \frac{1}{4}{h^2}\left[ {\sum\limits_{i = 0}^{n - 1} {\sum\limits_{j = 1}^{n - 1} {{{\big( {\partial _{{x_1},\alpha }^{i,j}{u_2}\! +\! \partial _{{x_1},\alpha }^{i + 1,j}{u_2}} \big)}^2}\! +\! \sum\limits_{i = 0}^{n - 1} {\frac{1}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i,0}{u_2}\! +\! \partial _{{x_{{}_1}},\alpha }^{i + 1,0}{u_2}} \big)}^2}\! +\! \frac{1}{2}{{\big( {\partial _{{x_{{}_1}},\alpha }^{i,n}{u_2}\! +\! \partial _{{x_{{}_1}},\alpha }^{i + 1,n}{u_2}} \big)}^2}} } } } \right] \\ &+\frac{1}{4}{h^2}{\left[ {\sum\limits_{j = 0}^{n - 1} {\sum\limits_{i = 1}^{n - 1} {{{\big( {\partial _{{x_{{}_2}},\alpha }^{i,j}{u_{\text{1}}}\! +\! \partial _{{x_{{}_2}},\alpha }^{i,j + 1}{u_{\text{1}}}} \big)}^2}\! +\! \sum\limits_{j = 0}^{n - 1} {\frac{1}{2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{0,j}{u_{\text{1}}}\! +\! \partial _{{x_{{}_2}},\alpha }^{0,j + 1}{u_{\text{1}}}} \big)}^2}\! +\! \frac{1}{2}{{\big( {\partial _{{x_2},\alpha }^{n,j}{u_{\text{1}}}\! +\! \partial _{{x_2},\alpha }^{n,j + 1}{u_{\text{1}}}} \big)}^2}} } } } \right]} \\ &+\frac{1}{4}{h^2}\left[ {\sum\limits_{j = 0}^{n - 1} {\sum\limits_{i = 1}^{n - 1} {{{\big( {\partial _{{x_{{}_2}},\alpha }^{i,j}{u_{\text{2}}}\! +\! \partial _{{x_{{}_2}},\alpha }^{i,j + 1}{u_{\text{2}}}} \big)}^2}\! +\! \sum\limits_{j = 0}^{n - 1} {\frac{1}{2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{0,j}{u_{\text{2}}}\! +\! \partial _{{x_{{}_2}},\alpha }^{0,j + 1}{u_{\text{2}}}} \big)}^2}\! +\! \frac{1}{2}{{\big( {\partial _{{x_{{}_2}},\alpha }^{n,j}{u_{\text{2}}}\! +\! \partial _{{x_{{}_2}},\alpha }^{n,j + 1}{u_{\text{2}}}} \big)}^2}} } } } \right] \\ &=\frac{{{h^2}}}{4}{{\big( {{\partial _\alpha }U} \big)^T}{A^T}GA\big( {{\partial _\alpha }U} \big)}, \\ \end{aligned} \end{equation*}$

其中有关矩阵 $ A $, $ G $ 的详细信息, 请参见附录 A.

根据文献 [30,31] 中的 Grunwald 近似法, 对于 $ \frac{{{\partial ^\alpha }{u_l}(x)}}{{\partial {x_p}^\alpha }}(p = 1,2;l = 1,2) $ 可以按以下方式离散化

$\begin{equation} \frac{{{\partial ^\alpha }{u_l}\big( {{x_{i,j}}} \big)}}{{\partial {x_p}^\alpha }} = \delta _{p - }^\alpha {u_l}\big( {{x_{i,j}}} \big) + O(h), \end{equation}$

其中 $ \delta _{1 - }^\alpha {u_l}\big( {{x^{_{i,j}}}} \big) = \frac{1}{{{h^\alpha }}}\sum\limits_{q = 1}^i {\rho _q^{(\alpha)}{u_l}\big( {{x^{_{i - q + 1,j}}}} \big)} $, $ \delta _{2 - }^\alpha {u_l}\big( {{x^{_{i,j}}}} \big) = \frac{1}{{{h^\alpha }}}\sum\limits_{q = 1}^{j + 1} {\rho _q^{(\alpha)}{u_l}\big( {{x^{_{i,j - q + 1}}}} \big)} $, $ \rho _0^{(\alpha)} = 1 $, $ \rho _q^{(\alpha)} = \big( {1 - \frac{{q + \alpha }}{q}} \big)\rho _{q - 1}^{(\alpha)} $.

$ {U_j} = {(u_{_1}^{0,j},u_1^{1,j},\cdots,u_{_1}^{n,j})^T} \in {\mathbb{R}^{({n + 1}) \times 1}},u_{_l}^{0,j} \triangleq {u_l}\big( {{x^{0,j}}} \big),j = 0,1, \cdots, n $, 根据 (3.5) 式则有

$\begin{equation} \frac{{{\partial ^\alpha }{U_j}}}{{\partial {x_1}^\alpha }} = {\Big( {\frac{{{\partial ^\alpha }u_1^{0,j}}}{{{{\partial {x_1}^\alpha }} }},\frac{{{\partial ^\alpha }u_1^{1,j}}}{{{{\partial {x_1}^\alpha }} }},\cdots,\frac{{{\partial ^\alpha }u_{_1}^{n,j}}}{{{{\partial {x_1}^\alpha }} }}} \Big)^T} \approx {B_{n + 1,\alpha }^h} {U_j}, \end{equation}$

其中

$\begin{equation} {B_{n + 1,\alpha }^h} =\frac{1}{{{h^\alpha }}}{B_{n + 1,\alpha }}=\frac{1}{{{h^\alpha }}}\left( {\begin{array}{*{20}{c}} \begin{gathered} \rho _1^{(\alpha)} \hfill \\ \rho _2^{(\alpha)} \hfill \\ \end{gathered} &\begin{gathered} \rho _0^{(\alpha)} \hfill \\ \rho _1^{(\alpha)} \hfill \\ \end{gathered} &\begin{gathered} 0 \hfill \\ \rho _0^{(\alpha)} \hfill \\ \end{gathered} \\ \vdots & \vdots & \ddots \\ \begin{gathered} \rho _n^{(\alpha)} \hfill \\ \rho _{n + 1}^{(\alpha)} \hfill \\ \end{gathered} &\begin{gathered} \rho _{n - 1}^{(\alpha)} \hfill \\ \rho _n^{(\alpha)} \hfill \\ \end{gathered} &\begin{gathered} \cdots \hfill \\ \cdots \hfill \\ \end{gathered} \end{array}\begin{array}{*{20}{c}} \begin{gathered} \cdots \hfill \\ \cdots \hfill \\ \ddots \hfill \\ \rho _1^{(\alpha)} \hfill \\ \end{gathered} &\begin{gathered} 0 \hfill \\ 0 \hfill \\ \vdots \hfill \\ \rho _0^{(\alpha)} \hfill \\ \end{gathered} \\ {\rho _2^{(\alpha)}}&{\rho _1^{(\alpha)}} \end{array}} \right) \in {\mathbb{R}^{(n + 1) \times (n + 1)}}. \end{equation}$

由以上分数阶离散理论可知 $ {\partial _\alpha }U = \frac{1}{h^{\alpha}}CU $. 有关矩阵 $ C $ 的详细信息,请参见附录 A.

因此, 对带分数阶导数的正则项 $ {R_0}\big( u \big) $ 的离散, 我们可以得出以下结论

$\begin{equation} {R_0}\big( u \big) \approx \frac{{{h^{2-2\alpha}}}}{4}{U^T}{C^T}{A^T}GACU. \end{equation}$

正则项 $ R_1(\boldsymbol{u}) $ 的离散化

最后, 是对正则项 $ {R_1}\big( \boldsymbol{u} \big) $ 的离散. 根据文献 [11] 可以得到

$\begin{equation} {R_1}\big( \boldsymbol{u} \big) \approx \frac{{{h^2}}}{4}\phi \big( {\vec r\big( U \big)} \big){{\rm e}^T}, \end{equation}$

其中 $ \phi \big( {\vec r\big( U \big)} \big) = \big( {\phi \big( {\vec r{{\big( U \big)}_1}} \big), \cdots, \phi \big( {\vec r{{\big( U \big)}_{4{n^2}}}} \big)} \big) $, $ e = \big( {1,1, \cdots 1} \big) \in {\mathbb{R}}^{4{n^2}} $. $ \vec r\big( U \big) $ 为离散化的形变场 $ \boldsymbol{h} $ 的 Beltrami 系数的模的平方, 详见文献 [11] 中的附录 B.

最终, 结合 (3.7), (3.8) 和 (3.9) 式, 我们可以得到模型 (3.1) 的离散化形式如下

$\begin{equation} \begin{aligned} {U^n} &\triangleq \arg \mathop {\inf }\limits_{\boldsymbol{u} \in {{\left[ {H_0^\alpha ( \Omega )} \right]}^2}} J\big( U \big) \\ &= \arg \mathop {\inf }\limits_{\boldsymbol{u} \in {{\left[ {H_0^\alpha ( \Omega )} \right]}^2}} {\lambda _n}{h^2}{\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big)^T}\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big) \\ & + {\gamma _n}\frac{{{h^{2-2\alpha}}}}{4}{U^T}{C^T}{A^T}GACU + {\Theta _n}\frac{{{h^2}}}{4}\phi \big( {\vec r\big( U \big)} \big){{\rm e}^T}. \end{aligned} \end{equation}$

3.2.2 离散化问题 (3.10) 的最优化方法

在数值计算中, 我们选择线性搜索法求解无约束优化问题 (3.10). 为了保证搜索方向是一个下降方向, 我们采用 Gauss-Newton 方向. 另外, 使用 Gauss-Newton 法时, 我们不需要计算二阶项, 可以加速 CPU 时间消耗.

$ J( U ):{\mathbb{R}}^{2{{( {n + 1} )}^2}} \to \mathbb{R} $ 是两次连续可微分的, $ {U^i} \in {{\mathbb{R}}^{2{{( {n + 1} )}^2}}} $, 且近似 Hessian 矩阵 $ H( {{U^i}} ) $ 是正定的. 用二次逼近的方法将 $ J( U) $$ {U^i} $ 处展开

$\begin{equation} J\big( {{U^i} + s} \big) \approx {q^i}(s) = J\big( {{U^i}} \big) + {d_J}{\big( {{U^i}} \big)^T}s + \frac{1}{2}{s^T}H{\big( {{U^i}} \big)^T}s, \end{equation}$

其中 $ s = U - {U^i} $, $ {d_J}\big( {{U^i}} \big) = \nabla J\big( {{U^i}} \big) $. 同时, 由 (3.11) 式可以得到

$\begin{equation} {U^{i + 1}} = {U^i} - {\left[ {H\big( {{U^i}} \big)} \right]^{ - 1}}{d_J}\big( {{U^i}} \big). \end{equation}$

为了保证 Gauss-Newton 法的全局收敛性, 我们采用了线性搜索法. 其迭代过程如下

$\begin{equation} {U^{i + 1}} = {U^i} - {\theta _i}{\left[ {H\big( {{U^i}} \big)} \right]^{ - 1}}{d_J}\big( {{U^i}} \big), \end{equation}$

其中 $ {\theta _i} $ 表示步长.

接下来, 我们将研究近似的 Hessian 矩阵 $ H\big( {{U^i}} \big) $、搜索方向, 步长及算法终止标准.

Hessian 矩阵 $ H $ 估计

我们分别考虑 (3.10) 式中 $J (U)$ 的三个项.

首先, 是离散化的 SSD 项

$\begin{equation} {h^2}{\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big)^T}\big( {\overrightarrow T \big( {PX + PU} \big) - \overrightarrow D \big( {PX} \big)} \big), \end{equation}$

其梯度和 Hessian 矩阵分别为

$\begin{equation} \left\{ \begin{aligned} &{d_1} = 2{h^2}{P^T}\overrightarrow T _{\widetilde U}^T{\big( {\overrightarrow T \big( {\widetilde U} \big) - \overrightarrow D } \big)^T} \in {\mathbb{R}^{2{{(n+1)}^2} \times 1}}, \\ &{H_1} = 2{h^2}{P^T}\big( {\overrightarrow T _{\widetilde U}^T{{\overrightarrow T }_{\widetilde U}} + \sum\limits_{l = 1}^{{n^2}} {{{\big( {\overrightarrow T \big( {\widetilde U} \big) - \overrightarrow D } \big)}_l}{\nabla ^2}{{\big( {\overrightarrow T \big( {\widetilde U} \big) - \overrightarrow D } \big)}_l}} } \big)P, \end{aligned} \right. \end{equation}$

其中 $ \widetilde {U} = PX + PU $, $ \overrightarrow T _{\widetilde {U}} = \frac{{\partial \overrightarrow T ( \widetilde {U} )}}{{\partial \widetilde {U}}} $.

对于 $ {H_1} $, 我们无法确保它是半正定的. 如果它不是正定的, 我们可能得不到下降方向. 因此, 我们考虑省略 $ {H_1} $ 的二阶项, 得到 (3.14) 式的近似 Hessian 矩阵

$\begin{equation} \widehat {{H_1}} = 2{h^2}{P^T} \big( {\overrightarrow T _{\widetilde {U}}^T}{{\overrightarrow T }_{\widetilde {U}}} \big)P. \end{equation}$

另外, 对于离散带分数阶导数的正则项 $ \frac{{{h^{2-2\alpha}}}}{4}{U^T}{C^T}{A^T}GACU $, 其梯度和 Hessian 矩阵分别为

$\begin{equation} \left\{ \begin{aligned} &{d_2} = \frac{h^{2-2\alpha}}{2}{C^T}{A^T}GACU \in \mathbb{R}^{2{{(n+1)}^2} \times 1}, \\ &{H_2} =\frac{h^{2-2\alpha}}{2}{C^T}{A^T}GAC \in {\mathbb{R}}^{2{{(n+1)}^2} \times 2{{(n+1)}^2}}. \end{aligned} \right. \end{equation}$

最后, 对于 $ J\big( U \big) $ 的第三项 $ \frac{{{h^2}}}{4}\phi \big( {\vec r\big( U \big)} \big){{\rm e}^T} $, 其梯度和 Hessian 矩阵 $ H $ 分别为

$\begin{equation} \left\{ \begin{aligned} &{d_3} = \frac{h^2}{4}{\rm d}{{\vec r}^T}{\rm d}\phi \big( {\vec r} \big) \in {\mathbb{R}}^{2{{(n+1)}^2} \times 1}, \\ &{H_3} =\frac{h^2}{4}\big( {{\rm d}{{\vec r}^T}{d^2}\phi \big( {\vec r} \big){\rm d}\vec r + \sum\limits_{l = 1}^{4{n^2}} {{{\left[ {{\rm d}\phi \big( {\vec r} \big)} \right]}_l}{\nabla ^2}{{\vec r}_l}} } \big) \in {\mathbb{R}^{2{{(n+1)}^2} \times 2{{(n+1)}^2}}}. \end{aligned} \right. \end{equation}$

为了从 (3.18) 式中提取半正定部分, 我们省略其二阶项, 得到近似的 Hessian 矩阵为

$\begin{equation} \widehat {{H_3}} = \frac{h^2}{4}{h^2}{\rm d}{\vec r^T}{d^2}\phi \big( {\vec r} \big){\rm d}\vec r. \end{equation}$

因此, 对于 (3.10) 式中的函数 $ J\big( U \big) $, 我们可以得到它的梯度矩阵为

$\begin{equation} {d_J}^n = \lambda^n{d_1} + \gamma^n{d_2} + \Theta^n{d_3}, \end{equation}$

以及近似的 Hessian 矩阵

$\begin{equation} H^n = \lambda^n \widehat {{H_1}} + \gamma^{n}{H_2} + \Theta^n\widehat {{H_3}}. \end{equation}$

搜索方向

每次迭代时, 利用式 (3.20) 和 (3.21) 式, 我们需要求解高斯-牛顿系统, 找到 (3.10) 式的搜索方向

$\begin{equation} H\delta U = - {d_J}, \end{equation}$

其中 $ \delta U $ 是搜索方向. 在我们的实验过程中, 我们使用带有对角线预处理的极小化残差算法 (MINRES)[32,33]来求解这个线性系统.

步长和终止标准

我们使用标准化的 Armijo 线搜索策略, 通过反向追踪来找到合适的步长 $ \theta $. 在算法过程中, 我们还需要确保 $ \vec r\big( U \big) $ 小于 1. 我们分别选择 $ T0=10^{-8} $$ Tol=10^{-12} $ 作为步长 $ \theta $$ \theta\left\| \delta U \right\| $ 的下限[34-37]. 因此给出以下算法 1

算法 1

输入: 初始化 ID=0, $ \theta=1 $, $ T0=10^{-8} $, $ Tol=10^{-12} $, $ \eta=10^{-4} $, $ U $, $ \delta U $;

a) 计算 $ J(U) $$ d_J $;

$\text { b) while } \theta\|\delta U\| \geqslant T o l \text {, 则 } U^{n e w}=U+\theta\|\delta U\| \text {; }$

$if \vec{r}\left(U^{n e w}\right) \leqslant 1, 则 $

$if \theta \geqslant T 0, 退出 while 循环, 执行 c );$

$else \ if \theta<T 0, 执行 d );$

$结束 if 判断;$

更新 $ \theta=\frac{\theta}{2} $;

结束 while 循环;

c) while $ \theta\left\| \delta U \right\|\geqslant Tol $,则计算 $ J(U^{new}) $;

if $ J(U^{new})\leqslant J(U)+\theta\eta {d_J}^T\delta U $, 则

if $ \theta\geqslant T0 $, 结束算法, 输出 $ U=U^{new} $;

else if $ \theta < T0 $, 执行 d);

结束 if 判断;

更新 $ \theta=\frac{\theta}{2} $, $ U^{new}=U+\theta\delta U $;

结束 while 循环;

d) ID=1, $ U=U^{new} $;

输出: ID, $ U $.

根据文献 [38], 给定

$\begin{equation*} \begin{aligned} &{\rm (i.a)} \left\| J(U^{i+1})-J(U^{i}) \right\|\leqslant\tau_J(1+\left\| J(U^0) \right\|), \\ &{\rm (i.b)} \left\| {\boldsymbol{h}}^{i+1}-{\boldsymbol{h}}^{i}\right\|\leqslant\tau_W\left\| (1+{\boldsymbol{h}}^0) \right\|,\\ &{\rm (i.c)} \left\| d_J \right\|\leqslant\tau_G(1+\left\| J(U^0) \right\|), \\ &{\rm (ii)} d_J\leqslant {\rm eps},\\ &{\rm (iii)} i\geqslant {\rm MaxIter}. \\ \end{aligned} \end{equation*}$

其中 eps 是机器精度, MaxIter 是外部迭代的最大次数. 我们设置 $ \tau_J=10^{-3} $, $ \tau_W=10^{-2} $, $ \tau_G=10^{-2} $, MaxIter=500. 如果 (i)(ii) 或 (iii) 中的任何一项得到满足, 迭代就会终止. 因此利用 Armijo 搜索得到的 Gauss-Newton 算法可由下述算法 2 给出

算法 2

输入: 目标图像 $ D(\cdot) $, 待配准图像 $ T(\cdot) $, $ U^0 $, $ \Theta $, $ \gamma $, $ \alpha $;

a) $ i=0 $, $ U^i=U^0 $;

b) 根据 (3.10) 式计算 $ J(U^i) $, 根据 (3.20) 和 (3.21) 式计算 $ {d_J}^i $$ H^i $;

c) while (i)--(iii) 均不满足, 则根据 $ H^i\delta U^i=-{d_J}^i $ 得到 $ U^i $$ \delta U^i $, 执行算法 1, 得到 $ U^{i+1} $ 和 ID;

if ID=1, 则结束该算法, 输出 $ U=U^{i+1} $ 和 ID;

else $ i=i+1 $, 计算 $ J(U^i) $, $ {d_J}^i $$ H^i $;

结束 if 循环;

结束 while 循环;

输出: ID, $ U $.

3.2.3 多尺度图像配准算法

在本章的最后, 给出对应的二维多尺度微分同胚算法 3

算法 3

输入: 最大尺度数 $ K_M $, $ \lambda_{0} $, $ \gamma_0 $, $ \Theta_0 $, $ \alpha $;

for $ scale = 1:K_M $

a) 令 $ \boldsymbol{u}=\boldsymbol{0} $, 更新 $ \lambda_{scale}= \lambda_0\times a^{scale-1} $, $ \gamma=\frac{\gamma_0}{\lambda_{scale}} $, $ \Theta=\frac{\Theta_0}{\lambda_{scale}} $;

b) 由算法 2 得到 $ \boldsymbol{u}^{scale} $;

c) 更新 $ \boldsymbol{h}_{scale}=\boldsymbol{x}+\boldsymbol{u}^{scale} $, $ \overline{{\boldsymbol{h}}_{scale}}=\overline{{\boldsymbol{h}}_{scale-1}}\circ \boldsymbol{h}_{scale} $, 计算 $ T_{scale}(\cdot)=T_{scale-1}\circ\overline{{\boldsymbol{h}}_{scale}}(\cdot) $;

end

输出: 配准结果 $ T\circ\overline{{\boldsymbol{h}}_{K_M}}(\cdot) $.

4 数值实验

4.1 实验数据及对比算法

为验证算法的有效性, 本文主要采用以下几类图像数据及对比算法

实验数据

(i) 合成图像数据: A-A, A-R;

(ii) 自然图像数据: Watermelon, Pineapple-Pepper;

(iii) 医学图像数据: Liver MRI, Brain MRI, Hand CT.

对比算法: TV model[39], Demons, the Multimodality Nonrigid Demon (MND)[40,41].

4.2 评价指标

在本文中, 主要选取相对残差平方和 ($ Re-SSD $) 和网格重叠个数 (MFN) 两个指标来判断配准结果的好坏, 其表达式分别为

$\begin{equation} Re-SSD=\frac{SSD(T(\boldsymbol{x}+\boldsymbol{u}(\boldsymbol{x})),D)}{SSD(T,D)}, \end{equation}$

其中 $ SSD(T,D)=\frac{1}{2}\sum_{i,j}(T_{i,j}-D_{i,j})^2 $;

$\begin{equation} MFN(\boldsymbol{u})=\#(\det J(\boldsymbol{u})\leqslant0), \end{equation}$

其中 $ \det(J(\boldsymbol{u}))=(1 + \frac{{\partial {u_1}}}{{\partial {x_1}}})(1+\frac{\partial{u_2}}{\partial{x_2}})-{\frac{\partial{u_1}}{\partial{x_2}}}{\frac{\partial{u_2}}{\partial{x_1}}} $, $ \#(A) $ 表示集合 $ A $ 中元素个数.

4.3 数值实验

4.3.1 合成图像配准

为了验证所提算法在图像配准中的有效性, 在此部分以 A-A 和 A-R 两对典型合成数据为例, 以 $ Re-SSD $$ MFN $ 为指标来判断所提算法在合成图像中配准结果的好坏, 并给出了对应的配准结果示意图, 形变场 $ \boldsymbol{h} $ 及 对应的 $ Re-SSD $ 随尺度的变化趋势, 结果如图2-5 所示. 从图中可以看出, 随着尺度的增加, 误差 $ Re-SSD $ 在逐渐减小, 最终误差分别为 3.86 $ \% $ 和 6.86 $ \% $, 这说明配准结果 $ T\circ{\overline{\boldsymbol{h}_K}}{(\cdot)} $ 与目标图像 $ D(\cdot) $ 较为接近. 另外, 如表1 所示, 通过与其它三种算法进行对比, 结果表明, 所提出的算法误差较小并且能够有效地避免网格重叠.

图2

图2   A-A配准结果


图3

图3   A-A 在不同尺度下的配准结果


图4

图4   A-R 在不同尺度下的配准结果


图5

图5   A-R在不同尺度下的配准结果


表1   合成图像配准中四种不同配准算法的配准结果定量比较

新窗口打开| 下载CSV


4.3.2 自然图像配准

在本节中, 我们对两个不同的自然图像对“西瓜、菠萝-辣椒”进行了配准.

使用所提出的算法对其进行配准, 定量评估指标和最终配准结果见图6-9. 为了体现所提算法的竞争力, 还采用了另外三种算法同时对上述自然图像进行配准, 并将配准结果与所提算法的最终结果进行比较; 比较结果如表2 所示. 表2 显示, 与其他三种算法相比, 所提出的算法具有很强的竞争力.

图6

图6   Watermelon 配准结果


图7

图7   Watermelon 在不同尺度下的配准结果


图8

图8   Pineapple 配准结果


图9

图9   Pineapple 在不同尺度下的配准结果


表2   自然图像配准中四种不同配准算法的配准结果定量比较

新窗口打开| 下载CSV


4.3.3 医学图像配准

在这个部分, 我们对三个不同的医学图像对“肝脏、大脑和手部”进行了配准.

使用所提算法对上述医学图像对进行配准, 定量评价指标及最终配准结果如图10-15 所示. 另外, 为体现所提算法的竞争性, 同时用其他三种算法对上述医学图像进行配准, 将得到的配准结果与所提算法的配准结果进行对比, 比较结果如表3 所示. 由表3 可知, 本文所提算法与其他 3 种算法相比, 具有较强的竞争力.

图10

图10   Liver 配准结果


图11

图11   Liver 在不同尺度下的配准结果


图12

图12   Brain 配准结果


图13

图13   Brain 在不同尺度下的配准结果


图14

图14   Hand 配准结果


图15

图15   Hand 在不同尺度下的配准结果


表3   医学图像配准中四种不同配准算法的配准结果定量比较

新窗口打开| 下载CSV


注 4.1 TV 模型是算法 3 中 $ \alpha=1 $ 的特例. 从表1-3 的对比可以看出, $ \alpha $ 取整数虽然能加速算法的 CPU 时间消耗, 但计算精度要低很多. 本文更关心于精度方法的提升, 这也是为什么引入分数阶正则项 (非局部算子) 的重要原因.

5 结论

本文提出了一种基于拟共形理论的分数阶微分同胚多尺度方法, 该方法有效地避免了网格重叠, 同时在没有先验正则项的情况下找到了微分同胚图像配准的最优解, 并且通过数值实验验证了所提算法的有效性.

附录 A 3.2.1 节中矩阵 $ A, G, C $ 的计算

令矩阵 $ {A_1}={I_2} \otimes {I_{n + 1}} \otimes \partial _n^1 \in {R^{2n(n+1) \times 2{{(n+1)}^2}}} $, $ {A_2} = {I_2} \otimes \partial _n^1 \otimes {I_{n + 1}} \in {R^{2n(n+1) \times 2{{(n+1)}^2}}} $,

其中 $ \partial _n^1 = \left[ {\begin{array}{*{20}{c}} 1&1&{}&{}&{} \\ {}&1&1&{}&{} \\ {}& \cdots & \cdots & \cdots &{} \\ {}&{}&1&1&{} \\ {}&{}&{}&1&1 \end{array}} \right] \in {R^{n,n + 1}} $, $ \otimes $ 表示克罗内克积,则

$A = \left[ {\begin{array}{*{20}{c}} {A_1}&{{0_{2n(n+1) \times 2{{(n+1)}^2}}}} \\ {{0_{2n(n+1) \times 2{{(n+1)}^2}}}}&{A_2} \end{array}} \right] \in {R^{4n(n+1) \times 4{{(n+1)}^2}}}.$

设矩阵 $ G_1 $ 满足 $ {G_{{1_{i + 1 + jn,i + 1 + jn}}}} = \left\{ \begin{gathered} 1,{\text{ }}0 \leqslant i \leqslant n - 1,{\text{ }}1 \leqslant j \leqslant n - 1 \hfill \\ \frac{1}{2},{\text{ }}0 \leqslant i \leqslant n - 1,{\text{ }}j = 0,n \hfill \\ \end{gathered} \right.,{\text{ }}{G_{{1_{i,j}}}} = 0,{\text{ }}i \ne j $, 矩阵 $ G_2 $ 满足 $ {G_{{2_{i + 1 + j(n+1),i + 1 + j(n+1)}}}} = \left\{ \begin{gathered} 1,{\text{ }}1 \leqslant i \leqslant n - 1,{\text{ }}0 \leqslant j \leqslant n - 1 \hfill \\ \frac{1}{2},{\text{ }}i = 0,n,{\text{ }}0 \leqslant j \leqslant n - 1 \hfill \\ \end{gathered} \right.,{\text{ }}{G_{{2_{i,j}}}} = 0,{\text{ }}i \ne j $, 则

$G = \left[ {\begin{array}{*{20}{c}} {{G_1}}&0&0&0 \\ 0&{{G_1}}&0&0 \\ 0&0&{{G_2}}&0 \\ 0&0&0&{{G_2}} \end{array}} \right] \in {R^{4n(n+1) \times 4n(n+1)}}.$

令矩阵 $ C_1={{I_2} \otimes {I_{n + 1}} \otimes {B_{n + 1,\alpha }}}\in {R^{ 2(n+1)^2\times 2(n+1)^2}} $, $ {C_2} = \left[ {{I_2} \otimes {B_{n + 1,\alpha }} \otimes {I_{n + 1}}} \right](list,:) $ $ \in {R^{ 2(n+1)^2\times 2(n+1)^2}} $,其中 $ list = \big( 1 + 0(n+1), \cdots, 1 + n(n+1), \cdots, n + 1 + 0(n+1), \cdots, n + 1 + n(n+1) \big)^T\in{R^{(n+1)^2\times 1}} $,则

$C=\Bigg[ {\begin{array}{*{20}{c}} {{C_1}} \\ {{C_2}} \end{array}} \Bigg]\in {R^{4(n+1)^2\times 2(n+1)^2}}.$

参考文献

Brown L G.

A survey of image registration techniques

ACM Computing Surveys, 1992, 24(4): 325-376

[本文引用: 1]

Lester H, Arridge S R.

A survey of hierarchical non-linear medical image registration

Pattern Recognition, 1998, 32(1): 129-149

[本文引用: 1]

Maintz J B, Viergever M A.

A survey of medical image registration

Medical Image Analysis, 1998, 2(1): 1-36

DOI:10.1016/s1361-8415(01)80026-8      PMID:10638851      [本文引用: 1]

The purpose of this paper is to present a survey of recent (published in 1993 or later) publications concerning medical image registration techniques. These publications will be classified according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods. The statistics of the classification show definite trends in the evolving registration techniques, which will be discussed. At this moment, the bulk of interesting intrinsic methods is based on either segmented points or surfaces, or on techniques endeavouring to use the full information content of the images involved.

Mohamed A, Zacharaki E I, Shen D, et al.

Deformable registration of brain tumor images via a statistical model of tumor-induced deformation

Medical Image Analysis, 2006, 10(5): 752-763

PMID:16860588      [本文引用: 1]

An approach to the deformable registration of three-dimensional brain tumor images to a normal brain atlas is presented. The approach involves the integration of three components: a biomechanical model of tumor mass-effect, a statistical approach to estimate the model's parameters, and a deformable image registration method. Statistical properties of the sought deformation map from the atlas to the image of a tumor patient are first obtained through tumor mass-effect simulations on normal brain images. This map is decomposed into the sum of two components in orthogonal subspaces, one representing inter-individual differences in brain shape, and the other representing tumor-induced deformation. For a new tumor case, a partial observation of the sought deformation map is obtained via deformable image registration and is decomposed into the aforementioned spaces in order to estimate the mass-effect model parameters. Using this estimate, a simulation of tumor mass-effect is performed on the atlas image in order to generate an image that is similar to tumor patient's image, thereby facilitating the atlas registration process. Results for a real tumor case and a number of simulated tumor cases indicate significant reduction in the registration error due to the presented approach as compared to the direct use of deformable image registration.

Sotiras A, Davatzikos C, Paragios N.

Deformable medical image registration: a survey

IEEE Transactions on Medical Imaging, 2013, 32(7): 1153-1190

DOI:10.1109/TMI.2013.2265603      PMID:23739795      [本文引用: 1]

Deformable image registration is a fundamental task in medical image processing. Among its most important applications, one may cite: 1) multi-modality fusion, where information acquired by different imaging devices or protocols is fused to facilitate diagnosis and treatment planning; 2) longitudinal studies, where temporal structural or anatomical changes are investigated; and 3) population modeling and statistical atlases used to study normal anatomical variability. In this paper, we attempt to give an overview of deformable registration methods, putting emphasis on the most recent advances in the domain. Additional emphasis has been given to techniques applied to medical images. In order to study image registration methods in depth, their main components are identified and studied independently. The most recent techniques are presented in a systematic fashion. The contribution of this paper is to provide an extensive account of registration techniques in a systematic manner.

Zitova B, Flusser J.

Image registration methods: a survey

Image and Vision Computing, 2003, 21(11): 977-1000

[本文引用: 1]

Budhiraja A, Dupuis P, Maroulas V.

Large deviations for stochastic flows of diffeomorphisms

Bernoulli, 2010, 16(1): 234-257

[本文引用: 1]

Chen Y M, Shi J L, Rao M, et al.

Deformable multi-modal image registration by maximizing rényi's statistical dependence measure

Inverse Problems and Imaging, 2015, 9(1): Article 79

[本文引用: 1]

Chen Y M, Ye X J.

Inverse consistent deformable image registration

The Legacy of Auadi Ramakrishnan in the Mathematical Sciences, 2010: 419-440

[本文引用: 1]

Yang X M, Shen C M, Li F, et al.

A combination of the total variation filter and a fourth-order filter for image registration

Mathematical Problems in Engineering, 2015, 1: 235134

[本文引用: 1]

Zhang D P, Chen K.

A novel diffeomorphic model for image registration and its algorithm

Journal of Mathematical Imaging and Vision, 2018, 60: 1261-1283

[本文引用: 4]

Zhang J P, Chen K.

Variational image registration by a total fractional-order variation model

Journal of Computational Physics, 2015, 293: 442-461

[本文引用: 4]

Zhang J, Chen K, Yu B.

An improved discontinuity-preserving image registration model and its fast algorithm

Applied Mathematical Modelling, 2016, 40(23/24): 10740-10759

[本文引用: 1]

Zhang J, Chen K, Yu B.

A novel high-order functional based image registration model with inequality constraint

Computers and Mathematics with Applications, 2016, 72(12): 2887-2899

[本文引用: 2]

Machado J T, Kiryakova V, Mainardi F.

Recent history of fractional calculus

Communications in Nonlinear Science and Numerical Simulation, 2011, 16(3): 1140-1153

[本文引用: 1]

Abdeljawad T.

On conformable fractional calculus

Journal of Computational and Applied Mathematics, 2015, 279: 57-66

[本文引用: 1]

Han H.

A variational model with fractional-order regularization term arising in registration of diffusion tensor image

Inverse Problems and Imaging, 2018, 12(6): 1263-1291

[本文引用: 3]

Metzler R, Klafter J.

The random walk's guide to anomalous diffusion: a fractional dynamics approach

Physics Reports, 2000, 339(1): 1-77

[本文引用: 1]

Han H, Wang Z Q.

An alternating direction implicit scheme of a fractional-order diffusion tensor image registration model

Applied Mathematics and Computation, 2019, 356: 105-118

[本文引用: 1]

Haber E, Modersitzki J.

Numerical methods for volume preserving image registration

Inverse Problems, 2004, 20(5): 1621-1638

[本文引用: 1]

Lui L M, Thiruvenkadam S, Wang Y L, et al.

Optimized conformal surface registration with shape-based landmark matching

SIAM Journal on Imaging Sciences, 2010, 3(1): 52-78

[本文引用: 2]

Lui L M, Wong T W, Zeng W, et al.

Optimization of surface registrations using Beltrami holomorphic flow

Journal of Scientific Computing, 2012, 50(3): 557-585

[本文引用: 2]

Lam K C, Lui L M.

Landmark and intensity-based registration with large deformations via quasi-conformal maps

SIAM Journal on Imaging Sciences, 2014, 7(4): 2364-2392

[本文引用: 2]

Han H, Wang Z P, Zhang Y M.

Multi-scale approach for two-dimensional diffeomorphic image registration

Multiscale Modeling and Simulation, 2021, 19(4): 1538-1572

[本文引用: 3]

Lehto O, Virtanen K I. Quasiconformal Mappings in the Plane. New York: Springer, 1973

[本文引用: 1]

Gardiner F P, Lakic N.

Quasiconformal Teichmuller Theory

Providence RI: American Mathematical Society, 2000

[本文引用: 1]

Ahlfors L V.

Lectures on Quasiconformal Mappings

Providence RI: American Mathematical Society, 2006

[本文引用: 1]

Aubert G, Kornprobst P, Aubert G. Mathematical Problems in Image Processing:Partial Differential Equations and the Calculus of Variations. New York: Springer, 2006

[本文引用: 1]

Han H, Wang Z P.

A diffeomorphic image registration model with fractional-order regularization and Cauchy-Riemann constraint

SIAM Journal on Imaging Sciences, 2020, 13(3): 1240-1271

[本文引用: 1]

Hou T L, Tang T, Yang J.

Numerical analysis of fully discretized Crank-Nicolson scheme for fractional-in-space Allen-Cahn equations

Journal of Scientific Computing, 2017, 72: 1214-1231

[本文引用: 1]

Tian W Y, Zhou H, Deng W H.

A class of second order difference approximations for solving space fractional diffusion equations

Mathematics of Computation, 2015, 84(294): 1703-1727

[本文引用: 1]

Barrett R, Berry M, Chan T F, et al.

Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods

Philadelphia: Society for Industrial and Applied Mathematics, 1994

[本文引用: 1]

Paige C C, Saunders M A.

Solution of sparse indefinite systems of linear equations

SIAM journal on numerical analysis, 1975, 12(4): 617-629

[本文引用: 1]

Burger M, Modersitzki J, Ruthotto L.

A hyperelastic regularization energy for image registration

SIAM Journal on Scientific Computing, 2013, 35(1): 132-148

[本文引用: 1]

Kelley C T.

Iterative Methods for Optimization

Philadelphia: Society for Industrial and Applied Mathematics, 1999

[本文引用: 1]

Nocedal J, Wright S J. Numerical Optimization. Berlin: Springer, 2006

[本文引用: 1]

Sun W, Yuan Y X. Optimization Theory and Methods:Nonlinear Programming. Berlin: Springer, 2006

[本文引用: 1]

Modersitzki J. FAIR: Flexible Algorithms for Image Registration. Philadelphia: Society for Industrial and Applied Mathematics, 2009

[本文引用: 1]

Pock T, Urschler M, Zach C, et al. A duality based algorithm for TV-L1-optical-flow image registration//International Conference on Medical Image Computing and Computer-Assisted Intervention. Berlin: Springer, 2007: 511-518

[本文引用: 1]

Kroon D J.

Multimodality Non-rigid Demon Algorithm Image Registration

MatlabCentral. http://www.mathworks.com/matlabCentral/fileexchange/21451-multimodality-non-rigid-demon-algorithm-image-registration, 2008

URL     [本文引用: 1]

Kroon D J, Slump C H.

MRI modalitiy transformation in demon registration//IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Boston: IEEE, 2009: 963-966

[本文引用: 1]

/