1 引言
考虑 $(x,y,z)\in \mathbb{R}^3$ 中的粘性依赖于密度的可压等熵 Navier-Stokes 方程组如下
(1.1) $\begin{equation} \left\{\begin{array}{cl} &\rho_{t}+\mathrm{div}(\rho U)=0,\\ &(\rho U)_{t}+\mathrm{div}(\rho U\otimes U)+\nabla P-\mathrm{div}(\mu(\rho)D(U))-\nabla (\lambda(\rho)\mathrm{div}U)=0,\\ \end{array}\right. \end{equation}$
其中 $\rho>0,U=(U_1,U_2,U_3),P(\rho)=\rho^\gamma (\gamma>1)$ 分别代表流体的密度, 速度和压力. $D(U)=\frac{\nabla U+{\nabla U}^T}{2}$ 是形变张量. $\mu(\rho)=a\rho^{\delta_1}$ 是剪切粘度, $\lambda(\rho)=b\rho^{\delta_2}$ 是体积粘度, $a$ 和 $b$ 都是常数并且满足
(1.2) $\begin{equation} a>0, 2a\rho^{\delta_1}+3b\rho^{\delta_2}\geq0. \end{equation}$
(1.3) $\begin{equation} \rho|_{t=0}=\rho_0(r,z),\ U|_{t=0}=(\frac{x}{r}u_{1 0}(r,z),\frac{y}{r}u_{1 0}(r,z),u_{2 0}(r,z)), \end{equation}$
$\begin{array}{c} \rho(x, y, z, t)=\rho(r, z, t) \\ U(x, y, z, t)=\left(U_{1}, U_{2}, U_{3}\right)=\left(\frac{x}{r} u_{1}(r, z, t), \frac{y}{r} u_{1}(r, z, t), u_{2}(r, z, t)\right), \end{array}$
(1.4) $\begin{equation} \left\{\begin{array}{cl} & \partial_t\rho+\frac{1}{r}\partial_r(r\rho u_1)+\partial_z(\rho u_2)=0,\\[2mm] & \partial_t(\rho u_1)+\frac{1}{r}\partial_r(r\rho u_1^2)+\partial_z(\rho u_1u_2)+\partial_rP\\[2mm] & =\partial_r(\mu(\rho)\partial_ru_1)+\mu(\rho)\partial_r(\frac{u_1}{r})+\partial_z(\mu(\rho)\partial_zu_1)+\partial_r(\lambda(\rho)(\frac{u_1}{r}+\partial_ru_1+\partial_zu_2)),\\[2mm] & \partial_t(\rho u_2)+\frac{1}{r}\partial_r(r\rho u_1u_2)+\partial_z(\rho u_2^2)+\partial_zP\\[2mm] & =\partial_r(\mu(\rho)\partial_ru_2)+\mu(\rho)(\frac{\partial_ru_2}{r})+\partial_z(\mu(\rho)\partial_zu_2)+\partial_z(\lambda(\rho)(\frac{u_1}{r}+\partial_ru_1+\partial_zu_2)), \end{array}\right. \end{equation}$
(1.5) $\begin{equation} (\rho,\rho u)(r,z,0)=(\rho_0,m_0)(r,z)\rightarrow(\widetilde{\rho},0), \vert z\vert\rightarrow\infty. \end{equation}$
引入符号: $\Delta=\partial_r^2+\partial_z^2,\nabla=(\partial_r, \partial_z),\mathrm{div}=\nabla\cdot,\dot{u}=u_t+u\cdot\nabla u,u=(u_1,u_2)$ , 则方程可以改写成如下形式
(1.6) $\begin{equation} \left\{\begin{array}{cl} &(\rho r)_{t}+\mathrm{div}(\rho ur)=0,\\ &\rho \dot {u}+\nabla P =\mathrm{div}(\mu(\rho)\nabla u)+\nabla (\lambda(\rho)\mathrm{div}u)+Q, \end{array}\right. \end{equation}$
其中 $ Q=(\mu(\rho)\partial_r(\frac{u_1}{r})+\partial_r(\lambda(\rho)\frac{u_1}{r}), \frac{1}{r}\mu(\rho)\partial_ru_2+\partial_z(\lambda(\rho)\frac{u_1}{r})).$
在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解.
当粘性系数依赖密度时, 方程 (1.1) 也得到了很多关注. Liu 等[17 ] 首先提出了用一些具有粘性依赖密度的可压缩 Navier-Stokes 方程模型来研究空气动力学. 并且我们知道通过 Chapman-Enskog 展开可以从 Boltzmann 方程中推导出 Navier-Stokes 方程[18 ,19 ] , 此时粘性系数依赖温度. 如果将气体流动限制为等熵的情况, 则这种依赖关系可以通过 Boyle 定律和 Gay-Lussac 定律继承, 此时粘性系数依赖密度. 然而, 在出现真空的存在下, 处理这类系统会遇到较大困难. 一方面,注意到动量方程中 $u_t+u\cdot\nabla u$ 的系数在真空中消失, 这种退化导致了在真空存在时确定速度的一个本质困难. 另一方面, 当密度函数连接到真空时, 粘性项消失, 这给解的正则性分析带来了很大困难, 使得常粘情况下的方法难以适用于当前情况.
针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性.
本文研究了三维空间中具有轴对称初值的变粘等熵 CNS, 在初始密度远离真空下, 得到了具有任意小能量大振荡初值的全局轴对称强解, 流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$ . 注意到, 对比文献 [23 ] 中考虑的轴对称初值下的 Vaigant-Kazhikhov 模型 ($\delta_1=0,\delta_2>0$ ) , 此时 $\delta_1>0$ 将带来新的困难, 使得我们需要得到密度导数的可积性估计. 本文证明的关键在于得到 $\int_0^{\infty}\Vert\nabla u\Vert_{L^{\infty}}{\rm d}t$ 和 $\sup\limits_{t\in[0,\infty)}\Vert\nabla\rho\Vert_{L^{q}}(2\leq q<\infty)$ , 进一步得到 $\rho$ 的一致的上下界. 通过适用文献 [16 ,39 ,40 ] 中的方法和结构分析,我们从能量估计和初始层分析出发, 得到了新的 $\Vert u\Vert_{H^1}$ , $\Vert \dot{u}\Vert_{H^1}$ 以及 $\Vert\nabla\rho\Vert_{L^{q}}$ 的时间加权估计.利用这些关键的估计, 结合动量方程, 可以得到
$\Vert\nabla u\Vert_{L^\infty}\leq \Vert\nabla u\Vert_{L^2}^{\frac{q-2}{2(q-1)}} (\Vert\rho\dot u\Vert_{L^q} +\Vert\nabla\rho^\gamma\Vert_{L^q} +\Vert\nabla\rho\cdot\nabla u\Vert_{L^q} +\Vert\nabla u\Vert_{L^q} +\Vert\nabla\rho \cdot u\Vert_{L^q})^{\frac{q}{2(q-1)}}$
的关于时间的一致可积性,从而得到密度的上下界, 以获得期望的结果. 注意到, 通过新的时间加权估计, 我们可以将文献 [39 ] 中 $\Vert\nabla u_0\Vert_{L^2}$ 的小性假设去掉, 得到具有小能量大震荡的全局强解; 并且也得到了解的更好的衰减性结果, 具体表现为: 只要初始能量足够小, 解的衰减速率将足够快.
在陈述主要结果之前, 我们首先解释本文中使用的符号和约定.
表示周期区域 $\Omega=\{(r,z)\vert r\in I\subset(0,\infty),z\in(-\infty,+\infty)\}$ , 其中 $I$ 为 $(0,\infty)$ 的闭子集, 如 $I=[r_0,R]$ ( $ R>r_0>0$ ).
对于 $1\leq m\leq\infty$ 和 $k>0$ , 表示标准的齐次和非齐次的 Sobolev 空间如下
$\begin{equation*} \left\{\begin{array}{cl} L^m=L^m(\Omega), D^{k,m}=\{u\in L_{\rm loc}^1(\Omega)\vert\Vert\nabla^ku\Vert_{L^m}<\infty\}, \Vert u\Vert_{D^{k,m}}\triangleq\Vert\nabla^k u\Vert_{L^m},\\ W^{k,m}=L^m\cap D^{k,m}, H^k=W^{k,2}, D^k=D^{k,2}, D^1=\{u\in L^6\vert\Vert\nabla u\Vert_{L^2}<\infty\}.\\ \end{array}\right. \end{equation*}$
$\begin{equation*} C_0=\int_\Omega(\frac{1}{2}\rho_0\vert u_0\vert^2+G(\rho_0) ) r\mathrm{d}r\mathrm{d}z, \end{equation*}$
$\begin{equation*} G(\rho)=\rho\int^\rho_{\widetilde{\rho}}\frac{P(s)- P(\widetilde{\rho})}{s^2}\mathrm{d}s, \end{equation*}$
$\begin{equation*} \left\{\begin{array}{cl} G(\rho)=\frac{1}{\gamma-1}\rho^\gamma,&\widetilde{\rho}=0,\\ c_1(\overline{\rho},\widetilde{\rho})(\rho-\widetilde{\rho})^2\leq G(\rho)\leq c_2(\overline{\rho},\widetilde{\rho})(\rho-\widetilde{\rho})^2, &\widetilde{\rho}>0,0\leq\rho\leq\overline{\rho}. \end{array}\right. \end{equation*}$
定义 1.1 对任意 $T>0$ , 如果问题 (1.4),(1.5) 的解 $(\rho,u)$ 满足如下条件 ($0<\tau <T$ )
(1.7) $\begin{array}{l}(\rho-\widetilde{\rho}) \in C\left([0, T] ; H^{3}\right), \rho_{t} \in C\left([0, T] ; H^{2}\right), \rho_{t t} \in L^{\infty}\left([0, T] ; L^{2}\right) \cap L^{2}\left([0, T] ; H^{1}\right), \\u \in C\left([0, T] ; D^{1} \cap D^{3}\right) \cap L^{2}\left([0, T] ; D^{4}\right) \cap L^{\infty}\left([\tau, T] ; D^{4}\right), \\u_{t} \in L^{\infty}\left([0, T] ; H^{1}\right) \cap L^{2}\left([0, T] ; D^{2}\right) \cap L^{\infty}\left([\tau, T] ; D^{2}\right) \cap H^{1}\left([\tau, T] ; D^{1}\right), \\u_{t t} \in L^{2}\left([0, T] ; L^{2}\right) \cap L^{\infty}\left([\tau, T] ; D^{1}\right),\end{array}$
那么我们就称$(\rho,u)$ 是问题 (1.4),(1.5) 的全局强解.
定理 1.1 对于 $\gamma>1,\ \delta_1\geq0,\ \delta_2\geq0$ 和给定的正常数 $M$ , $\underline{\rho}$ , $ \overline{\rho}, \widetilde{\rho}$ , 初始数据 $(\rho_0,u_0)$ 满足
(1.8) $\begin{equation} \begin{split} \rho_0\vert u_0\vert^2+G(\rho_0)\in L^1,\ \Vert\nabla\rho_0\Vert_{L^2\cap L^4} \leq M,\\ 0<\underline{\rho}\leq\rho_0\leq\overline{\rho},\ (\rho_0-\widetilde{\rho},u_0)\in H^3, \end{split} \end{equation}$
则存在一个正常数 $\varepsilon$ 依赖于 $\gamma, \delta_1,\delta_2,\underline{\rho},\overline{\rho},\widetilde{\rho},M$ , 如果
(1.9) $\begin{equation} C_0\leq\varepsilon, \end{equation}$
问题(1.4),(1.5) 存在唯一的全局强解 $(\rho,u)(r,z,t)$ , 且满足
(1.10) $\begin{equation} \frac12\underline{\rho}\leq\rho(r,z,t)\leq2\overline{\rho}. \end{equation}$
进一步, 对于任意给定的常数 $1\leq\delta_0<\infty$ , 存在正常数$\varepsilon$ 和 $C$ 依赖于 $\delta_0$ , 使得当(1.9) 式成立时, 有
(1.11) $\begin{equation} \vert\rho-\widetilde{\rho}\vert\leq Ct^{-\frac{3(1+\delta_0)}{8}}. \end{equation}$
注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解.
注 1.2 当 $\delta_1=0,\delta_2=0$ , 定理 1.1 得到了常粘情形的具有小能量的全局强解. 在初始远离真空的情形, 这与文献 [16 ]中得到的结果一致.
2 预备知识
在本章中, 我们给出在后面证明中常用的已知事实和基础的不等式.
引理 2.1 (局部适定性文献 [8 ,33 ]) 对 $\widetilde{\rho}>0$ , 以及 $\gamma>1, \delta_1\geq0, \delta_2\geq0$ , 假设初始数据 $(\rho_0,u_0)$ 满足正则性条件 (1.8), 则存在有限时间 $T^*>0$ , 使得问题 (1.4),(1.5) 在 $\Omega\times(0,T^*]$ 上存在唯一的强解 $(\rho,u)$ .
下面是 Gagliardo-Nirenberg 不等式.
引理 2.2 对于 $\forall h\in W^{1,m}(\mathbb{R}^2)\cap L^r(\mathbb{R}^2)$ , 有如下不等式
$\begin{equation*} \Vert h\Vert_q\leq C\Vert\nabla h\Vert_m^\theta\Vert h\Vert_r^{1-\theta}, \end{equation*}$
其中 $\theta=(\frac{1}{r}-\frac{1}{q})(\frac{1}{r}-\frac{1}{m}+\frac{1}{2})^{-1}$ .
我们现在陈述由引理2.2 得到的一些初等估计: 对于任意 $p'>2$ ,
(2.1) $\begin{equation} \begin{split} \Vert u\Vert_{L^\infty} &\leq\Vert u\Vert_{L^2}^\theta \Vert\nabla u\Vert_{L^{p'}}^{1-\theta}\\ &\leq C \Vert\nabla u\Vert_{L^2}^{\theta} \Vert\nabla u\Vert_{L^{p'}}^{1-\theta}\\ &\leq C \Vert\nabla u\Vert_{L^2}^{\theta} (\Vert\nabla u\Vert_{L^2}^{1-\theta} +\Vert\nabla u\Vert_{L^\infty}^{1-\theta})\\ &\leq C (\Vert\nabla u\Vert_{L^2} +\Vert\nabla u\Vert_{L^\infty}). \end{split} \end{equation}$
记 $F\triangleq(1+\frac{\lambda(\rho)}{\mu(\rho)})\mathrm{div}u-\int_{\widetilde{\rho}}^\rho\frac{\gamma s^{\gamma-1}}{\mu(s)}{\rm d}s$ . 用 $\mathrm{div}$ 作用$(1.6)_2$ 式可以得到
$\begin{equation*} \begin{split} \Delta F=\mathrm{div}\Big(\frac{1}{a}\rho^{1-\delta_1}\dot u -\delta_1\rho^{-1}\nabla\rho\cdot\nabla u -\frac{b\delta_1}{a}\rho^{\delta_2-\delta_1-1}\nabla\rho \mathrm{div}u -\frac{Q}{\mu(\rho)}\Big), \end{split} \end{equation*}$
由文献 [41 ,引理 4.27] 对于任意 $p\geq2$ , 有
(2.2) $\begin{aligned}\|\nabla F\|_{L^{p}} \leq & C\left(\left\|\rho^{1-\delta_{1}} \dot{u}\right\|_{L^{p}}+\left\|\rho^{-1} \nabla \rho \cdot \nabla u\right\|_{L^{p}}+\left\|\rho^{\delta_{2}-\delta_{1}-1} \nabla \rho \cdot u\right\|_{L^{p}}\right. \\& \left.+\|\nabla u\|_{L^{p}}+\left\|\rho^{\delta_{2}-\delta_{1}} \nabla u\right\|_{L^{p}}\right).\end{aligned}$
$\begin{equation*} \begin{split} \mu(\rho)\Delta u+\lambda(\rho)\nabla \mathrm{div}u= \rho\dot{u}+\nabla P-\nabla\mu(\rho)\nabla u-\nabla \lambda(\rho)\mathrm{div}u-Q, \end{split} \end{equation*}$
(2.3) $\begin{equation} \begin{split} \Vert\nabla^2u\Vert_{L^p} \leq C(\Vert\rho\dot u\Vert_{L^p} +\Vert\nabla\rho\Vert_{L^p} +\Vert\nabla\rho\cdot\nabla u\Vert_{L^p} +\Vert\nabla\rho\cdot u\Vert_{L^p} +\Vert\nabla u\Vert_{L^p}). \end{split} \end{equation}$
当 $p=2$ 时, 由 Cauchy-Schwarz 不等式, Poincare 不等式和引理 2.2 (参数为 $m=2,r=2,q=4,\theta=\frac{1}{2}$ ) , 得到
(2.4) $\begin{equation} \begin{split} \Vert\nabla^2u\Vert_{L^2} &\leq C(\Vert\rho\dot u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^2} +\Vert\nabla\rho\cdot\nabla u\Vert_{L^2} +\Vert\nabla\rho\cdot u\Vert_{L^2} +\Vert\nabla u\Vert_{L^2})\\ &\leq C(\Vert\rho\dot u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^4}\Vert\nabla u\Vert_{L^4} +\Vert\nabla\rho\Vert_{L^4}\Vert u\Vert_{L^4} +\Vert\nabla u\Vert_{L^2})\\ &\leq C(\Vert\rho\dot u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^4}\Vert\nabla u\Vert_{L^2}^{\frac12}\Vert\nabla^2 u\Vert_{L^2}^{\frac12} +\Vert\nabla u\Vert_{L^2}), \end{split} \end{equation}$
对于 $\Vert\nabla\rho\Vert_{L^4}\Vert^2\nabla u\Vert_{L^2}^{\frac12}\Vert\nabla^2 u\Vert_{L^2}^{\frac12}$ , 再由 Young 不等式
$\begin{equation*} \begin{split} \Vert\nabla\rho\Vert_{L^4}\Vert\nabla u\Vert_{L^2}^{\frac12}\Vert\nabla^2 u\Vert_{L^2}^{\frac12} \leq C(\varepsilon)\Vert\nabla\rho\Vert_{L^4}\Vert\nabla u\Vert_{L^2} +\varepsilon\Vert\nabla^2 u\Vert_{L^2}, \end{split} \end{equation*}$
(2.5) $\begin{equation} \begin{split} \Vert\nabla^2u\Vert_{L^2} &\leq C(\Vert\rho\dot u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^4}^2\Vert\nabla u\Vert_{L^2} +\Vert\nabla u\Vert_{L^2}). \end{split} \end{equation}$
接下来, 引入以下 Zlotnik 不等式来得到密度的一致上下界.
$\begin{equation*} y'(t)=g(y)+b'(t), t\in[T],y(0)=y^0, \end{equation*}$
其中$g\in C(R)$ 并且 $y,b\in W^{1,1}(0,T)$ . 如果 $g(\infty)=-\infty$ 和
(2.6) $\begin{equation} b(t_2)-b(t_1)\leq N_0+N_1(t_2-t_1), \end{equation}$
对于所有$0\leq t_1\leq t_2\leq T,N_0\geq0$ 和 $N_1\geq0$ 成立, 则
$\begin{equation*} y(t)\leq\max{\{y^0,\overline{\zeta}\}}+N_0<\infty, t\in[T], \end{equation*}$
其中$\overline{\zeta}$ 是一个常数, 并且下式成立
(2.7) $g(\zeta) \leq-N_{1}, \quad \zeta \geq \bar{\zeta}.$
3 先验估计
在本章中, 我们将建立必要的先验估计去得到 $\rho$ 的一致上下界. 对于任意的 $T\geq 0$ , 假设$(\rho,u)$ 是(1.4),(1.5) 式的全局光滑解. 令 $\sigma(t)\triangleq\min\{1,t\}$ , 且对于给定的正常数 $1\leq\delta_0<\infty$ , 记
(3.1) $\begin{equation} A_1(T)\triangleq\sup\limits_{t\in[T]}\Vert\nabla u\Vert_{L^2}^2+\int_0^T\Vert\dot u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.2) $\begin{equation} A_2(T)\triangleq\sup\limits_{t\in[T]}\Vert\dot u\Vert_{L^2}^2+\int_0^T\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.3) $\begin{equation} A_3(T)\triangleq\sup\limits_{t\in[T]}(\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert_{L^2}^2)+\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.4) $\begin{equation} A_4(T)\triangleq\sup\limits_{t\in[T]}(\sigma(t)^{\frac{8}{9}}\Vert\dot u\Vert_{L^2}^2)+\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.5) $\begin{equation} A_5(T)\triangleq\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert u\Vert_{L^2}^2+t^{1+\delta_0}\Vert\rho-\widetilde{\rho}\Vert_{L^2}^2)+\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.6) $\begin{equation} A_6(T)\triangleq\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)+\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert_{L^2}^2\mathrm{d}t, \end{equation}$
(3.7) $\begin{equation} A_7(T)\triangleq\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert\dot u\Vert_{L^2}^2)+\int_0^Tt^{1+\delta_0}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t. \end{equation}$
下面给出先验估计中的一个重要命题, 这也是得到全局解的关键.
命题 3.1 在定理 1.1 的条件下, 如果 $(\rho,u)$ 是 (1.4),(1.5) 式在 $\Omega\times(0,T]$ 中的光滑解且对于 $2\leq q<\infty,1\leq\delta_0<\infty$ 满足
(3.8) $\begin{equation} \begin{split} &\frac{1}{2}\underline{\rho}\leq\inf_{\Omega\times[T]}\rho\leq\sup\limits_{\Omega\times[T]}\rho\leq 2\overline{\rho}, \sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^q}^q +\int_0^T\Vert\nabla\rho\Vert^q_{L^q}\mathrm{d}t\leq 4M^q,\\ &\int_{\sigma(T)}^T\Vert\nabla\rho\Vert_{L^q}\mathrm{d}t\leq 4M, \int_0^T\Vert\nabla\rho\Vert_{L^2}^{2} t^{1+\delta_0}\mathrm{d}t \leq 4^{2+\delta_0}(1+\delta_0)^{1+\delta_0}M^2, \end{split} \end{equation}$
(3.9) $\begin{equation} \begin{split} &\frac{2}{3}\underline{\rho}\leq\inf_{\Omega\times[T]}\rho\leq\sup\limits_{\Omega\times[T]}\rho\leq \frac{3}{2}\overline{\rho}, \sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^q}^q +\int_0^T\Vert\nabla\rho\Vert^q_{L^q}\mathrm{d}t\leq 2M^q,\\ &\int_{\sigma(T)}^T\Vert\nabla\rho\Vert_{L^q}\mathrm{d}t\leq 2M, \int_0^T\Vert\nabla\rho\Vert_{L^2}^{2} t^{1+\delta_0}\mathrm{d}t \leq 4^{1+\delta_0}(1+\delta_0)^{1+\delta_0}M^2. \end{split} \end{equation}$
证 命题3.1 的证明是结合引理 3.1-3.9 得到的.
引理 3.1 (能量估计) 在定理 1.1 的条件下, 如果 $(\rho,u)$ 是 (1.4),(1.5) 式在 $\Omega\times(0,T]$ 中的光滑解, 则存在正常数 $C$ , 有如下不等式
(3.10) $\begin{equation} \begin{split} &\sup\limits_{t\in[T]}\int_\Omega(\rho u^2+G(\rho))r\mathrm{d}r\mathrm{d}z +\int_0^T\int_\Omega\mu(\rho)(|\nabla u|^2+\frac{u_1^2}{r^2})r\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &+\int_0^T\int_\Omega\lambda(\rho)(\mathrm{div}u+\frac{u_1}{r})^2r\mathrm{d}r\mathrm{d}z\mathrm{d}t\leq CC_0. \end{split} \end{equation}$
证 对 $(1.6)_1,(1.6)_2$ 式分别乘 $G'(\rho),ur$ 并且在 $\Omega\times(0,T]$ 上积分, 将两式相加, 通过远场条件 (1.5) 就可以得到能量不等式 (3.10).
引理 3.2 (时间加权能量估计) 在定理1.1 的条件下, 如果$(\rho,u)$ 是(1.4),(1.5) 式在$\Omega\times(0,T]$ 中的光滑解且满足条件(3.8), 则存在正常数$C$ 依赖于 $\underline{\rho},\overline{\rho}, M, \delta_0$ , 有如下不等式
(3.11) $\begin{equation}A_5(T)\leq C(\underline{\rho},\overline{\rho},M)C_0^{\frac{1}{2(1+\delta_0)}}.\end{equation}$
证 对 $(1.6)_1,(1.6)_2$ 式分别乘 $t^{1+\delta_0}G'(\rho),t^{1+\delta_0}ur$ , 将两式相加然后在$(0,T]\times\Omega$ 上积分可以得到
(3.12) $\begin{equation} \begin{split} &t^{1+\delta_0}\int_\Omega(\frac{1}{2}\rho u^2r+G(\rho)r) \mathrm{d}r\mathrm{d}z +\int_0^T\int_\Omega t^{1+\delta_0}\mu(\rho)(|\nabla u|^2+\frac{u_1^2}{r^2})r\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &+\int_0^T\int_\Omega t^{1+\delta_0}\lambda(\rho)(\mathrm{div}u+\frac{u_1}{r})^2r\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ =\,&\int_0^T\int_\Omega t^{\delta_0}\frac{1+\delta_0}{2}\rho u^2r\mathrm{d}r\mathrm{d}z\mathrm{d}t +\int_0^T\int_\Omega t^{\delta_0}(1+\delta_0)G(\rho)r \mathrm{d}r\mathrm{d}z\mathrm{d}t \triangleq\sum_{i=1}^2I_i. \end{split} \end{equation}$
下面估计$I_1,I_2$ . 由(3.10) 和(3.8) 式, 取 $T_1=C_0^{-\frac{1}{2(1+\delta_0)}}$ , 有
(3.13) $\begin{aligned}I_{1} & \leq C \int_{0}^{T_{1}} t^{\delta_{0}}\|u\|_{L^{2}}^{2} \mathrm{~d} t+C \int_{T_{1}}^{T} t^{\delta_{0}}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t \\& \leq C C_{0} T_{1}^{1+\delta_{0}}+C \int_{T_{1}}^{T} \int_{\Omega} t^{1+\delta_{0}} \mu(\rho)|\nabla u|^{2} r \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \cdot T_{1}^{-1} \\& \leq C C_{0}^{\frac{1}{2}}+\frac{1}{2} \int_{T_{1}}^{T} \int_{\Omega} t^{1+\delta_{0}} \mu(\rho)|\nabla u|^{2} r \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t,\end{aligned}$
(3.14) $\begin{array}{l}I_{2} \leq C \int_{0}^{T} t^{\delta_{0}}\|\rho-\widetilde{\rho}\|_{L^{2}}^{2} \mathrm{~d} t\\\begin{array}{l}\leq C \int_{0}^{T_{1}} t^{\delta_{0}}\|\rho-\tilde{\rho}\|_{L^{2}}^{2} \mathrm{~d} t+C \int_{T_{1}}^{T} t^{\delta_{0}}\|\nabla \rho\|_{L^{2}}^{2} \mathrm{~d} t \\\leq C T_{1}^{1+\delta_{0}} C_{0}+C \int_{T_{1}}^{T} t^{1+\delta_{0}}\|\nabla \rho\|_{L^{2}}^{2} \mathrm{~d} t \cdot T_{1}^{-1} \\\leq C C_{0}^{\frac{1}{2}}+C C_{0}^{\frac{1}{2\left(1+\delta_{0}\right)}}.\end{array}\end{array}$
将(3.13),(3.14) 式代入(3.12) 式, 利用 (1.9) 式和先验假设(3.8), 得到
(3.15) $\begin{equation} \begin{split} &t^{1+\delta_0}\int_\Omega(\frac{1}{2}\rho u^2r+G(\rho)r) \mathrm{d}r\mathrm{d}z +\frac12\int_0^T\int_\Omega t^{1+\delta_0}\mu(\rho)(|\nabla u|^2+\frac{u_1^2}{r^2})r\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\leq CC_0^{\frac12}+CC_0^{\frac{1}{2(1+\delta_0)}} \leq CC_0^{\frac{1}{2(1+\delta_0)}}, \end{split} \end{equation}$
$A_{5}(T) \leq C C_{0}^{\frac{1}{2\left(1+\delta_{0}\right)}},$
引理 3.3 在定理1.1 的条件下, 如果$(\rho,u)$ 是(1.4),(1.5)式在$\Omega\times(0,T]$ 中的光滑解且满足(3.8) 式, 则存在正常数$C$ 依赖于 $\underline{\rho},\overline{\rho},M$ , 有如下不等式
(3.16) $\begin{equation} A_1(T)+A_2(T)\leq C(\underline{\rho},\overline{\rho},M). \end{equation}$
证 对 $(1.6)_2$ 式乘 $\dot u$ , 然后在 $(0,T]\times\Omega$ 上积分有
(3.17) $\begin{equation} \begin{split} \int_0^T\int_\Omega\rho|\dot u|^2\mathrm{d}r\mathrm{d}z\mathrm{d}t &\;=\int_0^T\int_\Omega-\nabla P\cdot\dot u +\mathrm{div}(\mu(\rho)\nabla u)\cdot\dot u +\mu(\rho)\partial_r(\frac{u_1}{r})\cdot\dot u_1\\ &\quad+\frac{1}{r}\mu(\rho)\partial_ru_2\cdot\dot u_2 +\nabla(\lambda(\rho)\mathrm{div}u)\cdot\dot u +\partial_r(\lambda(\rho)\frac{u_1}{r})\cdot\dot u_1\\ &\quad+\partial_z(\lambda(\rho)\frac{u_1}{r})\cdot\dot u_2\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\;\triangleq\sum_{i=1}^7L_i. \end{split} \end{equation}$
下面我们来分别处理这 $7$ 项, 由$(1.4)_1,(3.10)$ 式, 分部积分和 H$\ddot{\mathrm{o}}$ lder 不等式可得
(3.18) $\begin{aligned}L_{1}= & \int_{\Omega}(P-\tilde{P}) \operatorname{div} u \mathrm{~d} r \mathrm{~d} z-\int_{\Omega}\left(P_{0}-\tilde{P}\right) \operatorname{div} u_{0} \mathrm{~d} r \mathrm{~d} z+\int_{0}^{T} \int_{\Omega} \operatorname{div} u P^{\prime} \frac{1}{r} \operatorname{div}(\rho u r) \mathrm{d} r \mathrm{~d} z \mathrm{~d} t \\& +\int_{0}^{T} \int_{\Omega} P\left(\partial_{j} u_{i} \partial_{i} u_{j}\right)+P u_{i} \partial_{i} \operatorname{div} u \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \\= & \int_{\Omega}(P-\tilde{P}) \operatorname{div} u \mathrm{~d} r \mathrm{~d} z-\int_{\Omega}\left(P_{0}-\tilde{P}\right) \operatorname{div} u_{0} \mathrm{~d} r \mathrm{~d} z+\int_{0}^{T} \int_{\Omega} P\left(\partial_{j} u_{i} \partial_{i} u_{j}\right) \mathrm{d} r \mathrm{~d} z \mathrm{~d} t \\& +\int_{0}^{T} \int_{\Omega}|\operatorname{div} u|^{2}\left(P^{\prime} \rho+P\right)+\operatorname{div} u P^{\prime} \rho u_{1} \frac{1}{r} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \\\leq & C \sup _{0 \leq t \leq T}\|\nabla u\|_{L^{2}}\|\rho-\tilde{\rho}\|_{L^{2}}+C+C \int_{0}^{T}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t \\\leq & C A_{1}(T)^{\frac{1}{2}} C_{0}^{\frac{1}{2}}+C+C C_{0},\end{aligned}$
(3.19) $\begin{aligned}L_{2}= & -\frac{1}{2} \int_{0}^{T} \int_{\Omega}\left(\mu(\rho)|\nabla u|^{2}\right)_{t}-\mu^{\prime}(\rho) \partial_{t} \rho|\nabla u|^{2} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t-\int_{0}^{T} \int_{\Omega} \mu(\rho) \nabla u \nabla(u \cdot \nabla u) \mathrm{d} r \mathrm{~d} z \mathrm{~d} t \\= & -\frac{1}{2} \int_{\Omega} \mu(\rho)|\nabla u|^{2} \mathrm{~d} r \mathrm{~d} z+\frac{1}{2} \int_{\Omega} \mu\left(\rho_{0}\right)\left|\nabla u_{0}\right|^{2} \mathrm{~d} r \mathrm{~d} z \\& -\frac{1}{2} \int_{0}^{T} \int_{\Omega} \partial_{k} \mu(\rho) u_{k}|\nabla u|^{2}+\mu^{\prime}(\rho) \rho \operatorname{div} u|\nabla u|^{2}+\mu^{\prime}(\rho) \rho u_{1} \frac{1}{r}|\nabla u|^{2} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \\& -\int_{0}^{T} \int_{\Omega} \mu(\rho) \partial_{i} u_{k} \partial_{i} u_{j} \partial_{j} u_{k}+\mu(\rho) \partial_{i} u_{k} u_{j} \partial_{i} \partial_{j} u_{k} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \\\leq & -\frac{1}{2} \int_{\Omega} \mu(\rho)|\nabla u|^{2} \mathrm{~d} r \mathrm{~d} z+C+C \int_{0}^{T}\|\nabla u\|_{L^{3}}^{3} \mathrm{~d} t+C\left(\int_{0}^{T}\left\|u_{1}\right\|_{L^{3}}^{3} \mathrm{~d} t\right)^{\frac{1}{3}}\left(\int_{0}^{T}\|\nabla u\|_{L^{3}}^{3} \mathrm{~d} t\right)^{\frac{2}{3}} \\\leq & -\frac{1}{2} \int_{\Omega} \mu(\rho)|\nabla u|^{2} \mathrm{~d} r \mathrm{~d} z+C+C \int_{0}^{T}\|\nabla u\|_{L^{3}}^{3} \mathrm{~d} t\end{aligned}$
(3.20) $\begin{aligned}L_{3}+L_{4} & =\int_{0}^{T} \int_{\Omega}-\mu(\rho) \frac{1}{r^{2}} u_{1} \dot{u}_{1}+\mu(\rho) \frac{1}{r} \partial_{r} u_{1} \dot{u}_{1}+\frac{1}{r} \mu(\rho) \partial_{r} u_{2} \dot{u}_{2} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t \\& \leq C\left(\int_{0}^{T}\|\dot{u}\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left[\left(\int_{0}^{T}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}+\left(\int_{0}^{T}\left\|u_{1}\right\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\right] \\& \leq C C_{0}^{\frac{1}{2}} A_{1}(T)^{\frac{1}{2}}.\end{aligned}$
对于 $\lambda(\rho)$ 项的处理类似于 $\mu(\rho)$ 项的估计, 有
(3.21) $\begin{aligned} L_5 &=-\frac{1}{2}\int_\Omega(\lambda(\rho)|\mathrm{div}u|^2)\mathrm{d}r\mathrm{d}z +\frac{1}{2}\int_\Omega(\lambda(\rho_0)|\mathrm{div}u_0|^2)\mathrm{d}r\mathrm{d}z\nonumber\\ &\quad+\frac{1}{2}\int_0^T\int_\Omega\lambda(\rho)|\mathrm{div}u|^3 -\lambda'(\rho)\rho|\mathrm{div}u|^3 -\lambda'(\rho)\rho\frac{u_1}{r}|\mathrm{div}u|^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad-\int_0^T\int_\Omega\lambda(\rho) \mathrm{div}u\partial_ju_i\partial_iu_j\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\leq-\frac{1}{2}\int_\Omega(\lambda(\rho)|\mathrm{div}u|^2)\mathrm{d}r\mathrm{d}z+C +C\int_0^T\Vert\nabla u\Vert_{L^3}^3\mathrm{d}t.\nonumber \end{aligned}$
利用先验假设(3.8) 式和 H$\ddot{\mathrm{o}}$ lder 不等式得
(3.22) $\begin{aligned} L_6+L_7 &=\int_0^T\int_\Omega(\lambda'(\rho)\nabla\rho\frac{u_1}{r} -\lambda(\rho)\frac{u_1}{r^2} +\lambda(\rho)\frac{\nabla u_1}{r})\dot u\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C\int_0^T\Vert\dot u\Vert_{L^2}\Vert u_1\Vert_{L^4}\Vert\nabla \rho\Vert_{L^4}\mathrm{d}t+C\Big(\int_0^T\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq C(1+\sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^4})\Big(\int_0^T\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\\ &\leq CC_0^{\frac{1}{2}}A_1(T)^{\frac{1}{2}}.\nonumber \end{aligned}$
进一步, 由引理2.2(参数为$m=2,r=2,q=3,\theta=\frac{1}{3}$ ) , 先验假设(3.8) 和(3.10) 式, 有
(3.23) $\begin{aligned} \int_0^T\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t &\leq C\int_0^T\Vert\nabla u\Vert^2_{L^2} \Vert\nabla^2u\Vert_{L^2} \mathrm{d}t\nonumber\\ &\leq C\int_0^T\Vert\nabla u\Vert^2_{L^2}(\Vert\rho\dot u\Vert_{L^2}+\Vert\nabla\rho\Vert_{L^2}+ \Vert\nabla\rho\Vert_{L^4}^{2}\Vert\nabla u\Vert_{L^2}\nonumber\\ &\quad+\Vert\nabla u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^4}\Vert\nabla u\Vert_{L^2}) \mathrm{d}t\nonumber\\ &\leq C(\sup\limits_{t\in[T]}\Vert\nabla u\Vert_{L^2}) \Big(\int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\quad+C(\sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^2}) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\quad+C(\sup\limits_{t\in[T]}\Vert\nabla u\Vert_{L^2}) (\sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^4})^{2} \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\\ &\quad+C(\sup\limits_{t\in[T]}\Vert\nabla u\Vert_{L^2}) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\quad+C(\sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^4}) (\sup\limits_{t\in[T]}\Vert\nabla u\Vert_{L^2}) \int_0^T\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\nonumber\\ &\leq C A_1(T)C_0^{\frac{1}{2}}+CC_0+CC_0A_1(T)^{\frac{1}{2}}.\nonumber \end{aligned}$
将(3.18)-(3.23) 式代入 (3.17) 式, 可得
$\begin{equation*} \begin{split} A_1(T)&\leq CC_0^{\frac{1}{2}} A_1(T)^{\frac{1}{2}}+C+CC_0+CC_0^{\frac{1}{2}}A_1(T)+CC_0A_1(T)^{\frac{1}{2}} +CC_0^{\frac{1}{2}}A_1(T)^{\frac{1}{2}}\\ &\leq (\frac12+CC_0^{\frac12})A_1(T)+C(C_0^{2}+C_0+1), \end{split} \end{equation*}$
因此当 $CC_0^{\frac12}<\frac12$ 时, 有
(3.24) $\begin{equation} \begin{split} A_1(T)\leq C. \end{split} \end{equation}$
对 $(1.6)_2^i$ 作用$[\frac{\partial}{\partial t}+\mathrm{div}(u\cdot)+\frac{u_1}{r}]\cdot\dot u_i$ 关于 $i$ 求和, 并且在 $[T]\times\Omega$ 上积分可知
(3.25) $\begin{aligned} & \int_0^T\int_\Omega[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=-\int_0^T\int_\Omega[\partial_t(\partial_iP)+\mathrm{div}(u\cdot\partial_iP)+\frac{u_1}{r}\partial_iP] \cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega[\mathrm{div}(\mu(\rho)\nabla u_i)_t+\mathrm{div}(u\cdot \mathrm{div}(\mu(\rho)\nabla u_i)) +\frac{u_1}{r}\mathrm{div}(\mu(\rho)\nabla u_i)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega[(\mu(\rho)\partial_r(\frac{u_1}{r}))_t +\mathrm{div}(u\cdot \mu(\rho)\partial_r(\frac{u_1}{r})) +\frac{u_1}{r}\mu(\rho)\partial_r(\frac{u_1}{r})]\cdot\dot u_1\\ &\quad+[\frac{1}{r}(\mu(\rho)\partial_ru_2)_t +\mathrm{div}(u\cdot\frac{1}{r}\mu(\rho)\partial_ru_2) +\frac{u_1}{r}\mu(\rho)\frac{1}{r}\partial_ru_2]\cdot\dot u_2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega[\partial_i(\lambda(\rho)\mathrm{div}u)_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\mathrm{div}u)) +\frac{u_1}{r}\partial_i(\lambda(\rho)\mathrm{div}u)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega[\partial_i(\lambda(\rho)\frac{u_1}{r})_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\frac{u_1}{r})) +\frac{u_1}{r}\partial_i(\lambda(\rho)\frac{u_1}{r})]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\triangleq\sum_{i=1}^6N_i.\nonumber \end{aligned}$
(3.26) $\begin{aligned} & \int_0^T\int_\Omega[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_0^T\int_\Omega\frac{1}{2}\partial_t(\rho\vert\dot u\vert^2) +\frac{1}{2}\rho_t\vert\dot u\vert^2 -\frac{1}{2}\rho u_k\partial_k(\vert\dot u\vert^2) +\frac{u_1}{r}\rho\vert\dot u\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_\Omega\frac{1}{2}\rho\vert\dot u\vert^2\mathrm{d}r\mathrm{d}z -\int_\Omega\frac{1}{2}\rho_0\vert\dot u_0\vert^2\mathrm{d}r\mathrm{d}z -\int_0^T\int_\Omega\frac{1}{2r}\mathrm{div}(\rho ur)\vert\dot u\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\quad-\int_0^T\int_\Omega\frac{1}{2}\rho u\nabla\vert\dot u\vert^2 -\frac{u_1}{r}\rho\vert\dot u\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_\Omega\frac{1}{2}\rho\vert\dot u\vert^2\mathrm{d}r\mathrm{d}z -\int_\Omega\frac{1}{2}\rho_0\vert\dot u_0\vert^2\mathrm{d}r\mathrm{d}z+\int_0^T \int_\Omega\frac{1}{2}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z{\rm d}t,\nonumber \end{aligned}$
其中由(3.10) 式和引理2.2(参数为 $m=2,r=q=4,\theta=0$ ) 有
(3.27) $\begin{aligned} \int_0^T \int_\Omega\frac{1}{2}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z{\rm d}t &\leq C\int_0^T \Vert u\Vert_{L^2}^2\Vert \dot u\Vert_{L^4}^2{\rm d}t\nonumber\\ &\leq C C_0^{\frac12}\int_0^T \Vert u\Vert_{L^2}^2\Vert \nabla\dot u\Vert_{L^2}^2{\rm d}t\leq C C_0^{\frac12}A_2(T)^{\frac{1}{2}}. \end{aligned}$
(3.28) $\begin{aligned} N_1&=-\int_0^T\int_\Omega P'\frac{1}{r}\mathrm{div}(\rho ur)\partial_r\dot u_1 +P\partial_r(\partial_k\dot u_1\cdot u_k) +\frac{1}{r^2}u_1\dot u_1P -\frac{1}{r}\partial_r(u_1\dot u_1)P\nonumber\\ &\quad+P'\frac{1}{r}\mathrm{div}(\rho ur)\partial_z\dot u_2 +P\partial_z(\partial_k\dot u_2\cdot u_k) -\frac{1}{r}\partial_z(u_1\dot u_2)P \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_0^T\int_\Omega-P\partial_r\dot u_{1}\partial_zu_{2}-P\partial_z\dot u_{2}\partial_ru_{1} +P \partial_z\dot u_{1}\partial_ru_{2} +P\partial_r \dot u_{2}\partial_zu_{1}+P'\rho \mathrm{div}u\mathrm{div}\dot u\\ &\quad+\frac{1}{r}P'\rho u_1\mathrm{div}\dot u-\frac{1}{r}Pu_1\mathrm{div}\dot u-\frac{1}{r}P\dot u\cdot\nabla u_1-\frac{1}{r}u_1\dot u_1P \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t)^{\frac{1}{2}}(\int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t)^{\frac{1}{2}}\nonumber\\ &\leq CC_0^{\frac{1}{2}}A_2(T)^{\frac{1}{2}},\nonumber \end{aligned}$
(3.29) $\begin{aligned} N_2&=\int_0^T\int_\Omega\partial_j\dot u_i\partial_ku_j\mu(\rho)\partial_ku_i +(\mathrm{div}u+\frac{u_1}{r})\mu'(\rho)\rho\partial_j u_i\partial_j\dot u_i -\mu(\rho)\vert\nabla\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega \frac{1}{r^2}u_1\dot u_i\mu(\rho)\partial_ru_i -\frac{1}{r}\partial_ku_1\dot u_1\partial_k u_i\mu(\rho) -\frac{1}{r}u_1\partial_k\dot u_i\mu(\rho)\partial_ku_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq-\int_0^T\int_\Omega\mu(\rho)\vert\nabla\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+C\Big(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} \nonumber\\ &\leq-\int_0^T\int_\Omega\mu(\rho)\vert\nabla\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+CA_2(T)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}, \end{aligned}$
由$(1.4)_1$ 式和 (3.24) 式, 有
(3.30) $\begin{aligned} N_3+N_4 &=\int_0^T\int_\Omega (\mu(\rho)-\mu'(\rho))\dot u_1\mathrm{div}u(\frac{\partial_ru_{1}}{r}-\frac{u_1}{r^2})\nonumber\\ &\quad-\mu'(\rho)\rho\dot u_1u_1\frac{\partial_ru_1}{r^2} +(\mu(\rho)+\mu'(\rho))\dot u_1u_1\frac{u_1}{r^3}\nonumber\\ &\quad+\mu(\rho)\frac{1}{r}\dot u\cdot\partial_r\dot u -\frac{1}{r}\mu(\rho)\dot u_1\partial_ru_k\partial_ku_1 -\mu(\rho)\frac{1}{r^2}\vert\dot u_1\vert^2\nonumber\\ &\quad+(\mu(\rho)-\mu'(\rho))\frac{1}{r}\dot u_2\mathrm{div}u\partial_ru_{2} -\dot u_2\frac{1}{r^2}\mu'(\rho)\rho u_1\partial_ru_{2} -\frac{1}{r}\mu(\rho)\dot u_2\partial_ru_k\partial_ku_2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C{A_1(T)}^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} +C{A_1(T)}^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2}\nonumber\\ &\quad+C{A_1(T)}^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{4}} \Big(\int_0^T\Vert u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{4}} -\int_0^T\int_\Omega\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C\Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}+ CA_2(T)^{\frac{1}{2}} -\int_0^T\int_\Omega\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t. \end{aligned}$
下面处理关于 $\lambda(\rho)$ 的项, 同理可得
(3.31) $\begin{aligned} N_5 &=-\int_0^T\int_\Omega\lambda(\rho)\vert \mathrm{div}\dot u \vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t+\int_0^T\int_\Omega \mathrm{div}\dot u(\lambda'(\rho)\rho-\lambda(\rho))\vert \mathrm{div}u\vert^2\nonumber\\ &\quad +\mathrm{div}\dot u\lambda'(\rho)\rho\frac{1}{r}u_1\mathrm{div}u +\mathrm{div}\dot u\lambda(\rho)\partial_ju_k\partial_ku_j +\partial_j\dot u_1\partial_iu_j\lambda(\rho)\mathrm{div}u -\frac{1}{r^2}u_1\dot u_1\lambda(\rho)\mathrm{div}u\nonumber\\ &\quad-\frac{1}{r}\partial_iu_1\dot u_i\lambda(\rho)\mathrm{div}u -\frac{1}{r}u_1\partial_i\dot u_i\lambda(\rho)\mathrm{div}u \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq-\int_0^T\int_\Omega\lambda(\rho)\vert\mathrm{div}\dot u \vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t +C\Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} \Big(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2}\nonumber\\ &\leq-\int_0^T\int_\Omega\lambda(\rho)\vert\mathrm{div}\dot u \vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t+CA_2(T)^{\frac{1}{2}}\Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}, \end{aligned}$
(3.32) $\begin{aligned} N_6 &=\int_0^T\int_\Omega\partial_i \dot u_i\lambda'(\rho)\rho \mathrm{div}u u_1\frac{1}{r} +\partial_i \dot u_i\lambda'(\rho)\rho\frac{1}{r^2}u_1^2 -\partial_i \dot u_i\dot u_1\lambda(\rho)\frac{1}{r}\nonumber\\ &\quad+\partial_i\dot u_i\lambda(\rho)\partial_ku_k\frac{u_1}{r} +\dot u_1\lambda(\rho)\frac{u_1^2}{r^3} +\partial_j\dot u_i\partial_i u_j\lambda(\rho)\frac{u_1}{r} -\partial_iu_1\dot u_i\lambda(\rho)\frac{u_1}{r^2} \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C{A_1(T)}^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}+C\Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} \Big(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2}\nonumber \\ &\quad+C{A_1(T)}^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2}\nonumber\\ &\leq C\Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} +CA_2(T)^{\frac{1}{2}}+CA_2(T)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}. \end{aligned}$
并且由于引理2.2 (参数为$m=2,r=2,q=4,\theta=\frac{1}{2}$ ) , (2.4)式和先验假设条件 (3.8), 有
(3.33) $\begin{aligned} \int_0^T\Vert\nabla u\Vert_{L^4}^4\mathrm{d}t &\leq C\int_0^T\Vert\nabla u\Vert^2_{L^2} \Vert\nabla^2u\Vert_{L^2}^2 \mathrm{d}t\nonumber\\ &\leq C\int_0^T\Vert\nabla u\Vert^2_{L^2}(\Vert\dot u\Vert_{L^2}^2+\Vert\nabla\rho\Vert_{L^2}^2+ \Vert\nabla\rho\Vert_{L^4}^{4} \Vert\nabla u\Vert_{L^2}^2 +\Vert\nabla u\Vert_{L^2}^2) \mathrm{d}t\nonumber\\ &\leq C\sup\limits_{t\in[T]}(\Vert\dot u\Vert^2_{L^2}) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t +C\sup\limits_{t\in[T]}(\Vert\nabla\rho\Vert_{L^2}^2) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\quad+C\sup\limits_{t\in[T]}(\Vert\nabla u\Vert^2_{L^2}) \sup\limits_{t\in[T]}(\Vert\nabla\rho\Vert_{L^4}^4) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\quad+C\sup\limits_{t\in[T]}(\Vert\nabla u\Vert^2_{L^2}) \int_0^T\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\leq CC_0A_2(T)+CC_0. \end{aligned}$
将 (3.26)-(3.33) 式代入 (3.25) 式, 并且由于(3.24) 式可得
$\begin{equation*} \begin{split} A_2(T)&\leq C +CA_2(T)^{\frac{1}{2}}C_0^{\frac{1}{2}} +CA_2(T)^{\frac{1}{2}}(C_0A _2(T)+CC_0A_1(T))^{\frac{1}{2}}\\ & +C(C_0A_2(T)+CC_0A_1(T))^{\frac{1}{2}}\\ &\leq (\frac12+CC_0^{\frac12})A_2(T)+C(C_0^{\frac12}+C_0+C_0^{2})+C, \end{split} \end{equation*}$
因此当 $CC_0^{\frac12}<\frac12$ 时, 则有
(3.34) $\begin{equation} A_2(T)\leq C. \end{equation}$
结合(3.24) 和(3.34) 式可以得到引理的结论.
引理 3.4 在定理 1.1 的条件下, 如果$(\rho,u)$ 是(1.4), (1.5) 式在$\Omega\times(0,T]$ 中的光滑解且满足(3.8) 式, 则存在正常数$C$ 依赖于 $\underline{\rho},\overline{\rho},M$ , 有如下不等式
(3.35) $\begin{equation} A_3(T)+A_4(T)\leq C(\underline{\rho},\overline{\rho},M)C_0^{\frac{1}{4}}. \end{equation}$
证 对 $(1.6)_2$ 式乘 $\sigma(t)^{\frac{3}{4}}\dot u$ 并且在 $[T]\times\Omega$ 上积分得到
(3.36) $\begin{aligned} \int_0^T\int_\Omega\sigma(t)^{\frac{3}{4}}\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t &=\int_0^T\int_\Omega-\nabla P\cdot\sigma(t)^{\frac{3}{4}}\dot u +\mathrm{div}(\mu(\rho)\nabla u)\cdot\sigma(t)^{\frac{3}{4}}\dot u\nonumber\\ &\quad +\mu(\rho)\partial_r(\frac{u_1}{r})\cdot\sigma(t)^{\frac{3}{4}}\dot u_1 +\frac{1}{r}\mu(\rho)\partial_ru_2\cdot\sigma(t)^{\frac{3}{4}}\dot u_2\nonumber\\ &\quad+\nabla(\lambda(\rho)\mathrm{div}u)\cdot\sigma(t)^{\frac{3}{4}}\dot u\\ &\quad+\partial_r(\lambda(\rho)\frac{u_1}{r})\cdot\sigma(t)^{\frac{3}{4}}\dot u_1 +\partial_z(\lambda(\rho)\frac{u_1}{r})\cdot\sigma(t)^{\frac{3}{4}}\dot u_2\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\;\triangleq\sum_{i=1}^7M_i.\nonumber \end{aligned}$
下面来估计这7项, 证明过程类似于引理 3.3 中关于 $A_1(T)$ 的证明. 我们可以由$(1.4)_1$ 式, $\sigma(t)$ 的定义和(3.10) 式得到
(3.37) $\begin{aligned} M_1 &\leq\Big(\int_\Omega\sigma(t)^{\frac{3}{4}}\vert\nabla u\vert^2 \mathrm{d}r\mathrm{d}z\Big)^{\frac{1}{2}} \Big(\int_\Omega\sigma(t)^{\frac{3}{4}}\vert p-\tilde p\vert^2 \mathrm{d}r\mathrm{d}z\Big)^{\frac{1}{2}}\nonumber\\ &\quad+\sup\limits_{t\in[T]}(\Vert P-\tilde P\Vert_{L^2}) \Big(\int_0^1\Vert\nabla u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^1\sigma(t)^{-\frac{1}{2}} \mathrm{d}t\Big)^{\frac{1}{2}}\\ &\quad+\int_0^T\sigma(t)^{\frac{3}{4}}(\Vert\nabla u\Vert_{L^2}^2+\Vert u\Vert_{L^2}^2)\mathrm{d}t\nonumber\\ &\leq A_3(T)^{\frac{1}{2}}C_0^{\frac{1}{2}}+CC_0,\nonumber \end{aligned}$
(3.38) $\begin{aligned} M_2&\leq -\frac{1}{2}\int_\Omega\mu(\rho)\vert\nabla u\vert^2\sigma(t)^{\frac{3}{4}} \mathrm{d}r\mathrm{d}z +\int_0^1\int_\Omega\frac{3}{8}\mu(\rho)\vert\nabla u\vert^2\sigma(t)^{-\frac{1}{4}}\sigma'(t) \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+C\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +\Big(\int_0^T\sigma(t)^{\frac{3}{2}}\Vert\nabla\dot u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq -\frac{1}{2}\int_\Omega\mu(\rho)\vert\nabla u\vert^2\sigma(t)^{\frac{3}{4}} \mathrm{d}r\mathrm{d}z +\Big(\int_0^1\sigma(t)^{-\frac{3}{4}}\mathrm{d}t\Big)^{\frac{1}{3}} \Big(\int_0^1\Vert\nabla u\Vert^3_{L^2}\mathrm{d}t\Big)^{\frac{2}{3}}\nonumber\\ &\quad +C\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +CA_2(T)^{\frac{1}{2}}C_0^{\frac{1}{2}}\\ &\leq -\frac{1}{2}\int_\Omega\mu(\rho)\vert\nabla u\vert^2\sigma(t)^{\frac{3}{4}} \mathrm{d}r\mathrm{d}z +CC_0^{\frac{2}{3}} +C\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +CC_0^{\frac{1}{2}}\nonumber \end{aligned}$
(3.39) $\begin{aligned} M_3+M_4&=\int_0^T\int_\Omega-\mu(\rho)\frac{1}{r^2}u_1\dot u_1\sigma(t)^{\frac{3}{4}}+\mu(\rho)\frac{1}{r}\partial_ru_1\dot u_1\sigma(t)^{\frac{3}{4}}+\frac{1}{r}\mu(\rho)\partial_ru_2\dot u_2\sigma(t)^{\frac{3}{4}}\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C\Big(\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\leq CC_0^{\frac{1}{2}}. \end{aligned}$
同理, 对于 $\lambda(\rho)$ 的项, 有
(3.40) $\begin{equation} \begin{split} M_5+M_6+M_7&\leq -\frac{1}{2}\int_\Omega\lambda(\rho)\vert \mathrm{div}u\vert^2\sigma(t)^{\frac{3}{4}}\mathrm{d}r\mathrm{d}z +C\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t\\ &\quad+CC_0^{\frac{2}{3}} +CC_0^{\frac{1}{2}}. \end{split} \end{equation}$
并且由于 $\sigma(t)$ 的定义和 (3.23) 式, 可得
(3.41) $\begin{aligned} \int_0^T\sigma(t)^{\frac{3}{4}}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t &\leq \int_0^T\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t \leq CC_0+CC_0^{\frac{1}{2}}. \end{aligned}$
因此将(3.37)-(3.41) 式代入(3.36) 式就有
(3.42) $\begin{equation} \begin{split} A_3(T)\leq CC_0^{\frac{1}{2}}+CC_0^{\frac23}\leq CC_0^{\frac{1}{2}}. \end{split} \end{equation}$
对 $(1.6)_2^i$ 乘 $\sigma(t)^{\frac{8}{9}}[\frac{\partial}{\partial t}+\mathrm{div}(u\cdot)+\frac{u_1}{r}]\cdot\dot u_i$ 关于 $i$ 求和并且在 $[T]\times\Omega$ 上积分得到
(3.43) $\begin{aligned} & \int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=-\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\partial_t(\partial_iP)+\mathrm{div}(u\cdot\partial_iP)+\frac{u_1}{r}\partial_iP] \cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\mathrm{div}(\mu(\rho)\nabla u_i)_t+\mathrm{div}(u\cdot \mathrm{div}(\mu(\rho)\nabla u_i)) +\frac{u_1}{r}\mathrm{div}(\mu(\rho)\nabla u_i)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[(\mu(\rho)\partial_r(\frac{u_1}{r}))_t +\mathrm{div}(u\cdot \mu(\rho)\partial_r(\frac{u_1}{r})) +\frac{u_1}{r}\mu(\rho)\partial_r(\frac{u_1}{r})]\cdot\dot u_1\nonumber\\ &\quad+\sigma(t)^{\frac{8}{9}}[\frac{1}{r}(\mu(\rho)\partial_ru_2)_t +\mathrm{div}(u\cdot\frac{1}{r}\mu(\rho)\partial_ru_2) +\frac{u_1}{r}\mu(\rho)\frac{1}{r}\partial_ru_2]\cdot\dot u_2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\quad+\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\partial_i(\lambda(\rho)\mathrm{div}u)_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\mathrm{div}u)) +\frac{u_1}{r}\partial_r(\lambda(\rho)\mathrm{div}u)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\partial_i(\lambda(\rho)\frac{u_1}{r})_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\frac{u_1}{r})) +\frac{u_1}{r}\partial_i(\lambda(\rho)\frac{u_1}{r})]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\triangleq\sum_{i=1}^6H_i.\nonumber \end{aligned}$
下面来估计等式两端这6 项, 证明过程类似于引理 3.3 中关于$A_2(T)$ 的证明. 由$(1.4)_1$ 式,
$\begin{aligned} & \int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_\Omega\frac{1}{2}\rho\vert\dot u\vert^2\sigma(t)^{\frac{8}{9}} \mathrm{d}r\mathrm{d}z -\int_0^1\int_\Omega\frac{4}{9}\sigma(t)^{-\frac{1}{9}}\sigma'(t)\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+\int_0^T \int_\Omega\frac{1}{2}\sigma(t)^{\frac{8}{9}}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z{\rm d}t.\nonumber \end{aligned}$
并且由(3.10), (3.16) 和 (3.42) 式得到
(3.44) $\begin{aligned} &-\int_0^1\int_\Omega\frac{4}{9}\sigma(t)^{-\frac{1}{9}}\sigma'(t)\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+\int_0^T \int_\Omega\frac{1}{2}\sigma(t)^{\frac{8}{9}}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z{\rm d}t\nonumber\\ &\leq \sup\limits_{t\in[0,1]}(\Vert\dot u\Vert_{L^2}) \Big(\int_0^1\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^1t^{-\frac{35}{36}}\mathrm{d}t\Big)^{\frac{1}{2}}+CC_0^{\frac12}\\ &\leq CA_3(T)^{\frac{1}{2}}+CC_0^{\frac12}\leq CC_0^{\frac{1}{4}}.\nonumber \end{aligned}$
(3.45) $\begin{aligned} H_1&\leq C\Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2}\leq CA_4(T)^{\frac{1}{2}}C_0^{\frac{1}{2}},\end{aligned}$
(3.46) $\begin{aligned} H_2 &\leq-\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}\mu(\rho)\vert\nabla\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+C\Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^\frac{1}{2} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}\nonumber\\ &\leq-\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}\mu(\rho)\vert\nabla\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+CA_4(T)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} \end{aligned}$
(3.47) $\begin{aligned} H_3+H_4 &\leq C\Big(\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{2}}\\ &\quad+\!C\Big(\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\!-\!\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq CC_0^{\frac{1}{4}}\Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} +CC_0^{\frac{1}{4}}A_4(T)^{\frac{1}{2}}-\int_0^T\int_\Omega\sigma(t)^{\frac{8}{9}}\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t.\nonumber \end{aligned}$
那么对于 $\lambda(\rho)$ 的项, 同理有
(3.48) $\begin{aligned}H_{5} \leq & -\int_{0}^{T} \int_{\Omega} \sigma(t)^{\frac{8}{9}} \lambda(\rho)|\operatorname{div} \dot{u}|^{2} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t+C\left(\int_{0}^{T} \sigma(t)^{\frac{3}{4}}\|\dot{u}\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{T} \sigma(t)^{\frac{8}{9}}\|\nabla u\|_{L^{4}}^{4} \mathrm{~d} t\right)^{\frac{1}{2}} \\& +C\left(\int_{0}^{T} \sigma(t)^{\frac{8}{9}}\|\nabla u\|_{L^{4}}^{4} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{T} \sigma(t)^{\frac{8}{9}}\|\nabla \dot{u}\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}} \\\leq & -\int_{0}^{T} \int_{\Omega} \sigma(t)^{\frac{8}{9}} \lambda(\rho)|\nabla \dot{u}|^{2} \mathrm{~d} r \mathrm{~d} z \mathrm{~d} t+C A_{3}(T)^{\frac{1}{2}}\left(\int_{0}^{T} \sigma(t)^{\frac{8}{9}}\|\nabla u\|_{L^{4}}^{4} \mathrm{~d} t\right)^{\frac{1}{2}} \\& +C A_{4}(T)^{\frac{1}{2}}\left(\int_{0}^{T} \sigma(t)^{\frac{8}{9}}\|\nabla u\|_{L^{4}}^{4} \mathrm{~d} t\right)^{\frac{1}{2}}\end{aligned}$
(3.49) $\begin{equation} \begin{split} H_6 &\leq C(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{2}}\\ &\quad+C\Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{4} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert u\Vert_{L^4}^4\mathrm{d}t\Big)^{\frac{1}{4}}\\ &\quad+C\Big(\int_0^T\sigma(t)^{\frac{3}{4}}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\\ &\leq CA_4(T)^{\frac{1}{2}}\Big(\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{4} +CA_3(T)^{\frac{1}{2}}A_4(T)^{\frac{1}{2}}. \end{split} \end{equation}$
并且由于 $\sigma(t)$ 的定义和 (3.33) 式, 可得
(3.50) $\begin{aligned} &\int_0^T\sigma(t)^{\frac{8}{9}}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\leq \int_0^T\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\leq CC_0. \end{aligned}$
因此将 (3.44)-(3.50) 式代入(3.43) 式, 我们得到 $A_4(T)\leq CC_0^{\frac{1}{4}}$ , 再结合 (3.42) 式得到引理的证明.
引理 3.5 在定理1.1 的条件和先验假设(3.8) 下, 如果$(\rho,u)$ 是(1.4), (1.5) 式在$\Omega\times(0,T]$ 中的光滑解, 则存在正常数 $C$ 依赖于 $\underline{\rho},\overline{\rho},M,\delta_0$ , 有如下不等式
(3.51) $A_{6}(T)+A_{7}(T) \leq C(\underline{\rho}, \bar{\rho}, M) C_{0}^{\frac{1}{2\left(1+\delta_{0}\right)}}.$
证 对 $(1.6)_2$ 乘 $t^{1+\delta_0}\dot u$ 并且在 $[T]\times\Omega$ 上积分得到
(3.52) $\begin{aligned} \int_0^T\int_\Omega t^{1+\delta_0}\rho|\dot u|^2\mathrm{d}r\mathrm{d}z\mathrm{d}t &\;=\int_0^T\int_\Omega t^{1+\delta_0}[-\nabla P\cdot \dot u +\mathrm{div}(\mu(\rho)\nabla u)\cdot \dot u+\mu(\rho)\partial_r(\frac{u_1}{r})\cdot\dot u_1\nonumber\\ &\quad +\frac{1}{r}\mu(\rho)\partial_ru_2\cdot \dot u_2+\nabla(\lambda(\rho)\mathrm{div}u)\cdot\dot u +\partial_r(\lambda(\rho)\frac{u_1}{r})\cdot \dot u_1\nonumber\\ &\quad+\partial_z(\lambda(\rho)\frac{u_1}{r})\cdot \dot u_2]\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\;=\sum_{i=1}^7K_i. \end{aligned}$
由于 (3.8), (3.10),(3.11) 式和 (3.16)式, 取$T_2=C_0^{-\frac{1}{4(1+\delta_0)}}$ , 有
(3.53) $\begin{aligned} K_1 &\leq C(\sup\limits_{t\in[T]}t^{1+\delta_0}\Vert \rho-\widetilde{\rho}\Vert^2 )^{\frac{1}{2}} (\sup\limits_{t\in[T]}t^{1+\delta_0}\Vert\nabla u\Vert^2 )^{\frac{1}{2}}\nonumber\\ &\quad+C\int_{0}^{T_2}t^{\delta_0}\Vert\rho-\widetilde{\rho}\Vert_{L^2}\Vert\nabla u\Vert_{L^2} \mathrm{d}t +\int_{T_2}^Tt^{\delta_0}\Vert\nabla\rho\Vert_{L^2}\Vert \nabla u\Vert_{L^2} \mathrm{d}t +C\int_{0}^Tt^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\nonumber\\ &\leq CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}} +C\Big(\int_{0}^{T_2}t^{\delta_0}\Vert\rho-\widetilde{\rho}\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac12} \Big(\int_{0}^{T_2}t^{\delta_0}\Vert\nabla u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac12}\nonumber\\ &\quad+\Big(\int_{T_2}^Tt^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac12} \Big(\int_{T_2}^Tt^{1+\delta_0}\Vert \nabla u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac12}\cdot T_2^{-1}+CC_0^{\frac{1}{2(1+\delta_0)}}\nonumber\\ &\leq CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}}+CC_0T_2^{\frac12+\delta_0} +CC_0^{\frac{1}{4(1+\delta_0)}}T_2^{-1} +CC_0^{\frac{1}{2(1+\delta_0)}}\nonumber\\ &\leq CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}} +CC_0^{\frac{1}{2(1+\delta_0)}}. \end{aligned}$
(3.54) $\begin{aligned} K_2&\leq -\frac{1}{2}\int_\Omega t^{1+\delta_0}\mu(\rho)\vert\nabla u\vert^2 \mathrm{d}r\mathrm{d}z +\int_0^T\int_\Omega\frac{(1+\delta_0)}{2}t^{\delta_0}\mu(\rho)\vert\nabla u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +C\Big(\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^2_{L^2} \mathrm{d}t\Big)^{\frac{1}{2}}\\ &\leq -\frac{1}{2}\int_\Omega t^{1+\delta_0}\mu(\rho)\vert\nabla u\vert^2 \mathrm{d}r\mathrm{d}z +CC_0^{\frac{1}{2(1+\delta_0)}} +C\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}}.\nonumber \end{aligned}$
(3.55) $\begin{aligned} K_3+K_4&=\int_0^T\int_\Omega t^{1+\delta_0}(-\mu(\rho)\frac{1}{r^2}u_1\dot u_1+\mu(\rho)\frac{1}{r}\partial_ru_1\dot u_1+\frac{1}{r}\mu(\rho)\partial_ru_2\dot u_2)\mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C\Big(\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq CC_0^{\frac{1}{4(1+\delta_0)}}A_6(T)^{\frac{1}{2}}. \end{aligned}$
(3.56) $\begin{aligned} K_5&\leq -\frac{1}{2}\int_\Omega t^{1+\delta_0}\lambda(\rho)\vert \mathrm{div}u\vert^2\mathrm{d}r\mathrm{d}z +CC_0^{\frac{1}{2(1+\delta_0)}}\nonumber\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t +CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}} \end{aligned}$
(3.57) $\begin{aligned} K_6+K_7 &=\int_0^T\int_\Omega t^{1+\delta_0}(\lambda'(\rho)\nabla\rho\frac{u_1}{r} -\lambda(\rho)\frac{u_1}{r^2} +\lambda(\rho)\frac{\nabla u_1}{r})\dot u \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert_{L^2}\Vert u_1\Vert_{L^4}\Vert\nabla \rho\Vert_{L^4}\mathrm{d}t +C\Big(\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq C\Big(\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}(\sup\limits_{t\in[T]}\Vert \nabla\rho\Vert_{L^4})+C_0^{\frac{1}{4(1+\delta_0)}}A_6(T)^{\frac{1}{2}}\nonumber\\ &\leq CC_0^{\frac{1}{4(1+\delta_0)}}A_6(T)^{\frac{1}{2}}. \end{aligned}$
并由引理2.2 (参数为 $m=2,r=2,q=3,\theta=\frac{1}{3}$ ) , (2.5) 式, 先验假设(3.8), (3.10) 和 (3.11) 式, 有
(3.58) $\begin{aligned} & \int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^3_{L^3}\mathrm{d}t\nonumber\\ &\leq C\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2 (\Vert\dot u\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^2} +\Vert\nabla\rho\Vert_{L^4}^{2} \Vert\nabla u\Vert_{L^2} +\Vert\nabla u\Vert_{L^2})\mathrm{d}t\nonumber\\ &\leq C\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{2}} \Big(\int_0^Tt^{1+\delta_0}\Vert\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\quad+C \sup\limits_{t\in[T]}(\Vert\nabla \rho\Vert_{L^2}) \int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\nonumber\\ &\quad+ C\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{2}} \int_0^Tt^{\frac{1+\delta_0}{2}}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t \sup\limits_{t\in[T]}(\Vert\nabla \rho\Vert_{L^4}^{2})\nonumber\\ &\quad+ C\sup\limits_{t\in[T]}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{2}} \int_0^Tt^{\frac{1+\delta_0}{2}}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\nonumber\\ &\leq CA_6(T)C_0^{\frac12}+CC_0^{\frac{1}{2(1+\delta_0)}} +CA_6(T)^{\frac{1}{2}}C_0^{\frac{1}{2(1+\delta_0)}}. \end{aligned}$
将(3.53)-(3.58) 式代入(3.52) 式得到
$\begin{equation*} \begin{split} A_6(T)&\leq CC_0^\frac12A_6(T) +CC_0^\frac{1}{4(1+\delta_0)}A_6(T)^\frac12 +CC_0^{\frac{1}{2(1+\delta_0)}}\\ &\leq (\frac12+CC_0^\frac12)A_6(T) +CC_0^\frac{1}{2(1+\delta_0)}, \end{split} \end{equation*}$
因此当 $CC_0^\frac12<\frac12$ 时, 有
(3.59) $\begin{equation} \begin{split} A_6(T)\leq CC_0^{\frac{1}{2(1+\delta_0)}}. \end{split} \end{equation}$
对 $(1.6)_2^i$ 乘 $t^{1+\delta_0}[\frac{\partial}{\partial t}+\mathrm{div}(u\cdot)+\frac{u_1}{r}]\cdot\dot u_i$ 关于 $i$ 求和并且在 $[T]\times\Omega$ 上积分得到
(3.60) $\begin{aligned} & \int_0^T\int_\Omega t^{1+\delta_0}[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega t^{1+\delta_0}[\partial_t(\partial_iP)+\mathrm{div}(u\cdot\partial_iP)+\frac{u_1}{r}\partial_iP] \cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &=\int_0^T\int_\Omega t^{1+\delta_0}[\mathrm{div}(\mu(\rho)\nabla u_i)_t+\mathrm{div}(u\cdot \mathrm{div}(\mu(\rho)\nabla u_i)) +\frac{u_1}{r}\mathrm{div}(\mu(\rho)\nabla u_i)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega t^{1+\delta_0}[(\mu(\rho)\partial_r(\frac{u_1}{r}))_t +\mathrm{div}(u\cdot \mu(\rho)\partial_r(\frac{u_1}{r})) +\frac{u_1}{r}\mu(\rho)\partial_r(\frac{u_1}{r})]\cdot\dot u_1\nonumber\\ &\quad+t^{1+\delta_0}[\frac{1}{r}(\mu(\rho)\partial_ru_2)_t +\mathrm{div}(u\cdot\frac{1}{r}\mu(\rho)\partial_ru_2) +\frac{u_1}{r}\mu(\rho)\frac{1}{r}\partial_ru_2]\cdot\dot u_2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega t^{1+\delta_0}[\partial_i(\lambda(\rho)\mathrm{div}u)_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\mathrm{div}u)) +\frac{u_1}{r}\partial_r(\lambda(\rho)\mathrm{div}u)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\quad+\int_0^T\int_\Omega t^{1+\delta_0}[\partial_i(\lambda(\rho)\frac{u_1}{r})_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\frac{u_1}{r})) +\frac{u_1}{r}\partial_i(\lambda(\rho)\frac{u_1}{r})]\cdot\dot u_i\mathrm{d}r\mathrm{d}z\mathrm{d}t. \end{aligned}$
(3.61) $\begin{aligned} &\int_0^T\int_\Omega t^{1+\delta_0}[\partial_t(\rho\dot u_i)+\mathrm{div}(u\cdot\rho\dot u_i) +\frac{u_1}{r}\rho\dot u_i]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &=\int_\Omega t^{1+\delta_0}\frac{1}{2}\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z -\int_0^T\int_\Omega(1+\delta_0) t^{\delta_0}\frac{1}{2}\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+\int_0^T \int_\Omega\frac{1}{2}t^{1+\delta_0}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z\mathrm{d}t,\nonumber \end{aligned}$
其中由 (3.16) 和 (3.35) 式, 对于 $1\leq\delta_0<\infty$ , 有
(3.62) $\begin{aligned} &\int_0^T\int_\Omega\frac{(1+\delta_0)}{2} t^{\delta_0}\rho\vert\dot u\vert^2 \mathrm{d}r\mathrm{d}z\mathrm{d}t+\int_0^T \int_\Omega\frac{1}{2}t^{1+\delta_0}\rho\vert\dot u\vert^2\frac{u_1}{r}\mathrm{d}r\mathrm{d}z{\rm d}t\nonumber\\ &\leq C\int_0^1t^{\delta_0}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t+A_6(T)+C\sup\limits_{0\leq t\leq T}(\Vert u\Vert_{L^2})\int_0^Tt^{1+\delta_0}\Vert \nabla\dot u\Vert_{L^2}^2{\rm d}t\\ &\leq CC_0^{\frac{1}{4}}+A_6(T)+CC_0^{\frac12}A_7(T).\nonumber \end{aligned}$
与引理3.3 中 $A_2(T)$ 的证明类似, 并且结合(3.11) 式得到
(3.63) $\begin{equation} \begin{split} &\int_0^T\int_\Omega t^{1+\delta_0}[\partial_t(\partial_iP)+\mathrm{div}(u\cdot\partial_iP)+\frac{u_1}{r}\partial_iP] \cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\leq C(\int_0^T t^{1+\delta_0}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t)^\frac{1}{2} (\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^2_{L^2}\mathrm{d}t)^\frac{1}{2}\\ &\leq CA_7(T)^{\frac{1}{2}}C_0^{\frac{1}{4(1+\delta_0)}}. \end{split} \end{equation}$
由于 $(1.4)_1$ , (3.8) 和 (3.11) 式, 可知
(3.64) $\begin{aligned} &\int_0^T\int_\Omega t^{1+\delta_0}[\mathrm{div}(\mu(\rho)\nabla u_i)_t+\mathrm{div}(u\cdot \mathrm{div}(\mu(\rho)\nabla u_i)) +\frac{u_1}{r}\mathrm{div}(\mu(\rho)\nabla u_i)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq-\int_0^T t^{1+\delta_0}\mu(\rho)\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t +C\Big(\int_0^T t^{1+\delta_0}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^\frac{1}{2} \Big(\int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2}\nonumber\\ &\leq-\int_0^Tt^{1+\delta_0}\mu(\rho)\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t+CA_7(T)^{\frac{1}{2}} \Big(\int_0^Tt^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^\frac{1}{2} \end{aligned}$
(3.65) $\begin{aligned} &\int_0^T\int_\Omega t^{1+\delta_0}[(\mu(\rho)\partial_r(\frac{u_1}{r}))_t +\mathrm{div}(u\cdot \mu(\rho)\partial_r(\frac{u_1}{r})) +\frac{u_1}{r}\mu(\rho)\partial_r(\frac{u_1}{r})]\cdot\dot u_1\nonumber\\ &\quad+t^{1+\delta_0}[\frac{1}{r}(\mu(\rho)\partial_ru_2)_t +\mathrm{div}(u\cdot\frac{1}{r}\mu(\rho)\partial_ru_2) +\frac{u_1}{r}\mu(\rho)\frac{1}{r}\partial_ru_2]\cdot\dot u_2 \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq C(\int_0^T t^{1+\delta_0}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t)^{\frac{1}{2}} \Big(\int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{2}}-\int_0^T\int_\Omega t^{1+\delta_0}\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t\\ &\quad+C\Big(\int_0^T t^{1+\delta_0}\Vert\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T t^{1+\delta_0}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq CA_7(T)^{\frac{1}{2}}\Big(\int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{2}} +CA_6(T)^{\frac{1}{2}}A_7(T)^{\frac{1}{2}} -\int_0^T\int_\Omega t^{1+\delta_0}\mu(\rho)\frac{\vert\dot u_1\vert^2}{r^2}\mathrm{d}r\mathrm{d}z\mathrm{d}t.\nonumber \end{aligned}$
(3.66) $\begin{aligned} &\int_0^T\int_\Omega t^{1+\delta_0}[\partial_i(\lambda(\rho)\mathrm{div}u)_t +\mathrm{div}(u\cdot\partial_i(\lambda(\rho)\mathrm{div}u)) +\frac{u_1}{r}\partial_i(\lambda(\rho)\mathrm{div}u)]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq-\int_0^T\int_\Omega t^{1+\delta_0}\lambda(\rho)\vert \mathrm{div}\dot u\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t +CA_7(T)^{\frac{1}{2}}\Big(\int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{2}} \end{aligned}$
(3.67) $\begin{aligned} &\int_0^T\int_\Omega t^{1+\delta_0}[\partial_i(\lambda(\rho)\frac{u_1}{r})_t +\mathrm{\mathrm{div}}(u\cdot\partial_i(\lambda(\rho)\frac{u_1}{r})) +\frac{u_1}{r}\partial_i(\lambda(\rho)\frac{u_1}{r})]\cdot\dot u_i \mathrm{d}r\mathrm{d}z\mathrm{d}t\nonumber\\ &\leq CA_7(T)^{\frac{1}{2}}\Big(\int_0^T t^{1+\delta_0}\Vert\nabla u\Vert^4_{L^4}\mathrm{d}t\Big)^{\frac{1}{4}} +CA_6(T)^{\frac{1}{2}}A_7(T)^{\frac{1}{2}}. \end{aligned}$
并且由于引理 2.2(参数为 $m=2,r=2,q=4,\theta=\frac{1}{2}$ ) , (2.5), 先验假设条件 (3.8), (3.10), (3.11) 和 (3.16) 式可得
(3.68) $\begin{array}{l}\begin{aligned}& \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{4}}^{4} \mathrm{~d} t \\\leq & C \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{2}}^{2}\left\|\nabla^{2} u\right\|_{L^{2}}^{2} \mathrm{~d} t \\\leq & C \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{2}}^{2}\left(\|\dot{u}\|_{L^{2}}^{2}+\|\nabla \rho\|_{L^{2}}^{2}+\|\nabla \rho\|_{L^{4}}^{4}\|\nabla u\|_{L^{2}}^{2}+\|\nabla u\|_{L^{2}}^{2}\right) \mathrm{d} t \\\leq & C \sup _{t \in[0, T]}\left(t^{1+\delta_{0}}\|\dot{u}\|_{L^{2}}^{2}\right) \int_{0}^{T}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t+\sup _{t \in[0, T]}\left(\|\nabla \rho\|_{L^{2}}^{2}\right) \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t \\& +C \sup _{t \in[0, T]}\left(\|\nabla u\|_{L^{2}}^{2}\right) \sup _{t \in[0, T]}\left(\|\nabla \rho\|_{L^{4}}^{4}\right) \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t\end{aligned}\\\begin{aligned}& +C \sup _{t \in[0, T]}\left(\|\nabla u\|_{L^{2}}^{2}\right) \int_{0}^{T} t^{1+\delta_{0}}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t \\\leq & C C_{0} A_{7}(T)+C C_{0}^{\frac{1}{2\left(1+\delta_{0}\right)}}\end{aligned}\end{array}$
将(3.61)-(3.68) 式代入(3.60) 式, 由于(3.59) 式, 得到
$\begin{equation*} \begin{split} A_7(T)&\leq CC_0^\frac12A_7(T) +CC_0^\frac{1}{4(1+\delta_0)}A_7(T)^\frac12 +CA_6(T)^\frac12A_7(T)^\frac12 +CC_0^{\frac{1}{4}} +CC_0^{\frac{1}{2(1+\delta_0)}}\\ & \leq (\frac12+CC_0^\frac12)A_7(T) +CC_0^\frac{1}{2(1+\delta_0)}+CC_0^{\frac{1}{4}}, \end{split} \end{equation*}$
因此当 $CC_0<\frac12$ 适当小时, 得到$A_7(T)\leq CC_0^{\frac{1}{2(1+\delta_0)}}$ ,即完成了引理的证明.
接下来的引理3.6-3.9 将封闭 (3.8) 式中提出的先验假设, 从而完成命题 3.1的证明.
引理 3.6 在定理1.1 的条件和先验假设(3.8) 式下, 如果$(\rho,u)$ 是(1.4), (1.5) 式在$\Omega\times(0,T]$ 中的光滑解, 对于$2\leq q<\infty$ , 有如下不等式
(3.69) $\begin{equation} \sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^q}^q +\int_0^T\Vert\nabla\rho\Vert^q_{L^q}\mathrm{d}t\leq 2M^q. \end{equation}$
证 将$\partial_i$ 作用到$(1.6)_1$ 式上后乘 $q\partial_i\rho\vert\nabla\rho\vert^{q-2}$ 可得
(3.70) $\begin{equation} \begin{split} &(\partial_i\rho)_trq\partial_i\rho\vert\nabla\rho\vert^{q-2} +\rho_tq\partial_r\rho\vert\nabla\rho\vert^{q-2} +\partial_i\partial_k\rho u_krq\partial_i\rho\vert\nabla\rho\vert^{q-2} +\partial_k\rho\partial_iu_krq\partial_i\rho\vert\nabla\rho\vert^{q-2}\\ &+\partial_r\rho u_1q\partial_r\rho\vert\nabla\rho\vert^{q-2} +\partial_i\rho \mathrm{div}urq\partial_i\rho\vert\nabla\rho\vert^{q-2} +\rho\partial_i\mathrm{div}urq\partial_i\rho\vert\nabla\rho\vert^{q-2}\\ & +\rho \mathrm{div}uq\partial_r\rho\vert\nabla\rho\vert^{q-2}+\partial_i\rho u_1q\partial_i\rho\vert\nabla\rho\vert^{q-2} +\rho\partial_iu_1q\partial_i\rho\vert\nabla\rho\vert^{q-2} =0. \end{split} \end{equation}$
将(3.70) 式在$\Omega$ 上积分, 通过简单计算可得
(3.71) $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{d}t}\Big(\int_\Omega\vert\nabla\rho\vert^qr\mathrm{d}r\mathrm{d}z\Big) +\int_\Omega \rho\partial_i\mathrm{div}urq\partial_i\rho\vert\nabla\rho\vert^{q-2} \mathrm{d}r\mathrm{d}z\nonumber\\ &\leq \int_\Omega (1-q)\vert\nabla\rho\vert^{q}(\mathrm{div}ur+u_1) +\rho\frac{u_1}{r}q\partial_r\rho\vert\nabla\rho\vert^{q-2} \mathrm{d}r\mathrm{d}z\\ & -\int_\Omega \partial_k\rho\partial_iu_krq\partial_i\rho\vert\nabla\rho^\zeta\vert^{q-2} +\rho\partial_iu_1q\partial_i\rho\vert\nabla\rho\vert^{q-2} \mathrm{d}r\mathrm{d}z.\nonumber \end{aligned}$
(3.72) $\begin{equation} \begin{split} \partial_i\mathrm{div}u=(1+\frac{\lambda(\rho)}{\mu(\rho)})^{-1} [\partial_iF-\frac{\nabla\lambda(\rho)}{\mu(\rho)}\mathrm{\mathrm{div}}u +\frac{\nabla\mu(\rho)\lambda(\rho)}{\mu(\rho)^2}\mathrm{\mathrm{div}}u +\frac{\gamma\rho^{\gamma-1}\partial_i\rho}{\mu(\rho)}]. \end{split} \end{equation}$
从而由(2.1), (3.71) 式和 (3.72) 式得到
(3.73) $\begin{aligned} & \frac{\mathrm{d}}{\mathrm{d}t}\Vert\nabla\rho\Vert^q_{L^q} +\Vert\nabla\rho\Vert^q_{L^q}\nonumber\\ &\leq C\Vert\nabla\rho\Vert_{L^q}^q (\Vert\nabla u\Vert_{L^\infty}+\Vert u\Vert_{L^\infty}) +C\int_\Omega\vert\nabla\rho\vert^{q-1} (\vert\nabla F\vert+\vert\nabla u\vert)\mathrm{d}r\mathrm{d}z\\ &\leq C\Vert\nabla\rho\Vert_{L^q}^q (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2}) +C\Vert\nabla\rho\Vert_{L^q}^{q-1}(\Vert\nabla F\Vert_{L^q}+\Vert\nabla u\Vert_{L^q}).\nonumber \end{aligned}$
由(2.3) 式和引理2.2 (参数为 $m=3,r=2,q=\infty,\theta=\frac{3}{4}$ ) 可知
(3.74) $\begin{aligned} \int_0^T\Vert\nabla u\Vert_{L^\infty}\mathrm{d}t &\leq \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla^2u\Vert_{L^3}^{\frac34} \mathrm{d}t\\ &\leq \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} (\Vert\rho\dot u\Vert_{L^3} +\Vert\nabla\rho^\gamma\Vert_{L^3} +\Vert\nabla\mu(\rho)\nabla u\Vert_{L^3}\nonumber\\ &\quad+\Vert\nabla\lambda(\rho)\mathrm{\mathrm{div}}u\Vert_{L^3} +\Vert\nabla u\Vert_{L^3} +\Vert\nabla\lambda(\rho)u\Vert_{L^3})^{\frac34} \mathrm{d}t.\nonumber \end{aligned}$
结合(3.8), (3.35), (3.51) 式和 Sobolev 嵌入($W^{1,2}(\Omega)\hookrightarrow L^q(\Omega), 2\leq q < \infty)$ 得到, 对任意 $\delta_0>\frac{q-2}{2q-2}(<\frac12)$ ,
(3.75) $\begin{aligned} & \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\rho\dot u\Vert_{L^3}^{\frac34}\mathrm{d}t\nonumber\\ &\leq C\int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\dot u\Vert_{L^2}^{\frac34}\mathrm{d}t\nonumber\\ &\leq C\int_0^{\sigma(T)}\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\dot u\Vert_{L^2}^{\frac34}\mathrm{d}t +C\int_{\sigma(T)}^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\dot u\Vert_{L^2}^{\frac34}\mathrm{d}t\nonumber\\ &\leq C\int_0^{\sigma(T)}\Vert\nabla\dot u\Vert_{L^2}^{\frac34} t^{\frac13}\cdot t^{-\frac13} \Vert\nabla u\Vert_{L^2}^{\frac14} \mathrm{d}t +C\int_{\sigma(T)}^T (t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{8}} \Vert\nabla\dot u\Vert_{L^2}^{\frac{3}{4}}t^{\frac{3(1+\delta_0)}{8}} \cdot t^{-\frac{(1+\delta_0)}{2}} \mathrm{d}t\nonumber\\ &\leq C\Big(\int_0^{\sigma(T)}\Vert\nabla\dot u\Vert_{L^2}^2t^{\frac{8}{9}}\mathrm{d}t\Big)^{\frac{3}{8}} \Big(\int_0^{\sigma(T)}\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{8}} \Big(\int_0^{\sigma(T)}t^{-\frac23}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\quad+ C\sup\limits_{\sigma(T)\leq t\leq T}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{8}}\Big(\int_{\sigma(T)}^Tt^{1+\delta_0}\Vert\nabla\dot u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{3}{8}} \Big(\int_{\sigma(T)}^Tt^{-\frac{4(1+\delta_0)}{5}}\mathrm{d}t\Big)^{\frac{5}{8}}\nonumber\\ &\leq CC_0^{\frac{7}{32}}+CC_0^{\frac{1}{4(1+\delta_0)}}. \end{aligned}$
再结合(3.8), (3.11) 和 (3.35) 式有
(3.76) $\begin{aligned} & \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\rho^\gamma\Vert_{L^3}^{\frac{3}{4}}\mathrm{d}t\nonumber\\ &\leq C\sup\limits_{0\leq t\leq\sigma(T)}(t^{\frac{3}{4}}\Vert\nabla u\Vert_{L^2}^2)^{\frac{1}{8}} \Big(\int_0^{\sigma(T)}\Vert\nabla\rho\Vert_{L^3}^{\frac{3}{4}} t^{-\frac{3}{32}}\mathrm{d}t\Big)\nonumber\\ &\quad+C\int_{\sigma(T)}^T \Vert\nabla\rho\Vert_{L^3}^{\frac{3}{4}} \Vert\nabla u\Vert_{L^3}^{\frac34} t^{\frac{(1+\delta_0)}{8}}\cdot t^{-\frac{(1+\delta_0)}{8}}\mathrm{d}t\nonumber\\ &\leq CC_0^{\frac{1}{32}} \Big(\int_0^{\sigma(T)}\Vert\nabla\rho\Vert_{L^3}\mathrm{d}t\Big) ^{\frac34} \Big(\int_0^{\sigma(T)}t^{-\frac{3}{8}}\mathrm{d}t\Big)^{\frac{1}{4}}\\ &\quad+C\Big(\int_{\sigma(T)}^T \Vert\nabla\rho\Vert_{L^3}\mathrm{d}t\Big) ^{\frac34} \Big(\int_{\sigma(T)}^T\Vert\nabla u\Vert_{L^2}^2 t^{1+\delta_0}\mathrm{d}t\Big)^{\frac{1}{8}} \Big(\int_{\sigma(T)}^Tt^{-(1+\delta_0)}\mathrm{d}t\Big)^{\frac18}\nonumber\\ &\leq CC_0^{\frac{1}{32}}+CC_0^{\frac{1}{16(1+\delta_0)}},\nonumber \end{aligned}$
由(3.8) 式, Young 不等式和 H$\ddot{\mathrm{o}}$ lder 不等式可得
(3.77) $\begin{aligned} & \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\mu(\rho)\nabla u\Vert_{L^3} ^{\frac14}\mathrm{d}t\nonumber\\ &\leq C\int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla u\Vert_{L^\infty}^{\frac34} \Vert\nabla\rho\Vert_{L^3}^{\frac34} \mathrm{d}t\nonumber\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +C\int_0^T\Vert\nabla u\Vert_{L^2} \Vert\nabla\rho\Vert_{L^3}^{3} \mathrm{d}t\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +C\Big(\int_0^T\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\sup\limits_{t\in[T]}\Vert\nabla\rho\Vert_{L^3}^{\frac{5}{2}}\Big)\Big(\int_0^T\Vert\nabla\rho\Vert_{L^3}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +CC_0^{\frac{1}{2}}.\nonumber \end{aligned}$
(3.78) $\begin{aligned} & \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla\lambda(\rho)\mathrm{div} u\Vert_{L^3} ^{\frac34}\mathrm{d}t\nonumber\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +C\Big(\int_0^T\Vert\nabla u\Vert_{L^2}^2\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_0^T\Vert\nabla\rho\Vert_{L^3}^{6}\mathrm{d}t\Big)^{\frac{1}{2}}\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +CC_0^{\frac{1}{2}}\nonumber \end{aligned}$
(3.79) $\begin{aligned} & \int_0^T\Vert\nabla u\Vert_{L^2}^{\frac14} \Vert\nabla u\Vert_{L^3} ^{\frac34}\mathrm{d}t\nonumber\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t+C(\sup\limits_{t\in[\sigma(T)]}t^{\frac34}\Vert\nabla u\Vert_{L^2}^2)^{\frac12}\int_0^{\sigma(T)} t^{-\frac38} \mathrm{d}t\nonumber\\ &\ \ \ +C\Big(\int_{\sigma(T)}^Tt^{1+\delta_0}\Vert \nabla u\Vert_{L^2}^2 \mathrm{d}t\Big)^{\frac12}\Big(\int_{\sigma(T)}^T t^{-(1+\delta_0)} \mathrm{d}t\Big)^{\frac12}\\ &\leq \frac18\int_0^T\Vert\nabla u\Vert_{L^\infty} \mathrm{d}t +CC_0^{\frac18}+CC_0^{\frac{1}{4(1+\delta_0)}}.\nonumber \end{aligned}$
类似地, 结合(2.1), (3.8) 和(3.10) 式可知
(3.80) $\begin{aligned}& \int_{0}^{T}\|\nabla u\|_{L^{2}}^{\frac{1}{4}}\|\nabla \lambda(\rho) u\|_{L^{3}}^{\frac{3}{4}} \mathrm{~d} t \\\leq & C \int_{0}^{T}\|\nabla u\|_{L^{2}}^{\frac{1}{4}}\|\nabla \rho\|_{L^{3}}^{\frac{3}{4}}\|u\|_{L^{\infty}}^{\frac{3}{4}} \mathrm{~d} t \\\leq & \frac{1}{8} \int_{0}^{T}\|\nabla u\|_{L^{\infty}} \mathrm{d} t+C\left(\int_{0}^{T}\|\nabla u\|_{L^{2}}^{2} \mathrm{~d} t\right)^{\frac{1}{2}}\left(\int_{0}^{T}\|\nabla \rho\|_{L^{3}}^{6}+\|\nabla \rho\|_{L^{3}}^{\frac{3}{2}} \mathrm{~d} t\right)^{\frac{1}{2}} \\\leq & \frac{1}{8} \int_{0}^{T}\|\nabla u\|_{L^{\infty}} \mathrm{d} t+C C_{0}^{\frac{1}{2}}.\end{aligned}$
将(3.75)-(3.80) 式代入(3.74) 式可以得到以下关键估计
(3.81) $\begin{equation} \begin{split} \int_0^T\Vert\nabla u\Vert_{L^\infty}\mathrm{d}t\leq CC_0^{\frac{1}{16(1+\delta_0)}}. \end{split} \end{equation}$
因此对(3.73) 式在$(0,T]$ 上积分有如下形式
(3.82) $\begin{aligned} & \Vert\nabla\rho\Vert^q_{L^q} +\int_0^T\Vert\nabla\rho\Vert^q_{L^q}\mathrm{d}t\nonumber\\ &\leq \Vert\nabla\rho_0\Vert^q_{L^q} +C\int_0^T\Vert\nabla\rho\Vert^q_{L^q} (\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2})\mathrm{d}t\\ &\quad+C\int_0^T\Vert\nabla\rho\Vert^q_{L^q} (\Vert\nabla F\Vert_{L^q} +\Vert\nabla u\Vert_{L^q})\mathrm{d}t +C\int_0^T(\Vert\nabla F\Vert_{L^q} +\Vert\nabla u\Vert_{L^q})\mathrm{d}t.\nonumber \end{aligned}$
由(2.2), (3.8), (3.11), (3.35), (3.51) 和 (3.81) 式有
(3.83) $\begin{aligned} \int_0^T\Vert\nabla F\Vert_{L^q}\mathrm{d}t &\leq C\int_0^T[(\Vert\nabla\rho\Vert_{L^q}+1)( \Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2}) +\Vert\dot u\Vert_{L^q}]\mathrm{d}t\nonumber\\ &\leq C\int_0^T(\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2} +\Vert\nabla\dot u\Vert_{L^2})\mathrm{d}t\\ &\leq CC_0^{\frac{1}{16(1+\delta_0)}}+C(\sup\limits_{t\in[\sigma(T)]}t^{\frac34}\Vert\nabla u\Vert_{L^2}^2)^{\frac12}\int_0^{\sigma(T)} t^{-\frac38}{\rm d}t\nonumber\\ &\quad +\Big(\int_0^{\sigma(T)}t^{\frac89}\Vert\nabla\dot u\Vert^2_{L^2}\mathrm{d}t\Big)^{\frac{1}{2}}\Big(\int_0^{\sigma(T)}t^{-\frac89} \mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\quad +\Big(\int_{\sigma(T)}^Tt^{1+\delta_0}(\Vert\nabla u\Vert^2_{L^2} +\Vert\nabla\dot u\Vert^2_{L^2})\mathrm{d}t\Big)^{\frac{1}{2}} \Big(\int_{\sigma(T)}^Tt^{-(1+\delta_0)}\mathrm{d}t\Big)^{\frac{1}{2}}\nonumber\\ &\leq CC_0^{\frac{1}{16(1+\delta_0)}}.\nonumber \end{aligned}$
将(3.83) 式代入(3.82) 式后再结合(3.16), (3.8) 式和 Gronwall 不等式可以得到
(3.84) $\begin{aligned} & \Vert\nabla\rho\Vert^q_{L^q} +\int_0^T\Vert\nabla\rho\Vert^q_{L^q}\mathrm{d}t\nonumber\\ &\leq (\Vert\nabla\rho_0\Vert^q_{L^q} +C\int_0^T(\Vert\nabla F\Vert_{L^q} +\Vert\nabla u\Vert_{L^2}+\Vert\nabla u\Vert_{L^\infty})\mathrm{d}t) {\rm e}^{C\int_0^T(\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2}+\Vert\nabla F\Vert_{L^q})\mathrm{d}t}\nonumber\\ &\leq (M^q +C_1C_0^{\frac{1}{16(1+\delta_0)}}){\rm e}^{C_2C_0^{\frac{1}{16(1+\delta_0)}}}\\ &\leq 2M^q,\nonumber \end{aligned}$
其中存在$C_0$ 适当小使得$C_1C_0^{\frac{1}{16(1+\delta_0)}}<\frac12M^q$ , 并且 ${\rm e}^{C_2C_0^{\frac{1}{16(1+\delta_0)}}}<\frac43$ . 即完成引理3.6 的证明.
引理 3.7 在定理1.1 的条件和先验假设(3.8) 下, 如果$(\rho,u)$ 是(1.4),(1.5) 式在$\Omega\times(0,T]$ 中的光滑解, 对于$2\leq q<\infty$ , 有如下不等式
(3.85) $\begin{equation} \int_0^T\Vert\nabla\rho\Vert_{L^q}\mathrm{d}t\leq 2M. \end{equation}$
证 对(3.73) 式两端同时除$\Vert\nabla\rho\Vert_{L^q}^{q-1}$ , 可得
(3.86) $\begin{equation} \frac{\mathrm{d}}{\mathrm{d}t}\Vert\nabla\rho\Vert_{L^q} +\Vert\nabla\rho\Vert_{L^q} \leq C\Vert\nabla\rho\Vert_{L^q} (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2}) +C(\Vert\nabla F\Vert_{L^q}+\Vert\nabla u\Vert_{L^q}), \end{equation}$
再继续对(3.86) 式在$(0,T]$ 上积分有
(3.87) $\begin{aligned} & \Vert\nabla\rho\Vert_{L^q} +\int_0^T\Vert\nabla\rho\Vert_{L^q}\mathrm{d}t\nonumber\\ &\leq \Vert\nabla\rho_0\Vert_{L^q} +C\int_0^T\Vert\nabla\rho\Vert_{L^q} (\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2})\mathrm{d}t +C\int_0^T(\Vert\nabla F\Vert_{L^q} +\Vert\nabla u\Vert_{L^q})\mathrm{d}t. \end{aligned}$
结合 Gronwall 不等式,(3.81) 和(3.83) 式得到
(3.88) $\begin{aligned} & \Vert\nabla\rho\Vert_{L^q} +\int_0^T\Vert\nabla\rho\Vert_{L^q}\mathrm{d}t\nonumber\\ &\leq (\Vert\nabla\rho_0\Vert_{L^q} +C\int_0^T(\Vert\nabla F\Vert_{L^q} +\Vert\nabla u\Vert_{L^q})\mathrm{d}t) {\rm e}^{\int_0^T(\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2})\mathrm{d}t}\\ &\leq (M +C_3C_0^{\frac{1}{16(1+\delta_0)}}){\rm e}^{C_4C_0^{\frac{1}{16(1+\delta_0)}}}\nonumber\\ &\leq 2M,\nonumber \end{aligned}$
其中存在$C_0$ 适当小使得$C_3C_0^{\frac{1}{16(1+\delta_0)}}<\frac12 M$ , 并且${\rm e}^{C_4C_0^{\frac{1}{16(1+\delta_0)}}}<\frac43$ . 就可以得到引理的证明.
引理 3.8 在定理1.1 的条件和先验假设(3.8) 下, 如果$(\rho,u)$ 是(1.4),(1.5) 式在$\Omega\times(0,T]$ 中的光滑解, 有如下不等式
(3.89) $\begin{equation} \int_0^T\Vert\nabla\rho\Vert_{L^2}^{2} t^{1+\delta_0}\mathrm{d}t \leq 4^{1+\delta_0}(1+\delta_0)^{1+\delta_0}M^2. \end{equation}$
证 对(3.73) 式中取$q=2$ 并且对于不等式两端同乘 $t^{1+\delta_0}$ 可得
$\begin{align*} & \frac{\mathrm{d}}{\mathrm{d}t} (t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2}) +\int_\Omega t^{1+\delta_0}(\mu(\rho)+\lambda(\rho))^{-1}\rho^\gamma\vert\nabla\rho\vert^2\mathrm{d}r\mathrm{d}z\nonumber\\ &\leq Ct^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} (\Vert\nabla u\Vert_{L^\infty} +\Vert u\Vert_{L^\infty}) +(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert^2_{L^2}\\ &\quad+C t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}(\Vert\nabla F\Vert_{L^2}+\Vert\nabla u\Vert_{L^2}),\nonumber \end{align*}$
对上式再关于$(0,T]$ 积分和先验假设(3.8) 有
(3.90) $\begin{aligned} & t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} +\int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2}\mathrm{d}t\nonumber\\ &\leq C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} (\Vert\nabla u\Vert_{L^\infty} +\Vert u\Vert_{L^\infty})\mathrm{d}t +\int_0^T(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}(\Vert\nabla F\Vert_{L^2}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t.\nonumber \end{aligned}$
由(3.8) 式和 (3.69) 式, 取$T_3=4(1+\delta_0)$ , 得
(3.91) $\begin{aligned} \int_0^T(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t &=\int_0^{T_3}(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t +\int^T_{T_3}(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t\nonumber\\ &\leq (1+\delta_0)T_3^{\delta_0}\int_0^{T_3}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t +\frac{(1+\delta_0)}{T_3}\int^T_{T_3}t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t\\ &\leq 2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2 +\frac{1}{4}\int^T_{T_3}t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} \mathrm{d}t.\nonumber \end{aligned}$
(3.92) $\begin{aligned} & \int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2} (\Vert\nabla F\Vert_{L^2}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t\nonumber\\ &\leq \frac{1}{4} \int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2\mathrm{d}t \!+\!C\int_0^T t^{1+\delta_0}(\Vert\nabla\dot u\Vert^2_{L^2} +\Vert\nabla u\Vert^2_{L^2})\mathrm{d}t\!+\!C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2 \Vert\nabla u\Vert_{L^\infty}\mathrm{d}t\nonumber\\ &\leq CC_0^{\frac{1}{2(1+\delta_0)}}+ \frac{1}{4} \int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2\mathrm{d}t +C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2 \Vert\nabla u\Vert_{L^\infty}\mathrm{d}t, \end{aligned}$
$\begin{equation*} \begin{split} \Vert\nabla F\Vert_{L^2}\leq (\Vert\nabla\rho\Vert_{L^2}+1)( \Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2}) +\Vert\nabla\dot u\Vert_{L^2}. \end{split} \end{equation*}$
将(3.91), (3.92) 式代入(3.90) 式得到
(3.93) $\begin{equation} \begin{split} & t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} +\frac{1}{2}\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2\mathrm{d}t\\ &\leq C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} (\Vert\nabla u\Vert_{L^\infty} +\Vert \nabla u\Vert_{L^2})\mathrm{d}t +2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2+CC_0^{\frac{1}{2(1+\delta_0)}}, \end{split} \end{equation}$
再结合(2.1),(3.81) 式和 Gronwall 不等式可知
(3.94) $\begin{aligned} & t^{1+\delta_0}\Vert\nabla\rho\Vert^2_{L^2} +\frac{1}{2}\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^2}^2\mathrm{d}t\nonumber\\ &\leq (2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2+CC_0^{\frac{1}{2(1+\delta_0)}}) {\rm e}^{\int_0^T\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2}\mathrm{d}t}\\ &\leq (2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2+C_5C_0^{\frac{1}{2(1+\delta_0)}}){\rm e}^{C_6C_0^{\frac{1}{16(1+\delta_0)}}}\nonumber\\ &\leq 2^{3+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2,\nonumber \end{aligned}$
其中存在 $C_0$ 适当小使得 ${\rm e}^{C_6C_0^{\frac{1}{16(1+\delta_0)}}}<2$ , 且 $C_5C_0^{\frac{1}{2(1+\delta_0)}}<2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^2$ . 即得到引理的证明.
现在我们继续推导密度的一致上下界, 这是获得所有高阶估计的关键, 进而将强解扩展到全局. 我们使用的方法主要是引理2.3 并结合前面已有的估计.
引理 3.9 在定理1.1 和命题3.1 的条件下, 如果$(\rho,u)$ 是(1.4),(1.5) 式在$\Omega\times(0,T]$ 中的光滑解, 有如下不等式
(3.95) $\begin{equation} \frac{2}{3}\underline{\rho}\leq\inf_{\Omega\times(0,T]}\rho\leq\sup\limits_{\Omega\times(0,T]}\rho\leq \frac{3}{2}\overline{\rho}. \end{equation}$
$\begin{equation*} \begin{split} D_t(\rho r)\triangleq g_1(\rho)+b_1'(t), \end{split} \end{equation*}$
$\begin{equation*} \begin{split} D_t(\rho r)\triangleq \rho_tr+u\cdot\nabla(\rho r), g_1(\rho)\triangleq-\rho r\frac{\int_{\widetilde{\rho}}^\rho\frac{\gamma s^{\gamma-1}}{\mu(s)}{\rm d}s}{1+\frac{\lambda(\rho)}{\mu(\rho)}}, b_1(t)\triangleq-\int_0^t\frac{\rho rF}{1+\frac{\lambda(\rho)}{\mu(\rho)}}\mathrm{d}t. \end{split} \end{equation*}$
对于$t\in[T]$ 和所有 $0\leq t_1<t_2\leq T$ , 由引理 (3.16),(3.81),(3.69) 式有
(3.96) $\begin{aligned} \vert b_1(t_2)-b_1(t_1)\vert &\leq C\int_{t_1}^{t_2}\Vert\frac{\rho rF}{1+\frac{\lambda(\rho)}{\mu(\rho)}}\Vert_{L^\infty}\mathrm{d}t\nonumber\\ &\leq C \int_0^T\Vert F\Vert^{\frac{q-2}{2(q-1)}}_{L^2}\Vert\nabla F\Vert^{\frac{q}{2(q-1)}}_{L^q}\mathrm{d}t\nonumber\\ &\leq C \int_{t_1}^{t_2}(\Vert\nabla u\Vert_{L^2} +\Vert\int_{\widetilde{\rho}}^\rho\frac{\gamma s^{\gamma-1}}{\mu(s)}\mathrm{d}s\Vert_{L^2})^{\frac{q-2}{2{q-1}}}\\ &\ \ \ \ \times(\Vert\nabla\rho\Vert_{L^q} \Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2} +\Vert\dot u\Vert_{L^q})^{\frac{q}{2{q-1}}}\mathrm{d}t\nonumber\\ &\leq C\int_{t_1}^{t_2} \Vert\nabla\rho\Vert_{L^q} \Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2} +\Vert\nabla\dot u\Vert_{L^2}\mathrm{d}t+(t_2-t_1)\sup\limits_{t\in[t_1,t_2]}\Vert\rho-{\widetilde{\rho}}\Vert_{L^2}\nonumber\\ &\leq C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta+(t_2-t_1)C_0^{\frac12},\nonumber \end{aligned}$
这里$\beta={\frac{1}{16(1+\delta_0)}}$ . 我们可以选择 (2.3) 式中的$N_0$ 和$N_1$ 如下
$\begin{equation*} \begin{split} N_1=C_0^{\frac12}, N_0=C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta, \end{split} \end{equation*}$
并且选择(2.7)式中的$\overline{\zeta}=\widetilde{\rho}$ , 则对于所有$\zeta\geq2\widetilde{\rho}$ 有
$\begin{equation*} \begin{split} g_1(\zeta)=-\zeta r\frac{\int_{\widetilde{\rho}}^\zeta\frac{\gamma s^{\gamma-1}}{\mu(s)}{\rm d}s}{1+\frac{\lambda(\zeta)}{\mu(\zeta)}} \leq-C_0^{\frac12}. \end{split} \end{equation*}$
(3.97) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}\Vert\rho\Vert_{L^\infty}\leq\max\{\overline{\rho},2\widetilde{\rho}\}+N_0 \leq\overline{\rho}+C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta \leq2\overline{\rho}, \end{split} \end{equation}$
其中$C_0\leq(\frac{\overline{\rho}}{2C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)} )^{\frac{1}{\beta}}$ .
对于$(\rho r)^{-1}$ 进行类似的处理
$\begin{equation*} \begin{split} D_t(\rho r)^{-1}=(\rho r)^{-1}\mathrm{div}u\triangleq g_2(\rho)+b_2'(t), \end{split} \end{equation*}$
$\begin{equation*} \begin{split} g_2(\rho^{-1})\triangleq(\rho r)^{-1}\frac{\int_{\widetilde{\rho}}^\rho\frac{\gamma s^{\gamma-1}}{\mu(s)}{\rm d}s}{1+\frac{\lambda(\rho)}{\mu(\rho)}}, b_2(t)\triangleq\int_0^t\frac{(\rho r)^{-1}F}{1+\frac{\lambda(\rho)}{\mu(\rho)}}\mathrm{d}t. \end{split} \end{equation*}$
对于$t\in[T]$ 对于所有 $0\leq t_1<t_2\leq T$ , 由(3.96) 式可知
$\begin{aligned} \vert b_2(t_2)-b_2(t_1)\vert &\leq C\int_{t_1}^{t_2}\Vert\frac{(\rho r)^{-1}F}{1+\frac{\lambda(\rho)}{\mu(\rho)}}\Vert_{L^\infty}\mathrm{d}t\nonumber\\ &\leq C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta+(t_2-t_1)C_0^{\frac12},\nonumber \end{aligned}$
其中的$\beta={\frac{1}{16(1+\delta_0)}}$ . 我们可以选择(2.3) 式中的 $N_0$ 和 $N_1$ 如下
$\begin{equation*} \begin{split} N_1=C_0^{\frac12}, N_0=C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta, \end{split} \end{equation*}$
并且选择(2.7) 式中的 $\overline{\zeta}=\widetilde{\rho}^{-1}$ . 则对于所有 $\zeta\geq2\widetilde{\rho}^{-1}$ 有
$\begin{equation*} \begin{split} g_2(\zeta)=\zeta r^{-1}\frac{\int_{\widetilde{\rho}}^{\zeta^{-1}}\frac{\gamma s^{\gamma-1}}{\mu(s)}{\rm d}s}{1+\frac{\lambda(\zeta)}{\mu(\zeta)}} \leq-C_0^{\frac12}. \end{split} \end{equation*}$
(3.98) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}\Vert\rho^{-1}\Vert_{L^\infty}\leq\max\{{\underline{\rho}}^{-1},2\widetilde{\rho}^{-1}\}+N_0 \leq{\underline{\rho}}^{-1}+C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)C_0^\beta \leq2{\underline{\rho}}^{-1}, \end{split} \end{equation}$
其中$C_0\leq(\frac{1}{2C(\underline{\rho},\overline{\rho},{\widetilde{\rho}},M)\underline{\rho}})^{\frac{1}{\beta}} $ .
最后, 结合 (3.97) 式和 (3.98) 式就完成了引理3.9的证明.
引理 3.10 在定1.1 的条件下, 对于 $\tau\in(0,T)$ , 存在正常数 $C(\tau)$ , 使得 $(\rho,u)$ 有如下不等式成立
(3.99) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}\int_\Omega\rho\vert u_t\vert^2\mathrm{d}r\mathrm{d}z +\int_0^T\int_\Omega\vert\nabla u_t\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\leq C, \end{split} \end{equation}$
(3.100) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}\int_\Omega\vert\nabla u_t\vert^2\mathrm{d}r\mathrm{d}z +\int_0^T\int_\Omega\rho u_{tt}^2\mathrm{d}r\mathrm{d}z\mathrm{d}t\leq C, \end{split} \end{equation}$
(3.101) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}(\Vert\rho-\widetilde{\rho}\Vert_{H^3} +(\Vert P(\rho)-P(\widetilde{\rho})\Vert_{H^3})\leq C, \end{split} \end{equation}$
(3.102) $\begin{equation} \begin{split} \sup\limits_{t\in[T]}(\Vert\nabla u_t\Vert_{L^2} +\Vert\nabla u\Vert_{H^2}) +\int_0^T(\Vert\nabla u\Vert^2_{H^3}+\Vert\nabla u_t\Vert^2_{H^1})\mathrm{d}t \leq C, \end{split} \end{equation}$
(3.103) $\begin{equation} \begin{split} \sup\limits_{t\in[\tau,T]}(\Vert\nabla u_t\Vert_{H^1} +\Vert\nabla^4u\Vert_{L^2}) +\int_\tau^T\int_\Omega\vert\nabla u_{tt}\vert^2\mathrm{d}r\mathrm{d}z\mathrm{d}t \leq C(\tau). \end{split} \end{equation}$
证 引理3.10 的证明与文献 [16 ] 中证明高阶估计类似, 在此省略.
4 定理1.1 证明
有了第 3 节中的所有先验估计, 就可以证明本文的主要结果.
定理 1.1 的证明 根据引理2.1, 存在$T'$ 使得(1.4),(1.5) 式在 $\mathbb{R}^2\times(0,T']$ 有一个唯一的强解$(\rho,u)$ . 我们将用先验估计,命题2.1 和引理3.10 来扩展局部强解到全局.
$\begin{align*} 0<\underline{\rho}\leq\rho_0\leq\overline{\rho}, \Vert\nabla\rho_0\Vert_{L^p} \leq M, \end{align*}$
由于 $C_0\leq\varepsilon$ , 则存在 $T_1\in(0,T']$ 使得对于 $T=T_1$ , (3.8) 式成立.
(4.1) $\begin{aligned} T^*=\sup\{ T \vert (3.8) \mbox{式成立}\}, \end{aligned}$
则 $T^*\geq T_1>0$ . 因此对于有限的 $T$ ($0<\tau<T\leq T^*$ ) , 根据引理 3.10 有
(4.2) $\begin{equation} \begin{split} \nabla u_t,\nabla^3u\in C([\tau,T];L^2\cap L^4), \nabla u,\nabla^2u\in C([\tau,T];L^2\cap C(\overline{\Omega})), \end{split} \end{equation}$
$\begin{equation*} \begin{split} L^{\infty}(\tau,T;H^1)\cap H^1(\tau,T;H^{-1})\hookrightarrow C([\tau,T];L^q) \mbox{对} q\in[1,\infty). \end{split} \end{equation*}$
由于 (3.99),(3.100),(3.103) 式可得
$\begin{equation*} \begin{split} &\int^T_\tau\Vert(\rho\vert u_t\vert^2)_t\Vert_{L^1}\mathrm{d}t\\ &\leq\int^T_\tau\Vert\rho_t\vert u_t\vert^2\Vert_{L^1} +2\Vert\rho u_t\cdot u_{tt}\Vert_{L^1})\mathrm{d}t\\ &\leq C\int^T_\tau(\Vert\rho \vert \mathrm{div}u\vert\vert u_t\vert^2\Vert_{L^1} +\Vert\vert u\vert\vert\nabla\rho\vert\vert u_t\vert^2\Vert_{L^1} +\Vert\rho^{\frac{1}{2}}u_t\Vert_{L^2}\Vert\rho^{\frac{1}{2}}u_{tt}\Vert_{L^2})\mathrm{d}t\\ &\leq C\int^T_\tau(\Vert\rho\vert u_t\vert^2\Vert_{L^1}\Vert\nabla u\Vert_{L^\infty} +\Vert u\Vert_{L^6}\Vert\nabla\rho\Vert_{L^2} \Vert u_t\Vert_{L^6}^2 +\Vert\rho^{\frac{1}{2}}u_{tt}\Vert_{L^2})\mathrm{d}t\\ &\leq C. \end{split} \end{equation*}$
$\rho^{\frac{1}{2}}u_t\in C([\tau,T];L^2).$
(4.3) $\begin{equation} \rho^{\frac{1}{2}}\dot u,\nabla\dot u\in C([\tau,T];L^2). \end{equation}$
(4.4) $\begin{equation} T^*=\infty. \end{equation}$
否则如果 $T^*<\infty$ , 那么根据命题 3.1, (3.8) 式对于 $T=T^*$ 成立. 由引理 3.10 和 (4.3) 式可得 $(\rho(r,z,T^*),u(r,z,T^*))$ 满足 (1.8) 式. 因此, 可将 $(\rho(r,z,T^*),u(r,z,T^*))$ 看作引理 2.1 中的初值 $(\rho_0,u_0)$ , 而 $(\rho(r,z,T^*),u(r,z,T^*))$ 满足正则性条件(1.8), 那么由引理 2.1 可知存在有限时间 $T^{**}>T^*>0$ , 使得问题(1.4), (1.5) 在 $\Omega\times(T^*,T^{**}]$ 上存在唯一的强解 $(\rho,u)$ , 即存在 $T^{**}>T^*$ , 使得 (3.8) 式对 $T=T^{**}$ 成立, 这与 (4.1) 式相矛盾, 这就说明了 (4.4) 式成立. 要完成定理 1.1 的证明, 现在我们只需证 (1.11) 式成立.
对 (3.73) 式两端同乘 $t^{1+\delta_0}$ 并且取 $q=3$ , 可以得到
(4.5) $\begin{equation} \begin{split} & \frac{\mathrm{d}}{\mathrm{d}t}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 +t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\\ &\leq (1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert_{L^3}^3+Ct^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2})\\ &\quad+Ct^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^{2}(\Vert\nabla F\Vert_{L^3}+\Vert\nabla u\Vert_{L^3}), \end{split} \end{equation}$
再继续对 (4.5) 式在 $(0,T]$ 上积分有
(4.6) $\begin{aligned} & t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 +\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t\nonumber\\ &\leq \int_0^T(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t\nonumber +C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2})\mathrm{d}t\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^{2}(\Vert\nabla F\Vert_{L^3} +\Vert\nabla u\Vert_{L^3})\mathrm{d}t. \end{aligned}$
接下来的证明跟引理 3.8 类似, 由 (3.69) 式, 取 $T_4=4(1+\delta_0)$ , 得
(4.7) $\begin{aligned} \int_0^T(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t &=\int_0^{T_4}(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t +\int^T_{T_4}(1+\delta_0)t^{\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t\nonumber\\ &\leq (1+\delta_0)T_4^{\delta_0}\int_0^{T_4}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t +\frac{(1+\delta_0)}{T_4}\int^T_{T_4}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t\\ &\leq 2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^3 +\frac{1}{4}\int^T_{T_4}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 \mathrm{d}t.\nonumber \end{aligned}$
结合 (3.16),(3.51),(3.81) 式, Poincare 不等式和引理 2.2 (参数为 $m=2,r=2,q=3,\theta=\frac{1}{3}$ ) 有
(4.8) $\begin{aligned} & \int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^{2} (\Vert\nabla F\Vert_{L^3}+\Vert\nabla u\Vert_{L^3})\mathrm{d}t\nonumber\\ &\leq C\int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^{2}(\Vert\dot u\Vert_{L^3} +\Vert\nabla u\Vert_{L^3})\mathrm{d}t+C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert^3_{L^3} (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^3})\mathrm{d}t\nonumber\\ &\leq C(\int_0^T t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^{3}\mathrm{d}t)^{\frac{2}{3}}(\int_0^T t^{1+\delta_0}(\Vert\dot u\Vert_{L^3}^3 +\Vert\nabla u\Vert_{L^3}^3)\mathrm{d}t)^{\frac{1}{3}}\nonumber\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t\\ &\leq\frac{1}{4}\int^T_{0}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t +C\int_0^T t^{1+\delta_0}(\Vert\dot u\Vert_{L^2}\Vert\nabla\dot u\Vert_{L^2}^2 +\Vert\nabla u\Vert_{L^2}^2\Vert\nabla u\Vert_{L^\infty}) \mathrm{d}t \nonumber\\ &\quad+C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t\nonumber\\ &\leq\frac{1}{4}\int^T_{0}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t +C\sup\limits_{t\in[t]}(\Vert\dot u\Vert_{L^2})\int_0^Tt^{1+\delta_0}\Vert\nabla\dot u\Vert_{L^2}^2 \mathrm{d}t\nonumber\\ &\quad+C\sup\limits_{t\in[t]}(t^{1+\delta_0}\Vert\nabla u\Vert_{L^2}^2)\int_0^T \Vert\nabla u\Vert_{L^\infty}\mathrm{d}t +C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t\nonumber\\ &\leq\frac{1}{4}\int^T_{0}t^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t +CC_0^{\frac{1}{2(1+\delta_0)}} +CC_0^{\frac{9}{16(1+\delta_0)}} \nonumber\\ &\quad +C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3 (\Vert\nabla u\Vert_{L^\infty}+\Vert\nabla u\Vert_{L^2})\mathrm{d}t,\nonumber \end{aligned}$
$\begin{equation*} \Vert\nabla F\Vert_{L^3}\leq C[\Vert\dot u\Vert_{L^3}+ (\Vert\nabla\rho\Vert_{L^3}+1) (\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^3})]. \end{equation*}$
将 (4.7),(4.8) 式代入 (4.6) 式得到
(4.9) $\begin{aligned} & t^{1+\delta_0}\Vert\nabla\rho\Vert^3_{L^3} +\frac{1}{2}\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t\\ &\leq C\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert^3_{L^3} (\Vert\nabla u\Vert_{L^\infty} +\Vert \nabla u\Vert_{L^2})\mathrm{d}t +2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^3+CC_0^{\frac{1}{2(1+\delta_0)}},\nonumber \end{aligned}$
再结合 (2.1),(3.81) 式和 Gronwall 不等式可知
(4.10) $\begin{aligned} & t^{1+\delta_0}\Vert\nabla\rho\Vert^3_{L^3} +\frac{1}{2}\int_0^Tt^{1+\delta_0}\Vert\nabla\rho\Vert_{L^3}^3\mathrm{d}t\nonumber\\ &\leq (2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^3+CC_0^{\frac{1}{2(1+\delta_0)^2}}) {\rm e}^{\int_0^T\Vert\nabla u\Vert_{L^\infty} +\Vert\nabla u\Vert_{L^2}\mathrm{d}t}\\ &\leq (2^{1+2\delta_0}(1+\delta_0)^{1+\delta_0}M^3+CC_0^{\frac{1}{2(1+\delta_0)}}) {\rm e}^{CC_0^{\frac{1}{16(1+\delta_0)}}}\nonumber\\ &\leq C.\nonumber \end{aligned}$
(4.11) $\begin{equation} \Vert\nabla\rho\Vert_{L^3}^3<Ct^{-(1+\delta_0)}. \end{equation}$
(4.12) $\begin{equation} \vert\rho-\widetilde{\rho}\vert\leq\Vert\rho-\widetilde{\rho}\Vert_{L^2}^{\frac{1}{4}} \Vert\nabla\rho\Vert_{L^3}^{\frac{3}{4}} \leq Ct^{-\frac{3(1+\delta_0)}{8}}. \end{equation}$
参考文献
View Option
[1]
Hoff D , Smoller J . Non-formation of vacuum states for compressible Navier-Stokes equations
Commun Math Phys , 2001 , 216 (2 ): 255 -276
[本文引用: 1]
[2]
Kanel J I . A model system of equations for the one-dimensional motion of a gas
Differ Uravn , 1968 , 4 (4 ): 721 -734
[本文引用: 1]
[3]
Kazhikhov A V , Shelukhin V V . Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas
J Appl Math Mech , 1977 , 41 : 282 -291 ]
[本文引用: 1]
[4]
Liu T P , Smoller J . On the vacuum state for the isentropic gas dynamics equations
Adv Appl Math , 1980 , 1 (4 ): 345 -359
[本文引用: 1]
[5]
Nash J . Le probl$\grave{\mathrm{e}}$ me de Cauchy pour les $\grave{\mathrm{e}}$ quations diff$\grave{\mathrm{e}}$ rentielles d'un fluide g$\grave{\mathrm{e}}$ n$\grave{\mathrm{e}}$ ral
Bull Soc Math Fr , 1962 , 90 : 487 -497
[本文引用: 1]
[6]
Itaya N . On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids
Kodia Math Sem Rep , 1971 , 23 : 60 -120
[本文引用: 1]
[7]
Tani A . On the first initial-boundary value problem of compressible viscous fluid motion
Publ Res Inst Math Sci Kytt Univ , 1971 , 13 : 193 -253
[本文引用: 1]
[8]
Cho Y , Kim H . On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities
Manuscr Math , 2006 , 120 : 91 -129
[本文引用: 2]
[9]
Luo Z . Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum
Commun Math Sci , 2012 , 10 (2 ): 527 -554
[本文引用: 1]
[10]
Matsumura A , Nishida T . The initial value problem for the equations of motion of viscous and heat-conductive gases
J Math Kyoto Univ , 1980 , 20 : 67 -104
[本文引用: 2]
[11]
Hoff D . Discontinuous solution of the Navier-Stokes equations for multi-dimensional heat-conducting fluids
Arch Ration Mech Anal , 1997 , 193 : 303 -354
[本文引用: 1]
[12]
Danchin R . Global existence in critical spaces for compressible Navier-Stokes equations
Invent Math , 2000 , 141 : 579 -614
[本文引用: 1]
[13]
Lions P L . Mathematical Topics in Fluid Dynamics. Compressible Models . Oxford : Clarendon Press , 1998
[本文引用: 1]
[14]
Jiang S , Zhang P . Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids
J Math Pures Appl , 2003 , 82 (9 ): 949 -973
[本文引用: 1]
[15]
Feireisl E , Novotn$\acute{\mathrm{y}}$ A , Petzeltov$\acute{\mathrm{a}}$ H . On the existence of globally defined weak solutions to the Navier-Stokes equations
J Math Fluid Mech , 2001 , 3 (4 ): 358 -392
[本文引用: 1]
[16]
Huang X D , Li J , Xin Z P . Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations
Commun Pure Appl Math , 2012 , 65 : 549 -585
[本文引用: 4]
[17]
Liu T P , Xin Z P , Yang T . Vacuum states of compressible flow
Discrete Contin Dyn Syst , 1998 , 4 : 1 -32
[本文引用: 1]
[18]
Evans C . Partial Differential Equations
Providence: American Mathematical Society , 2010
[本文引用: 1]
[19]
Tatsien L , Qin T . Physics and Partial Differential Equations . Beijing : Higher Education Press , 2012
[本文引用: 1]
[20]
Vaigant V A , Kazhikhov A V . On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid
(Russian) Sibirsk Mat Zh , 1995 , 6 (36 ): 1283 -1316 [translation in Siberian Math J, 1995, 6(36): 1108-1141]
[本文引用: 1]
[21]
Jiu Q S , Wang Y , Xin Z P . Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum
J Math Fluid Mech , 2014 , 3 (16 ): 483 -521
[本文引用: 1]
[22]
Huang X D , Li J . Existence and blowup behavior of global strong solutions to the twodimensional baratropic compressible Navier-Stokes system with vacuum and large initial data
J Math Pures Appl , 2016 , 106 (1 ): 123 -154
[本文引用: 1]
[23]
Wang M , Li Z L , Guo Z H . Global solutions to a 3D axisymmetric compressible Navier-Stokes system with density-dependent viscosity
Acta Math Sci , 2022 , 2 (42 ): 521 -539
[本文引用: 2]
[24]
Guo Z H , Wang M , Wang Y . Global solution to 3D spherically symmetric compressible Navier-Stokes equations with large data
Nonlinear Analysis: Real World Applications , 2018 , 40 : 260 -289
[本文引用: 1]
[25]
Bresch D , Desjardins B , Lin C K . On some compressible fluid models: Korteweg, lubrication, and shallow water systems
Comm Partial Differential Equations , 2003 , 28 : 843 -868
[本文引用: 1]
[26]
Bresch D , Desjardins B . Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model
Comm Math Phys , 2003 , 238 : 211 -223
[本文引用: 1]
[27]
Mellet A , Vasseur A . On the barotropic compressible Navier-Stokes equations
Comm Partial Differential Equations , 2007 , 32 : 431 -452
[本文引用: 1]
[28]
Guo Z H , Jiu Q S , Xin Z P . Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients
SIAM J Math Anal , 2008 , 39 (5 ): 1402 -1427
[本文引用: 2]
[29]
Guo Z H , Li H L , Xin Z P . Lagrange structure and dynamical for sphericall symmetric compressible Navier-Stokes equations
Comm Math Phys , 2012 , 309 : 371 -412
[本文引用: 2]
[30]
Li J , Xin Z P . Global existence of weak solutions to the barotropic compressible Navier-Stokes flows with degenerate viscosities . arXiv:1504.06826
[本文引用: 2]
[31]
Vasseur A F , Yu C . Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations
Invent Math , 2016 , 206 (3 ): 935 -974
[本文引用: 2]
[32]
Bresch D , Vasseur A F , Yu C . Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities
J Eur Math Soc , 2022 , 24 (5 ): 1791 -1837
[本文引用: 2]
[33]
Li Y C , Pan R H , Zhu S G . On classical solutions to 2D shallow water equations with degenerate viscosities
J Math Fluid Mech , 2017 , 19 : 151 -190
[本文引用: 2]
[34]
Zhu S G . Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum
J Differ Equ , 2015 , 230 : 84 -119
[本文引用: 1]
[35]
Li Y C , Pan Y H , Zhu S G . On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum
Arch Ration Mech Anal , 2019 , 234 : 1281 -1334
[本文引用: 1]
[36]
Zhu S G . Well-Posedness and Singularity Formation of Compressible Isentropic Navier-Stokes Equations
[Ph.D Thesis]. Shanghai: Shanghai Jiao Tong University , 2015
[本文引用: 1]
[37]
Xin Z P , Zhu S G . Well-posedness of the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum
J Math Pures Appl , 2021 , 152 (9 ): 94 -144
[本文引用: 1]
[38]
Xin Z P , Zhu S G . Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum
Adv Math , 2021 , 393 : 108072
[本文引用: 1]
[39]
Guo Z H , Song W J . Global well-posedness and large-time behavior of classical solutions to the 3D Navier-Stokes system with changed viscosities
J Math Phys , 2019 , 60 (3 ): 031502
[本文引用: 3]
[40]
Hoff D . Dynamics of singularity surfaces for compressible, viscous flows in two space dimesions
Comm Pure Appl Math , 2002 , 55 (11 ): 1365 -1407
[本文引用: 1]
[41]
Novotn$\acute{\mathrm{y}}$ A , Stra$\breve{\mathrm{s}}$ kraba I . Introduction to the Mathematical Theory of Compressible Flow . Oxford : Oxford Univ Press , 2004
[本文引用: 1]
[42]
Zlotnik A A . Uniform estimates and stabilization of symmetric solutions of a system of quasi-linear equations
Diff Uravn , 2000 , 5 (36 ): 634 -646 [translation in Differ Equ, 2000, 5 (36): 701-716]
[本文引用: 1]
[43]
Guo Z H , Zhang X Y . Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum
Acta Math Sci , 2024 , 44B (1 ): 247 -274
[本文引用: 1]
Non-formation of vacuum states for compressible Navier-Stokes equations
1
2001
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
A model system of equations for the one-dimensional motion of a gas
1
1968
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Unique global solution with respect to time of initial-boundary value problems for one-dimensional equations of a viscous gas
1
1977
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
On the vacuum state for the isentropic gas dynamics equations
1
1980
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Le probl$\grave{\mathrm{e}}$ me de Cauchy pour les $\grave{\mathrm{e}}$ quations diff$\grave{\mathrm{e}}$ rentielles d'un fluide g$\grave{\mathrm{e}}$ n$\grave{\mathrm{e}}$ ral
1
1962
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
On the Cauchy problem for the system of fundamental equations describing the movement of compressible viscous fluids
1
1971
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
On the first initial-boundary value problem of compressible viscous fluid motion
1
1971
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities
2
2006
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
... 引理 2.1 (局部适定性文献 [8 ,33 ]) 对 $\widetilde{\rho}>0$ , 以及 $\gamma>1, \delta_1\geq0, \delta_2\geq0$ , 假设初始数据 $(\rho_0,u_0)$ 满足正则性条件 (1.8), 则存在有限时间 $T^*>0$ , 使得问题 (1.4),(1.5) 在 $\Omega\times(0,T^*]$ 上存在唯一的强解 $(\rho,u)$ . ...
Local existence of classical solutions to the two-dimensional viscous compressible flows with vacuum
1
2012
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
The initial value problem for the equations of motion of viscous and heat-conductive gases
2
1980
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
... 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Discontinuous solution of the Navier-Stokes equations for multi-dimensional heat-conducting fluids
1
1997
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Global existence in critical spaces for compressible Navier-Stokes equations
1
2000
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
1
1998
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Axisymmetric solutions of the 3D Navier-Stokes equations for compressible isentropic fluids
1
2003
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
On the existence of globally defined weak solutions to the Navier-Stokes equations
1
2001
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations
4
2012
... 在方程 $(1.1)_2$ 中 $\delta_1=\delta_2=0$ 的情况下, 可压缩 Navier-Stokes 方程组 (下称CNS) 的全局适定性得到了广泛的研究. 特别是一维的理论是比较完善的, 见文献 [1 ⇓ ⇓ -4 ] 和其中的参考文献. 在多维情况下, Nash[5 ] , Itaya[6 ] 和 Tani[7 ] 在无真空条件下建立了初值问题和初边值问题经典解的局部适定性理论. Cho 等[8 ] 和 Luo[9 ] 分别在三维和二维情况下研究了真空下的强解和经典解的局部适定性. 其中一个重要问题是, 这些对于局部解的解决方法能否扩展到全局. 沿着这条思路的第一个开创性工作是 Matsumura 等[10 ] 的结果, 基于 CNS 耗散结构的精细能量估计和线性化的谱分析, 他们在 $H^s(\mathbb{R}^3)(s\geq3)$ 中得到了初值接近其远场状态 (非真空平衡状态时) 的全局经典解. 该理论已由 Hoff[11 ] 推广到不连续解, 由 Danchin[12 ] 推广到 Besov 空间. 需要注意的是, 文献 [10 ] 的理论要求解在非真空远场状态下具有较小的振荡, 从而使密度严格远离真空. 一个很自然并且重要的问题是, 是否有适当的理论适用于包含真空的初始数据. 在这个问题的研究上, 做出主要突破的是 Lions[13 ] , 他用弱收敛的方法获得了具有有限能量和大初值的重整化弱解的存在性, 其中 $\gamma\geq9/5$ , 这个弱解可以包含真空情形 (对于三维球对称情形, Jiang 等[14 ] 将其推广到 $\gamma>1$ ; 后来, Feireisl 等[15 ] 将这一结果推广到 $\gamma>3/2$ ). 然而, 对这种重整化弱解的正则性和唯一性还知之甚少. 近来, Huang 等[16 ] 得到了包含真空的具有小能量大振荡的全局经典解. ...
... 本文研究了三维空间中具有轴对称初值的变粘等熵 CNS, 在初始密度远离真空下, 得到了具有任意小能量大振荡初值的全局轴对称强解, 流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$ . 注意到, 对比文献 [23 ] 中考虑的轴对称初值下的 Vaigant-Kazhikhov 模型 ($\delta_1=0,\delta_2>0$ ) , 此时 $\delta_1>0$ 将带来新的困难, 使得我们需要得到密度导数的可积性估计. 本文证明的关键在于得到 $\int_0^{\infty}\Vert\nabla u\Vert_{L^{\infty}}{\rm d}t$ 和 $\sup\limits_{t\in[0,\infty)}\Vert\nabla\rho\Vert_{L^{q}}(2\leq q<\infty)$ , 进一步得到 $\rho$ 的一致的上下界. 通过适用文献 [16 ,39 ,40 ] 中的方法和结构分析,我们从能量估计和初始层分析出发, 得到了新的 $\Vert u\Vert_{H^1}$ , $\Vert \dot{u}\Vert_{H^1}$ 以及 $\Vert\nabla\rho\Vert_{L^{q}}$ 的时间加权估计.利用这些关键的估计, 结合动量方程, 可以得到 ...
... 注 1.2 当 $\delta_1=0,\delta_2=0$ , 定理 1.1 得到了常粘情形的具有小能量的全局强解. 在初始远离真空的情形, 这与文献 [16 ]中得到的结果一致. ...
... 证 引理3.10 的证明与文献 [16 ] 中证明高阶估计类似, 在此省略. ...
Vacuum states of compressible flow
1
1998
... 当粘性系数依赖密度时, 方程 (1.1) 也得到了很多关注. Liu 等[17 ] 首先提出了用一些具有粘性依赖密度的可压缩 Navier-Stokes 方程模型来研究空气动力学. 并且我们知道通过 Chapman-Enskog 展开可以从 Boltzmann 方程中推导出 Navier-Stokes 方程[18 ,19 ] , 此时粘性系数依赖温度. 如果将气体流动限制为等熵的情况, 则这种依赖关系可以通过 Boyle 定律和 Gay-Lussac 定律继承, 此时粘性系数依赖密度. 然而, 在出现真空的存在下, 处理这类系统会遇到较大困难. 一方面,注意到动量方程中 $u_t+u\cdot\nabla u$ 的系数在真空中消失, 这种退化导致了在真空存在时确定速度的一个本质困难. 另一方面, 当密度函数连接到真空时, 粘性项消失, 这给解的正则性分析带来了很大困难, 使得常粘情况下的方法难以适用于当前情况. ...
Partial Differential Equations
1
2010
... 当粘性系数依赖密度时, 方程 (1.1) 也得到了很多关注. Liu 等[17 ] 首先提出了用一些具有粘性依赖密度的可压缩 Navier-Stokes 方程模型来研究空气动力学. 并且我们知道通过 Chapman-Enskog 展开可以从 Boltzmann 方程中推导出 Navier-Stokes 方程[18 ,19 ] , 此时粘性系数依赖温度. 如果将气体流动限制为等熵的情况, 则这种依赖关系可以通过 Boyle 定律和 Gay-Lussac 定律继承, 此时粘性系数依赖密度. 然而, 在出现真空的存在下, 处理这类系统会遇到较大困难. 一方面,注意到动量方程中 $u_t+u\cdot\nabla u$ 的系数在真空中消失, 这种退化导致了在真空存在时确定速度的一个本质困难. 另一方面, 当密度函数连接到真空时, 粘性项消失, 这给解的正则性分析带来了很大困难, 使得常粘情况下的方法难以适用于当前情况. ...
1
2012
... 当粘性系数依赖密度时, 方程 (1.1) 也得到了很多关注. Liu 等[17 ] 首先提出了用一些具有粘性依赖密度的可压缩 Navier-Stokes 方程模型来研究空气动力学. 并且我们知道通过 Chapman-Enskog 展开可以从 Boltzmann 方程中推导出 Navier-Stokes 方程[18 ,19 ] , 此时粘性系数依赖温度. 如果将气体流动限制为等熵的情况, 则这种依赖关系可以通过 Boyle 定律和 Gay-Lussac 定律继承, 此时粘性系数依赖密度. 然而, 在出现真空的存在下, 处理这类系统会遇到较大困难. 一方面,注意到动量方程中 $u_t+u\cdot\nabla u$ 的系数在真空中消失, 这种退化导致了在真空存在时确定速度的一个本质困难. 另一方面, 当密度函数连接到真空时, 粘性项消失, 这给解的正则性分析带来了很大困难, 使得常粘情况下的方法难以适用于当前情况. ...
On the existence of global solutions of two-dimensional Navier-Stokes equations of a compressible viscous fluid
1
1995
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Global well-posedness of 2D compressible Navier-Stokes equations with large data and vacuum
1
2014
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Existence and blowup behavior of global strong solutions to the twodimensional baratropic compressible Navier-Stokes system with vacuum and large initial data
1
2016
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Global solutions to a 3D axisymmetric compressible Navier-Stokes system with density-dependent viscosity
2
2022
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 本文研究了三维空间中具有轴对称初值的变粘等熵 CNS, 在初始密度远离真空下, 得到了具有任意小能量大振荡初值的全局轴对称强解, 流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$ . 注意到, 对比文献 [23 ] 中考虑的轴对称初值下的 Vaigant-Kazhikhov 模型 ($\delta_1=0,\delta_2>0$ ) , 此时 $\delta_1>0$ 将带来新的困难, 使得我们需要得到密度导数的可积性估计. 本文证明的关键在于得到 $\int_0^{\infty}\Vert\nabla u\Vert_{L^{\infty}}{\rm d}t$ 和 $\sup\limits_{t\in[0,\infty)}\Vert\nabla\rho\Vert_{L^{q}}(2\leq q<\infty)$ , 进一步得到 $\rho$ 的一致的上下界. 通过适用文献 [16 ,39 ,40 ] 中的方法和结构分析,我们从能量估计和初始层分析出发, 得到了新的 $\Vert u\Vert_{H^1}$ , $\Vert \dot{u}\Vert_{H^1}$ 以及 $\Vert\nabla\rho\Vert_{L^{q}}$ 的时间加权估计.利用这些关键的估计, 结合动量方程, 可以得到 ...
Global solution to 3D spherically symmetric compressible Navier-Stokes equations with large data
1
2018
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
On some compressible fluid models: Korteweg, lubrication, and shallow water systems
1
2003
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Existence of global weak solutions for a 2D viscous shallow water equations and convergence to the quasi-geostrophic model
1
2003
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
On the barotropic compressible Navier-Stokes equations
1
2007
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Spherically symmetric isentropic compressible flows with density-dependent viscosity coefficients
2
2008
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解. ...
Lagrange structure and dynamical for sphericall symmetric compressible Navier-Stokes equations
2
2012
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解. ...
2
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解. ...
Existence of global weak solutions for 3D degenerate compressible Navier-Stokes equations
2
2016
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解. ...
Global existence of entropy-weak solutions to the compressible Navier-Stokes equations with non-linear density dependent viscosities
2
2022
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 注 1.1 定理 1.1 包含了粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 的情形, 此时,对比已有的弱解的存在性结果[28 ⇓ ⇓ ⇓ -32 ] , 得到了无真空时的全局强解. ...
On classical solutions to 2D shallow water equations with degenerate viscosities
2
2017
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 引理 2.1 (局部适定性文献 [8 ,33 ]) 对 $\widetilde{\rho}>0$ , 以及 $\gamma>1, \delta_1\geq0, \delta_2\geq0$ , 假设初始数据 $(\rho_0,u_0)$ 满足正则性条件 (1.8), 则存在有限时间 $T^*>0$ , 使得问题 (1.4),(1.5) 在 $\Omega\times(0,T^*]$ 上存在唯一的强解 $(\rho,u)$ . ...
Existence results for viscous polytropic fluids with degenerate viscosity coefficients and vacuum
1
2015
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
On classical solutions for viscous polytropic fluids with degenerate viscosities and vacuum
1
2019
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Well-Posedness and Singularity Formation of Compressible Isentropic Navier-Stokes Equations
1
2015
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Well-posedness of the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and far field vacuum
1
2021
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Global well-posedness of regular solutions to the three-dimensional isentropic compressible Navier-Stokes equations with degenerate viscosities and vacuum
1
2021
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
Global well-posedness and large-time behavior of classical solutions to the 3D Navier-Stokes system with changed viscosities
3
2019
... 针对变粘情形, 仍然有一些重要的工作来克服这些困难. 首先, 当 $\delta_1=0,\delta_2>3$ 时, 在二维情形, Vaigant 等[20 ] 的全局适定性结果是对于一般大初值的第一个重要结果, 其唯一约束是初始密度远离真空. 之后,Jiu 等[21 ] 证明了包含真空的情形. Huang 等[22 ] 将这一结果推广到 $\delta_2>\frac43$ . Wang 等[23 ,24 ] 进一步将此模型的结果推广到三维球对称和轴对称情形, 并分别得到了大初值的全局弱解以及强解的适定性. 其次, 当 $\delta_1>0,\delta_2>0$ 时, 特别地, 粘性系数满足 BD 熵关系 $\lambda(\rho)=2(\rho\mu'(\rho)-\mu(\rho))$ 时, 一个新的熵估计由 Bresch等[25 ,26 ] 得到. 进一步, Mellet 等[27 ] 得到了解的紧性和稳定性分析. 基于这些结果, Guo 等[28 ,29 ] 首先得到了球对称大初值的全局弱解. 通过构造合适的逼近系统, Li 等[30 ] 得到了一般大初值的全局弱解. Vasseur 等[31 ,32 ] 利用不同的方法得到了类似的结果. 一般地, 对于粘性系数不依赖于 BD 熵关系的情形, 也有一些解的适定性的结果. Li 等[33 ] 在 $\delta_1=\delta_2=1$ 的情况下, 发现时间演化和粘性项的退化可以转化为特殊项的奇性问题. 基于这一发现, 在假设 $\rho_0(x)\rightarrow0$ (当 $\vert x\vert\rightarrow\infty$ ) , 通过在 $L^6\cap D^1\cap D^2$ 空间中对 $\frac{\nabla\rho}{\rho}$ 建立统一的先验估计, 得到了二维空间 (三维情况见 Zhu[34 ] ) 中正则解的局部存在唯一性. 然而, 这一结果只允许在远场存在真空, 并当真空出现在某些开集上, 甚至出现在单点上都会带来相应的问题. 然后, 通过引入一类合适的解空间, 对高阶项 $\rho^{\frac{\delta_1-1}{2}}\nabla^4u$ 建立一致的先验加权估计, 相同的作者在文献 [35 ,36 ] 中给出了 $1<\delta_1=\delta_2\leq\min\{3,\frac{\gamma+1}{2}\}$ 时的局部正则解的存在性. Xin 等[37 ] 得到了 $0<\delta_1=\delta_2<1$ 时的局部正则解. 特别地, 当 $\delta_{1}=\delta_{2}>1$ 时, 在对初始密度的 $\Vert\rho_0^{\frac{\gamma-1}{2}}\Vert_{H^3}+\Vert\rho_0^{\frac{\delta_{1,2}-1}{2}}\Vert_{H^3}$ 的小性要求下, Xin 等[38 ] 首先得到了正则解的全局存在唯一性. 同时, 当初始密度远离真空, 假设 $\Vert u_0\Vert_{H^1}+\Vert\rho_0-\widetilde{\rho}\Vert_{L^2}$ 小, Guo 等[39 ] 得到了全局经典解的存在唯一性. ...
... 本文研究了三维空间中具有轴对称初值的变粘等熵 CNS, 在初始密度远离真空下, 得到了具有任意小能量大振荡初值的全局轴对称强解, 流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$ . 注意到, 对比文献 [23 ] 中考虑的轴对称初值下的 Vaigant-Kazhikhov 模型 ($\delta_1=0,\delta_2>0$ ) , 此时 $\delta_1>0$ 将带来新的困难, 使得我们需要得到密度导数的可积性估计. 本文证明的关键在于得到 $\int_0^{\infty}\Vert\nabla u\Vert_{L^{\infty}}{\rm d}t$ 和 $\sup\limits_{t\in[0,\infty)}\Vert\nabla\rho\Vert_{L^{q}}(2\leq q<\infty)$ , 进一步得到 $\rho$ 的一致的上下界. 通过适用文献 [16 ,39 ,40 ] 中的方法和结构分析,我们从能量估计和初始层分析出发, 得到了新的 $\Vert u\Vert_{H^1}$ , $\Vert \dot{u}\Vert_{H^1}$ 以及 $\Vert\nabla\rho\Vert_{L^{q}}$ 的时间加权估计.利用这些关键的估计, 结合动量方程, 可以得到 ...
... 的关于时间的一致可积性,从而得到密度的上下界, 以获得期望的结果. 注意到, 通过新的时间加权估计, 我们可以将文献 [39 ] 中 $\Vert\nabla u_0\Vert_{L^2}$ 的小性假设去掉, 得到具有小能量大震荡的全局强解; 并且也得到了解的更好的衰减性结果, 具体表现为: 只要初始能量足够小, 解的衰减速率将足够快. ...
Dynamics of singularity surfaces for compressible, viscous flows in two space dimesions
1
2002
... 本文研究了三维空间中具有轴对称初值的变粘等熵 CNS, 在初始密度远离真空下, 得到了具有任意小能量大振荡初值的全局轴对称强解, 流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$ . 注意到, 对比文献 [23 ] 中考虑的轴对称初值下的 Vaigant-Kazhikhov 模型 ($\delta_1=0,\delta_2>0$ ) , 此时 $\delta_1>0$ 将带来新的困难, 使得我们需要得到密度导数的可积性估计. 本文证明的关键在于得到 $\int_0^{\infty}\Vert\nabla u\Vert_{L^{\infty}}{\rm d}t$ 和 $\sup\limits_{t\in[0,\infty)}\Vert\nabla\rho\Vert_{L^{q}}(2\leq q<\infty)$ , 进一步得到 $\rho$ 的一致的上下界. 通过适用文献 [16 ,39 ,40 ] 中的方法和结构分析,我们从能量估计和初始层分析出发, 得到了新的 $\Vert u\Vert_{H^1}$ , $\Vert \dot{u}\Vert_{H^1}$ 以及 $\Vert\nabla\rho\Vert_{L^{q}}$ 的时间加权估计.利用这些关键的估计, 结合动量方程, 可以得到 ...
1
2004
... 由文献 [41 ,引理 4.27] 对于任意 $p\geq2$ , 有 ...
Uniform estimates and stabilization of symmetric solutions of a system of quasi-linear equations
1
2000
... 引理 2.3 [42 ,43 ] 函数 $y$ 满足 ...
Interface behavior and decay rates of compressible Navier-Stokes system with density-dependent viscosity and a vacuum
1
2024
... 引理 2.3 [42 ,43 ] 函数 $y$ 满足 ...