数学物理学报 ›› 2024, Vol. 44 ›› Issue (6): 1445-1475.

• • 上一篇    下一篇

变粘可压缩轴对称 Navier-Stokes 方程组全局强解的存在性

龚思梦2(),张学耀1,*(),郭真华1,2()   

  1. 1西北大学数学学院, 非线性科学研究中心 西安 710127
    2广西大 学数学与信息科学学院 南宁 530004
  • 收稿日期:2024-01-09 修回日期:2024-07-31 出版日期:2024-12-26 发布日期:2024-11-22
  • 通讯作者: *张学耀,Email:xyzhang05@163.com
  • 作者简介:龚思梦,Email:1095522546@qq.com;|郭真华,Email:zhguo@gxu.edu.cn
  • 基金资助:
    国家自然科学基金(11931013);广西自然科学基金(2022GXNSFDA035078)

The Existence of Global Strong Solution to the Compressible Axisymmetric Navier-Stokes Equations with Density-Dependent Viscosities

Gong Simeng2(),Zhang Xueyao1,*(),Guo Zhenhua1,2()   

  1. 1School of Mathematics and CNS, Northwest University, Xi'an 710127
    2School of Mathematics and Information Science, Guangxi University, Nan'ning 530004
  • Received:2024-01-09 Revised:2024-07-31 Online:2024-12-26 Published:2024-11-22
  • Supported by:
    NSFC(11931013);GXNSF(2022GXNSFDA035078)

摘要:

该文考虑三维空间中粘性依赖密度的可压缩 Navier-Stokes 方程组, 得到了具有小能量大振荡初值的全局轴对称强解的存在唯一性, 其中流体区域为周期域 $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$. 当 $z\rightarrow\pm\infty$ 时, 初始密度保持非真空状态.结果还表明,只要初始密度远离真空, 解在任何时间内都不会发展成真空状态; 并且该文给出了解的精确的衰减速率.

关键词: Navier-Stokes 方程组, 轴对称, 粘性依赖密度, 强解

Abstract:

In this paper, we consider the compressible Navier-Stokes equations with viscous-dependent density in 3D space, and obtain a global axisymmetric strong solution with small energy and large initial oscillations in a periodic domain $\Omega=\{(r,z)\vert r=\sqrt{x^2+y^2},(x,y,z)\in\mathbb{R}^3,r\in I\subset(0,+\infty),z\in(-\infty,+\infty)\}$. When $z\rightarrow\pm\infty$, the initial density remains in a non-vacuum state. The results also show that as long as the initial density is far away from the vacuum, the solution will not develop the vacuum state in any time. And the exact decay rates of the solution is obtained.

Key words: Navier-Stokes equations, Axisymmetric, Density-dependent, Strong solution

中图分类号: 

  • 0175.23