Processing math: 10%

数学物理学报, 2024, 44(1): 60-79

次临界 Choquard 方程的多解

温瑞江,1, 刘范琴,2, 徐子怡,3,*

1.江西师范大学数学与统计学院 南昌 330022

2.首都师范大学数学科学学院 北京 100048

3.兰州大学数学与统计学院 兰州 730000

Multiplicity of Positive Solutions to Subcritical Choquard Equation

Wen Ruijiang,1, Liu Fanqin,2, Xu Ziyi,3,*

1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022

2. School of Mathematical Sciences, Capital Normal University, Beijing 100048

3. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000

通讯作者: 徐子怡, E-mail:XuZiyi0822@outlook.com

收稿日期: 2022-09-20   修回日期: 2023-10-16  

Received: 2022-09-20   Revised: 2023-10-16  

作者简介 About authors

温瑞江,E-mail:ruijiangwen@126.com

刘范琴,E-mail:fanqliu@163.com

摘要

该文考虑次临界 Choquard 方程

{Δu+(λV(x)+1)u=(RN|u(y)|pε|xy|μdy)|u|pε2u,xRN,uH1(RN)
(0.1)

多解的存在性, 其中N>3,λ是正实参数,pε=2με,ε>0,0<μ<N,2μ=2NμN2是 Hardy-Littlewood-Sobolev 不等式意义下的临界指数. 假定Ω:=intV1(0)RN中非空带光滑边界的有界区域, 利用 Lusternik-Schnirelman 定理,该文证明了当λ足够大及ε充分小时, 方程(0.1)至少有catΩ(Ω)个正解.

关键词: 次临界 Choquard 方程; Lusternik-Schnirelman 定理; 解的多重性

Abstract

In this paper, we are concerned with the multiplicity of solutions for the following subcritical Choquard equation

{Δu+(λV(x)+1)u=(RN|u(y)|pε|xy|μdy)|u|pε2u,xRN,uH1(RN),

whereN>3,λis a real parameter,pε=2με,ε>0,μ(0,N)and2μ=2NμN2is the critical Hardy-Littlewood-Sobolev exponent. Suppose thatΩ:=intV1(0)is a nonempty bounded domain inRNwith smooth boundary, using Lusternik-Schnirelman theory, we prove the problem (0.1) has at leastcatΩ(Ω)positive solutions forλlarge andεsmall enough.

Keywords: Subcritical Choquard equation; Lusternik-Schnirelman theory; Multiplicity of solutions

PDF (666KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

温瑞江, 刘范琴, 徐子怡. 次临界 Choquard 方程的多解[J]. 数学物理学报, 2024, 44(1): 60-79

Wen Ruijiang, Liu Fanqin, Xu Ziyi. Multiplicity of Positive Solutions to Subcritical Choquard Equation[J]. Acta Mathematica Scientia, 2024, 44(1): 60-79

1 引言

本文研究次临界 Choquard 方程

{Δu+(λV(x)+1)u=(RN|u(y)|pε|xy|μdy)|u|pε2u,xRN,uH1(RN)
(1.1)

多解的存在性, 其中N>3,λ是正实参数,pε=2με,ε>0,0<μ<N,2μ=2NμN2是 Hardy-Littlewood-Sobolev 不等式意义下的临界指数.

1954 年, 物理学家 Pekar[27] 研究了极化子处于静止时的理论, 并首次提出了 Choquard 方程, 随后 Choquard 在 1976 年将它引入到等离子体的 Hartree-Fock 方程.

1977 年, Lieb[18] 证明了次临界 Choquard 方程

Δu+u=(|x|1|u|2)u,u>0,xR3
(1.2)

有唯一解. Choquard 方程的理论发展至今, 研究成果非常丰富[10,13-17,21-25,29].

2000 年, Bartsch 和 Wang[6]研究了次临界椭圆方程

Δu+(λV(x)+1)u=up1,xRN,u>0,xRN,
(1.3)

其中V(x)满足下列条件

(A1)V(x)C(RN,R),V(x)0,Ω:=intV1(0)RN中非空带光滑边界的有界集,ˉΩ=V1(0).

(A2)存在常数M0>0, 有

μ({xRN:V(x)M0})<,

其中μRN上的 Lebesgue 测度. Bartsch 等利用极限方程

Δu+u=up1,uH10(Ω)
(1.4)

在指数p靠近临界指数2:=2NN2时存在catΩ(Ω)个正解, 来证明当方程(1.3)中λ较大同时指数p靠近2时, 方程(1.3)有catΩ(Ω)个正解, 这里catX(Y)YX中的 Lusternik-Schnirelman 畴数, 即在拓扑空间X中能覆盖闭子集YX的最少的子集个数, 这些用来覆盖的子集要求是闭集并且可收缩.

而在文献[11]中, Clapp 和丁彦恒沿用 (A1), (A2)对位势的假设考虑了p=2的情形, 并利用极限方程的多解性以及 Lusternik-Schnirelman 定理, 证明了当λ足够大时, 问题

Δu+λV(x)u=μu+u21,xRN
(1.5)

至少有catΩ(Ω)个正解. Alves 和 Barro[2]进一步证明了临界薛定谔方程

Δu+λV(x)u=μuq1+u21,xRN
(1.6)

q(2,2)时, 至少有catΩ(Ω)个正解. Ma 等[20]用类似的方法考虑了分数阶拉普拉斯方程

(Δ)su+λV(x)u=μuq1+u21,xRN
(1.7)

并证明方程(1.7)有catΩ(Ω)个正解. 最近, 在文献[28]中已经考虑了临界 Choquard 问题,

Δu+(λV(x)β)u=(|x|μ|u|2μ)|u|2μ2u,xRN
(1.8)

并得到多解的结果, 进一步在文献[30]中考虑了多临界的情形. 更多关于多解问题的研究, 见文献[1,3-5,7-9,31]等.

受到以上文章的启发, 本文将证明问题(1.1)在(A1)和(A2)假设下的多解性结果. 在空间Eλ=(E,λ)中考虑解的存在性, 其中

\begin{equation*}E=\bigg\{u\in{{H}}^{1}{(\mathbb{R}^N)}:\int_{\mathbb{R}^N}V(x)u^{2}\,{\rm d}x<\infty\bigg\},\end{equation*}

其上内积定义为

\begin{equation*}\langle u,v\rangle_{\lambda}=\int_{\mathbb{R}^N}(\nabla u\nabla v+(\lambda V(x)+1)uv)\,{\rm d}x.\end{equation*}

由内积诱导的范数为\|\cdot\|_{\lambda},

\begin{equation*}\|u\|_{\lambda}=\bigg(\int_{\mathbb{R}^N}(|\nabla u|^{2}+(\lambda V(x)+1)u^{2}\bigg)\,{\rm d}x)^{\frac{1}{2}}.\end{equation*}

为了寻找方程(1.1)的正解, 类似文献[14,命题 3.1]中, 考虑方程(1.1)对应的能量泛函为

\begin{equation*}I_{\lambda,p_{\varepsilon}}(u):=\frac{1}{2}\int_{\mathbb{R}^N}(|\nabla u|^{2}+(\lambda V(x)+1)u^{2}){\rm d}x-\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^{\mu}}{{\rm d}x{\rm d}y},\end{equation*}

其中u^+(x):=\max\{u(x),0\}是函数u的正部. 由命题 2.1 (见第 2 节) 知, 泛函I_{\lambda,p_{\varepsilon}}在空间E_\lambda中取值有意义并且可证I_{\lambda,p_{\varepsilon}}\in \mathcal{C}^{1}(E_{\lambda},\mathbb{R}). 设\mathcal{M}_{\lambda,p_{\varepsilon}}是与I_{\lambda,p_{\varepsilon}}有关的 Nehari 流形, 即

\begin{equation*}\mathcal{M}_{\lambda,p_{\varepsilon}}:=\bigg\{u\in E_{\lambda}\setminus\{0\}:\int_{\mathbb{R}^N}(|\nabla u|^{2}\!+\!(\lambda V(x)\!+\!1)u^{2}){\rm d}x=\!\int_{\mathbb{R}^N}\int_{\mathbb{R}^N} \frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^{\mu}}{{\rm d}x{\rm d}y}\bigg\}.\end{equation*}

\begin{equation*}c_{\lambda,p_{\varepsilon}}:=\inf\{I_{\lambda,p_{\varepsilon}}(u):u\in\mathcal{M}_{\lambda,p_{\varepsilon}}\}.\end{equation*}

\lambda足够大时, 问题(1.1)的极限方程为

\begin{cases} -{\Delta}{u}+u=\Big(\int_{\Omega}\frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\Big) |u|^{p_{\varepsilon}-2}u,\quad x\in\Omega,\\ u\in H^1_0(\Omega). \end{cases}
(1.9)

对于方程(1.1)的解序列u_{\lambda_n}, 当\lambda_n\rightarrow\infty时, 若u_{\lambda_n}H^1(\mathbb{R}^N)中强收敛到方程(1.9)的解u, 则称方程(1.1)的解序列u_{\lambda_n}集中到方程(1.9)的解u.

本文首先得到方程(1.1)基态解的存在性, 并给出了当\lambda_n\rightarrow\infty时, 基态解u_{\lambda_n}的集中性.

定理 1.1 假设 (A_{1})和 (A_{2})成立, 则当\lambda足够大时, 方程(1.1)存在对应于c_{\lambda,p_{\varepsilon}}的非负基态解u_\lambda, 并且对任意序列\lambda_{n}\rightarrow\infty, 解序列u_{{\lambda_n}}有子列在{{H}}^{1}{(\mathbb{R}^N)}中收敛到极限方程(1.9)的基态解.

利用变分法来证明定理 1.1, 其中主要的困难是克服失紧的问题, 而关于V(x)的条件 (A_2)对紧性的证明起了关键作用.

对于更一般情形下方程(1.1)解的极限行为, 有如下结果.

定理 1.2 假设 (A_{1})和 (A_{2})成立, 当\lambda_{n}\rightarrow\infty\underset{n\rightarrow\infty}{\lim\sup}\,I_{\lambda_{n},p_{\varepsilon}}(u_n)<\infty, 其中\{u_{n}\}_{n\in \mathbb{N}}是方程(1.1)的解序列, 则u_{n}{{H}}^{1}{(\mathbb{R}^N)}中有子列收敛到方程(1.9)在{{H}}^{1}_{0}{(\Omega)}中的一个解.

由定理 1.1 知, 当\lambda_n较大时, 方程(1.1)的解会集中到方程(1.9)的解, 而在文献[14]中已经证明了方程(1.9)有cat_\Omega(\Omega)个解, 那么考虑问题(1.1) 是否也会有类似的结果, 接下来给出定理 1.3.

定理 1.3 假设 (A_{1})和 (A_{2})成立, 则存在\varepsilon_{0}>0, 使得对任意\varepsilon\in(0,\varepsilon_{0}], 当\lambda\geq\Lambda(\varepsilon)时, 方程(1.1)至少有cat_{\Omega}(\Omega)个正解.

多解的结果是利用 Lusternik-Schnirelman 定理来证明的, 关键是建立泛函在 Nehari 流形上的水平集与\Omega之间的联系, 最后得到泛函有cat_{\Omega}(\Omega)个临界点. 遇到的困难主要有以下几点: 临界情形下的紧性缺失问题; 对能量泛函的估计; 建立区域拓扑与解个数的关系.

本文结构如下: 在第 2 节给出预备知识; 第 3 节证明(PS)_{c}条件并证明定理 1.1; 在第 4 节先证明解的集中性而后给出多解的结果.

2 预备知识

为了用变分法研究问题(1.1), 需要以下 Hardy-Littlewood-Sobolev 不等式.

命题 2.1[19]t, r>10<\mu<N,\frac{1}{t}+\frac{\mu}{N}+\frac{1}{r}=2,f\in L^{t}({\mathbb{R}}^N),h\in L^{r}({\mathbb{R}}^N), 则存在与f, h无关的常数C(t,r,\mu,N), 使得

\begin{equation}\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{f(x)h(y)}{|x-y|^\mu}{\rm d}x{\rm d}y\leq C(t,r,\mu,N)|f|_{L^t} |h|_{L^r}.\end{equation}
(2.1)

t=r=\frac{2N}{2N-\mu}, 则

\begin{equation*}C(t,r,\mu,N)=C(N,\mu)=\pi^{\frac{\mu}{2}}\frac{\Gamma(\frac{N}{2}-\frac{\mu}{2})}{\Gamma(N-\frac{\mu}{2})}\bigg\{\frac{\Gamma(\frac{N}{2})}{\Gamma(N)}\bigg\}^{-1+\frac{\mu}{N}}.\end{equation*}

(2.1)式不等式成立当且仅当f\equiv Ch, 且达到函数为

\begin{equation*}h(x)=A(\gamma^2 +|x-a|^{2})^{\frac{-(2N-\mu)}{2}},\end{equation*}

其中A\in \mathbb{C},0\neq \gamma \in \mathbb{R},a\in \mathbb{R}^N.

根据 Hardy-Littlewood-Sobolev 不等式(2.1), 可以得到

\begin{equation*}\int_{\Omega}\int_{\Omega} \frac{|u(x)|^{p_{\varepsilon}}|u(y)|^{p_{\varepsilon}}}{|x-y|^{\mu}}{{\rm d}x{\rm d}y}\leq C(N,\mu)|u|^{2p_{\varepsilon}}_{\frac{2Np_{\varepsilon}}{2N-\mu}}.\end{equation*}

可以验证, 对于v\in E_\lambda, 有

\langle I'_{\lambda,p_\varepsilon}(u),v\rangle=\int_{\mathbb{R}^N}\nabla u\nabla v+(\lambda V(x)+1)uv\,{\rm d}x-\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u^+(x))^{p_\varepsilon}(u^+(y))^{p_\varepsilon-1}v(y)}{|x-y|^\mu}{\rm d}x{\rm d}y.

u\in E_\lambda是方程(1.1)的弱解, 如果对于任意v\in E_\lambda, 有

\int_{\mathbb{R}^N}\nabla u\nabla v+(\lambda V(x)+1)uv\,{\rm d}x-\int_{\mathbb{R}^{N}}\int_{\mathbb{R}^{N}}\frac{(u^+(x))^{p_\varepsilon}(u^+(y))^{p_\varepsilon-1}v(y)}{|x-y|^\mu}{\rm d}x{\rm d}y=0,

\langle I'_{\lambda,p_\varepsilon}(u),v\rangle=0.

3(PS)_{c}条件

本节将给出(PS)_{c}条件的证明.

引理 3.1\{u_{n}\}\subset E_{\lambda}是泛函I_{\lambda,p_{\varepsilon}}(PS)_{c}序列, 则当n\rightarrow\infty时,\{u_{n}\}E_\lambda中有界, 并且c\geq0.

因为\{u_{n}\}(PS)_{c}列, 即满足

\begin{equation*}I_{\lambda,p_{\varepsilon}}(u_{n})\rightarrow c,\ \ I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})\rightarrow 0,\end{equation*}

则当n很大时,

\begin{equation*}c+1+o(1){\rVert u_{n} \rVert} _{\lambda}\geq I_{\lambda,p_{\varepsilon}}(u_{n})-\frac{1}{2p_{\varepsilon}}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle=(\frac{1}{2}-\frac{1}{2p_{\varepsilon}}){\rVert u_{n} \rVert}^{2} _{\lambda},\end{equation*}

因此{\rVert u_{n} \rVert}_{\lambda}有界. 另一方面,

\begin{equation*}0\leq(\frac{1}{2}-\frac{1}{2p_{\varepsilon}}){\rVert u_{n} \rVert}^{2} _{\lambda}=I_{\lambda,p_{\varepsilon}}(u_{n})-\frac{1}{2p_{\varepsilon}}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle\leq c+o_{n}(1),\end{equation*}

所以可得c\geq0. 证毕.

引理 3.2 c>0,\{u_{n}\}(PS)_{c}序列. 若在E_{\lambda}u_{n}\rightharpoonup uu\not\equiv0, 则

I_{\lambda,p_{\varepsilon}}(v_{n})-I_{\lambda,p_{\varepsilon}}(u_{n})+I_{\lambda,p_{\varepsilon}}(u)=o_{n}(1),
\|I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u)\|_{E_{\lambda}^{\prime}}=o_{n}(1),

其中E_{\lambda}^{\prime}E_{\lambda}的对偶空间,v_{n}=u_{n}-u, 并且\{v_{n}\}是一个(PS)_{c-I_{\lambda,p_{\varepsilon}}(u)}序列.

首先证明

\begin{equation*}I_{\lambda,p_{\varepsilon}}(v_{n})-I_{\lambda,p_{\varepsilon}}(u_{n})+I_{\lambda,p_{\varepsilon}}(u)=o_{n}(1).\end{equation*}

\begin{align*}&I_{\lambda,p_{\varepsilon}}(v_{n})-I_{\lambda,p_{\varepsilon}}(u_{n})+I_{\lambda,p_{\varepsilon}}(u)\\=\ &\frac{1}{2}({\rVert v_{n} \rVert}^{2}_{\lambda}-{\rVert u_{n} \rVert}^{2}_{\lambda}+{\rVert u \rVert}^{2}_{\lambda})\\&-\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(x))^{p_{\varepsilon}}(v_{n}^+(y))^{p_{\varepsilon}}-(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}+(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{align*}

又因为在E_{\lambda}中,u_{n}\rightharpoonup u, 所以有

\begin{align*}&I_{\lambda,p_{\varepsilon}}(v_{n})-I_{\lambda,p_{\varepsilon}}(u_{n})+I_{\lambda,p_{\varepsilon}}(u)\\=\ &o_{n}(1)+\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\frac{1}{p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{align*}

利用 Hardy-Littlewood-Sobolev 不等式,

\begin{align*}&\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}((v_{n}^+(x))^{p_{\varepsilon}}-(u_{n}^+(x))^{p_{\varepsilon}}+(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\\\leq\ & C\bigg(\int_{\mathbb{R}^N}(v_{n}^+)^{\frac{p_{\varepsilon}2N}{2N-\mu}}{\rm d}x\bigg)^{\frac{2N-\mu}{2N}}\bigg(\int_{\mathbb{R}^N}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x\bigg)^{\frac{2N-\mu}{2N}}.\end{align*}

注意到

\begin{align*}&\int_{\mathbb{R}^N}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x\\=&\int_{B_{R}(0)}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x+\int_{\mathbb{R}^N\backslash B_{R}(0)}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x,\end{align*}

其中R>0. 因为在E_{\lambda}中,u_{n}\rightharpoonup u, 可得

\begin{align*}&u_{n}\rightarrow u\quad L^{\frac{p_{\varepsilon}2N}{2N-\mu}}(B_{R}(0)),\\&u_{n}\rightarrow u\quad a.e.\ \mathbb{R}^N,\end{align*}

不妨假设u^+\not\equiv0, 所以

\begin{align*}&u_{n}^+\rightarrow u^+\quad L^{\frac{p_{\varepsilon}2N}{2N-\mu}}(B_{R}(0)),\\&u_{n}^+\rightarrow u^+\quad a.e.\ \mathbb{R}^N,\end{align*}

那么存在h_{1}\in L^{\frac{p_{\varepsilon}2N}{2N-\mu}}(B_{R}(0))使得

\begin{equation*}u_{n}^+(x)\leq h_{1}(x)\quad a.e.\ B_{R}(0).\end{equation*}

因此

\begin{equation*}(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}\rightarrow0\ \quad a.e.\ B_{R}(0),\end{equation*}

并且

\begin{equation*}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}\leq(2^{p_{\varepsilon}}+1)^{\frac{2N}{2N-\mu}}(h_{1}+u^+)^{\frac{2Np_{\varepsilon}}{2N-\mu}}.\end{equation*}

再利用勒贝格控制收敛定理, 则

\begin{equation} \int_{B_{R}(0)}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x\rightarrow0.\end{equation}
(3.1)

同样可得

\begin{equation*}|((u_{n}-u)^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}|\leq p_{\varepsilon}2^{p_{\varepsilon}-1}(|u_{n}|^{p_{\varepsilon}-1}|u|+|u|^{p_{\varepsilon}}).\end{equation*}

因此有

\begin{align*}&\int_{\mathbb{R}^N\backslash B_{R}(0)}|(v_{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x\\\leq\ & C\int_{\mathbb{R}^N\backslash B_{R}(0)}|u_{n}|^{\frac{2N(p_{\varepsilon}-1)}{2N-\mu}}|u|^{\frac{2N}{2N-\mu}}{\rm d}x+C\int_{\mathbb{R}^N\backslash B_{R}(0)}|u|^{\frac{2Np_{\varepsilon}}{2N-\mu}}{\rm d}x.\end{align*}

任意给定\delta>0, 选择R>0使得

\begin{equation*}\int_{\mathbb{R}^N\backslash B_{R}(0)}|u|^{\frac{2Np_{\varepsilon}}{2N-\mu}}{\rm d}x\leq\delta.\end{equation*}

再根据 Hölder 不等式以及\{u_{n}\}有界可知

\begin{equation}\int_{\mathbb{R}^N\backslash B_{R}(0)}|(v _{n}^+)^{p_{\varepsilon}}-(u_{n}^+)^{p_{\varepsilon}}+(u^+)^{p_{\varepsilon}}|^{\frac{2N}{2N-\mu}}{\rm d}x\leq\delta.\end{equation}
(3.2)

结合 (3.1), (3.2) 式以及\{v_{n}\}有界, 当n\rightarrow\infty时, 有

\begin{equation*}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow0.\end{equation*}

类似可证

\begin{equation*}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow0\end{equation*}

\begin{equation*}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}}+(u_{n}^+(x))^{p_{\varepsilon}}-(u^+(x))^{p_{\varepsilon}})}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow0.\end{equation*}

最后,只需证明

\begin{equation*}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow0.\end{equation*}

因为在E_{\lambda}中,v_{n}\rightharpoonup 0,p_{\varepsilon}=2^\ast_{\mu}-\varepsilon,\{|v_{n}|^{p_{\varepsilon}}\}L^{\frac{2N}{2N-\mu}}(\mathbb{R}^N)中有界; 再根据v_{n}\rightarrow 0a.e.\mathbb{R}^N, 在L^{\frac{2N}{2N-\mu}}(\mathbb{R}^N)|v_{n}|^{p_{\varepsilon}}\rightharpoonup0, 那么有(v_{n}^+)^{p_{\varepsilon}}\rightharpoonup0. 由 Hardy-Littlewood-Sobolev 不等式, 可知F : L^{\frac{2N}{2N-\mu}}(\mathbb{R}^N)\rightarrow \mathbb{R},

\begin{equation*}F(w)=\int_{\mathbb{R}^N}(\frac{1}{|x|^{\mu}}\ast w)|u|^{p_{\varepsilon}}{\rm d}x\end{equation*}

是连续的. 因此F((v_{n}^+)^{p_{\varepsilon}})\rightarrow0. 于是

\begin{equation*}I_{\lambda,p_{\varepsilon}}(v_{n})-I_{\lambda,p_{\varepsilon}}(u_{n})+I_{\lambda,p_{\varepsilon}}(u)=o_{n}(1),\end{equation*}

从而有

\begin{equation*}I_{\lambda,p_{\varepsilon}}(v_{n})\rightarrow c-I_{\lambda,p_{\varepsilon}}(u).\end{equation*}

其次证明

\begin{equation*}\|I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u)\|_{E_{\lambda}^{\prime}}=o_{n}(1).\end{equation*}

对任意w\in E_{\lambda},

\begin{align*}&\langle I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u),w\rangle\\=\ &\langle v_{n}-u_{n}+u,w\rangle_{\lambda}-\int_{\mathbb{R}^N}(\frac{1}{|x|^{\mu}}\ast (v_{n}^+)^{p_{\varepsilon}})(v_{n}^+(x))^{p_{\varepsilon}-1}w{\rm d}x\\&+\int_{\mathbb{R}^N}(\frac{1}{|x|^{\mu}}\ast (u_{n}^+)^{p_{\varepsilon}})(u_{n}^+(x))^{p_{\varepsilon}-1}w{\rm d}x-\int_{\mathbb{R}^N}(\frac{1}{|x|^{\mu}}\ast (u^+)^{p_{\varepsilon}})(u^+(x))^{p_{\varepsilon}-1}w{\rm d}x,\end{align*}

因此需要证明当n\rightarrow\infty时,

\begin{align*}&\underset{\|w\|_{\lambda}\leq1}{\sup}\bigg|\int_{\mathbb{R}^N}[-(\frac{1}{|x|^{\mu}}\ast (v_{n}^+)^{p_{\varepsilon}})(v_{n}^+(x))^{p_{\varepsilon}-1}\\&+(\frac{1}{|x|^{\mu}}\ast (u_{n}^+)^{p_{\varepsilon}})(u_{n}^+(x))^{p_{\varepsilon}-1}-(\frac{1}{|x|^{\mu}}\ast (u^+)^{p_{\varepsilon}})(u^+(x))^{p_{\varepsilon}-1}]w\,{\rm d}x\bigg|\rightarrow0.\end{align*}

因为

\begin{align*}\langle &I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u),w\rangle\\=\ &\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}-1}+(u_{n}^+(x))^{p_{\varepsilon}-1}-(u^+(x))^{p_{\varepsilon}-1})w}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(-(v_{n}^+(y))^{p_{\varepsilon}}+(u_{n}^+(y))^{p_{\varepsilon}}-(u^+(y))^{p_{\varepsilon}})(u_{n}^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u^+(y))^{p_{\varepsilon}}(-(v_{n}^+(x))^{p_{\varepsilon}-1}+(u_{n}^+(x))^{p_{\varepsilon}-1}-(u^+(x))^{p_{\varepsilon}-1})w}{|x-y|^\mu}{\rm d}x{\rm d}y\\&+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u^+(y))^{p_{\varepsilon}}(v_n^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y\\=&:K_{1}+K_{2}+K_{3}+K_{4}+K_{5}.\end{align*}

由 Hardy-Littlewood-Sobolev 不等式和 Hölder 不等式,

\begin{align*}K_{1}\leq\ & C\bigg(\int_{\mathbb{R}^N}|v_{n}|^{\frac{p_{\varepsilon}2N}{2N-\mu}}{\rm d}x\bigg)^{\frac{2N-\mu}{2N}}\\&\times \bigg(\int_{\mathbb{R}^N}(|(v_{n}^+(x)^{p_{\varepsilon}-1} -(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1})w|^{\frac{2N}{2N-\mu}}{\rm d}x\bigg)^{\frac{2N-\mu}{2N}}\\ \leq\ & C\bigg(\int_{\mathbb{R}^N}|v_{n}|^{\frac{p_{\varepsilon}2N}{2N-\mu}}{\rm d}x\bigg)^{\frac{2N-\mu}{2N}}\\&\times\bigg(\int_{\mathbb{R}^N}|(v_{n}^+(x))^{p_{\varepsilon}-1} -(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\bigg)^{\frac{N-\mu+2}{2N}}\|w\|_{\lambda}.\end{align*}

注意到

\begin{align*}&\int_{\mathbb{R}^N}|(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\\=\ &\int_{ B_{R}(0)}|(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\\&+\int_{\mathbb{R}^N\backslash B_{R}(0)}|(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x,\end{align*}

其中R>0. 因为在E_{\lambda}中,u_{n}\rightharpoonup u, 可得

\begin{align*}&u_{n}\rightarrow u\quad L^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}(B_{R}(0)),\\&u_{n}\rightarrow u\quad a.e.\ \mathbb{R}^N.\end{align*}

所以

\begin{align*}&u_{n}^+\rightarrow u^+\quad L^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}(B_{R}(0)),\\&u_{n}^+\rightarrow u^+\quad a.e.\ \mathbb{R}^N,\end{align*}

那么存在h_{2}\in L^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}(B_{R}(0))使得

\begin{equation*}|u_{n}^+(x)|\leq h_{2}(x)\quad a.e.\ B_{R}(0).\end{equation*}

由此可知

\begin{equation*}(v_{n}^+)^{p_{\varepsilon}-1}-(u_{n}^+)^{p_{\varepsilon}-1}+(u^+)^{p_{\varepsilon}-1}\rightarrow0\ \quad a.e.\ B_{R}(0),\end{equation*}

并且

\begin{align*}& |(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}\\&\leq C|(|u_{n}|^{p_{\varepsilon}-2}+|u|^{p_{\varepsilon}-2})|u|+|u_{n}|^{p_{\varepsilon}-1}+|u|^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}\\&\leq C(h_{2}(x)+|u(x)|)^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}.\end{align*}

再利用勒贝格控制收敛定理

\begin{equation}\int_{ B_{R}(0)}|(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\rightarrow0.\end{equation}
(3.3)

又因为

\begin{equation*}|((u_{n}(x)-u(x))^+)^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}|\leq C(|u(x)|^{p_{\varepsilon}-1}+|u(x)||u_{n}(x)|^{p_{\varepsilon}-2}),\end{equation*}

因此

\begin{align*}&\int_{\mathbb{R}^N\backslash B_{R}(0)}|((u_{n}(x)-u(x))^+)^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\\\leq\ & C\bigg(\int_{\mathbb{R}^N\backslash B_{R}(0)}|u_{n}(x)|^{\frac{2N(p_{\varepsilon}-2)}{N-\mu+2}}|u(x)|^{\frac{2N}{N-\mu+2}}+|u(x)|^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}{\rm d}x\bigg).\end{align*}

任意给定\delta_{1}>0, 选择R>0使得

\begin{equation*}\int_{\mathbb{R}^N\backslash B_{R}(0)}|u|^{\frac{2N(p_{\varepsilon}-1)}{N-\mu+2}}{\rm d}x\leq\delta_{1},\end{equation*}

再根据 Hölder 不等式以及\{u_{n}\}有界可知

\begin{equation}\int_{\mathbb{R}^N\backslash B_{R}(0)}|(v_{n}^+(x))^{p_{\varepsilon}-1}-(u_{n}^+(x))^{p_{\varepsilon}-1}+(u^+(x))^{p_{\varepsilon}-1}|^{\frac{2N}{N-\mu+2}}{\rm d}x\leq\delta_{1}.\end{equation}
(3.4)

综合 (3.3), (3.4) 式以及\{v_{n}\}有界, 当n\rightarrow\infty时, 有

\begin{equation*}\underset{\|w\|_{\lambda}\leq1}{\sup}|K_{1}|\rightarrow 0,\end{equation*}

类似可得

\begin{equation*}\underset{\|w\|_{\lambda}\leq1}{\sup}|K_{2}|\rightarrow 0 \mbox{和} \underset{\|w\|_{\lambda}\leq1}{\sup}|K_{3}|\rightarrow 0.\end{equation*}

然后证明

\begin{equation*}\underset{\|w\|_{\lambda}\leq1}{\sup}\bigg|\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y\bigg|\rightarrow 0.\end{equation*}

\begin{align*}&\bigg|\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y\bigg|\\\leq\ &\int_{B_{R}(0)}F_{n}(x)(u^+(x))^{p_{\varepsilon}-1}|w|{\rm d}x+\int_{B_{R}^{c}(0)}F_{n}(x)(u^+(x))^{p_{\varepsilon}-1}|w|{\rm d}x,\end{align*}

其中

\begin{equation*}F_{n}(x):=\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y.\end{equation*}

R\rightarrow\infty以及n\rightarrow\infty时,

\begin{align*}F_{n}(x)&=\int_{B_{R}(x)}\frac{(v_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y+\int_{B_{R}^{c}(x)}\frac{(v_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\\&\leq\bigg(\int_{B_{R}(x)}|v_{n}(y)|^{\frac{p_{\varepsilon}2N}{2N-\mu}}{\rm d}y\bigg)^{\frac{2N-\mu}{2N}}\bigg(\int_{B_{R}(x)}\frac{1}{|x-y|^{2N}}{\rm d}y\bigg)^{\frac{\mu}{2N}}\\& \ +\bigg(\int_{B_{R}^{c}(x)}|v_{n}(y)|^{\frac{p_{\varepsilon}2N}{2N-\mu}}{\rm d}y\bigg)^{\frac{2N-\mu}{2N}}\bigg(\int_{B_{R}^{c}(x)}\frac{1}{|x-y|^{2N}}{\rm d}y\bigg)^{\frac{\mu}{2N}}\rightarrow0,\end{align*}

其中x\in B_{R}(0),因此

\begin{equation*}\bigg|\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(y))^{p_{\varepsilon}}(u^+(x))^{p_{\varepsilon}-1}w}{|x-y|^\mu}{\rm d}x{\rm d}y\bigg|\leq o(1)\|w\|_{\lambda}.\end{equation*}

类似的对于K_5. 因此结合K_1,K_2,K_3,K_4,K_5的估计, 有

\begin{equation*}\begin{aligned}\|I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u)\|_{E_{\lambda}^{\prime}}=\underset{\|w\|_{\lambda}\leq1}{\sup}|\langle I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u),w\rangle|=o_{n}(1),\end{aligned}\end{equation*}

所以

\begin{equation*}\|I_{\lambda,p_{\varepsilon}}^{\prime}(v_{n})-I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n})+I_{\lambda,p_{\varepsilon}}^{\prime}(u)\|_{E_{\lambda}^{\prime}}=o_{n}(1).\end{equation*}

证毕.

引理 3.3 假设\{u_{n}\}(PS)_{c}序列, 则c=0或存在c_{0}>0, 对任意的\lambda>0, 有c\geq c_{0}.

由引理 3.1 可知c\geq0. 现假设c>0, 易知

\begin{equation*}c+o_{n}(1)\|u_{n}\|_{\lambda}\geq I_{\lambda,p_{\varepsilon}}(u_{n})-\frac{1}{2p_{\varepsilon}}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle=(\frac{1}{2}-\frac{1}{2p_{\varepsilon}}){\rVert u_{n} \rVert}^{2} _{\lambda},\end{equation*}

从而

\begin{equation*}\underset{n\rightarrow\infty}{\lim\sup}{\rVert u_{n} \rVert}^{2} _{\lambda}\leq\frac{2p_{\varepsilon}c}{p_{\varepsilon}-1}.\end{equation*}

根据 Hardy-Littlewood-Sobolev 不等式以及 Sobolev 嵌入定理,

\begin{equation*}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle\geq\frac{1}{2}\|u_{n}\|_{\lambda}^{2}-C\|u_{n}\|_{\lambda}^{2p_{\varepsilon}},\end{equation*}

其中C是正常数. 那么存在\sigma>0, 当\|u_{n}\|_{\lambda}^{2}<\sigma时, 有

\begin{equation*}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle\geq\frac{1}{4}\|u_{n}\|_{\lambda}^{2}.\end{equation*}

c<c_{0}:=\sigma^{2}\frac{p_{\varepsilon}-1}{2p_{\varepsilon}}, 则当n足够大时, 有

\begin{equation*}\|u_{n}\|_{\lambda}^{2}\leq\sigma.\end{equation*}

所以

\begin{equation*}o(1)\|u_{n}\|_{\lambda}=\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle\geq\frac{1}{4}\|u_{n}\|_{\lambda}^{2},\end{equation*}

由此可得, 当n\rightarrow\infty时,\|u_{n}\|_{\lambda}\rightarrow0; 进一步得I_{\lambda,p_{\varepsilon}}(u_{n})\rightarrow0, 这与c>0矛盾. 故c\geq c_{0}c=0. 证毕.

引理 3.4 存在与\lambda无关的\delta_{0}>0, 当\lambda\geq0,c>0时,(PS)_{c}序列\{u_{n}\}满足

\begin{equation*}\underset{n\rightarrow\infty}{\lim\inf}{|u_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu}}\geq\delta_{0}c.\end{equation*}

易知

\begin{aligned}c=\underset{n\rightarrow\infty}{\lim}(I_{\lambda,p_{\varepsilon}}(u_{n})-\frac{1}{2}\langle{I_{\lambda,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle)=(\frac{1}{2}-\frac{1}{2p_{\varepsilon}})\underset{n\rightarrow\infty}{\lim}\int_{\mathbb{R}^N}(\frac{1}{|x|^{\mu}}\ast(u_{n}^+)^{p_{\varepsilon}})(u_{n}^+)^{p_{\varepsilon}}{\rm d}x.\end{aligned}

由 Hardy-Littlewood-Sobolev 不等式可得

\begin{equation*}c\leq(\frac{1}{2}-\frac{1}{2p_{\varepsilon}})C\underset{n\rightarrow\infty}{\lim\inf}{|u_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu}},\end{equation*}

从而, 选择\delta_{0}=\frac{2p_{\varepsilon}}{C(p_{\varepsilon}-1)}>0, 有\underset{n\rightarrow\infty}{\lim\inf}{|u_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu}}\geq\delta_{0}c.证毕.

引理 3.5 对任意C_{1}>0,\sigma_{1}>0, 存在\Lambda=\Lambda(\sigma_{1})R=R(\sigma_{1},C_{1}), 当c\in[C_{1}],\lambda\geq\Lambda时,(PS)_{c}序列\{u_{n}\}满足

\begin{equation*}\underset{n\rightarrow\infty}{\lim\sup}{|u_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu},B_{R}^{c}(0)}\leq\sigma_{1}.\end{equation*}

利用文献[6,引理 2.5]中的想法. 令R>0, 定义

A(R):=\{x\in\mathbb{R}^N:\ |x|>R,\ V(x)\geq M_{0}\},
B(R):=\{x\in\mathbb{R}^N:\ |x|>R,\ V(x)< M_{0}\}.

由引理 3.3 知, 当n\rightarrow\infty时,

\begin{align*}\int_{A(R)}u_{n}^{2}{\rm d}x&\leq\frac{1}{\lambda M_{0}+1}\int_{\mathbb{R}^N}(\lambda V(x)+1)u_{n}^{2}{\rm d}x\leq\frac{1}{\lambda M_{0}+1}\|u_{n}\|_{\lambda}^{2}\\&\leq\frac{1}{\lambda M_{0}+1}\bigg[\frac{2p_{\varepsilon}}{p_{\varepsilon}-1}C_{1}+o_{n}(1)\bigg].\end{align*}

利用 Hölder 不等式以及E_{\lambda}\hookrightarrow L^{2q}(\mathbb{R}^N), 其中q\in[\frac{N}{N-2}], 可得

\begin{align*}\int_{B(R)}u_{n}^{2}{\rm d}x&\leq\bigg(\int_{\mathbb{R}^N}|u_{n}|^{2q}{\rm d}x\bigg)^{\frac{1}{q}}\bigg(\int_{B(R)}{\rm d}x\bigg)^{\frac{1}{q^{\prime}}}\leq C\|u_{n}\|_{\lambda}^{2}\mu(B(R))^{\frac{1}{q^{\prime}}}\\&\leq C\frac{2p_{\varepsilon}}{p_{\varepsilon}-1}C_{1}\mu(B(R))^{\frac{1}{q^{\prime}}},\end{align*}

其中\frac{1}{q}+\frac{1}{q^{\prime}}=1. 令\theta=\frac{Np_{\varepsilon}-2N+\mu}{2p_{\varepsilon}}, 再根据 Gagliardo-Nirenberg 不等式有

\begin{align*}\bigg(\int_{B_{R}^{c}(0)}|u_{n}|^{\frac{2Np_{\varepsilon}}{2N-\mu}}\bigg)^{\frac{2N-\mu}{2Np_{\varepsilon}}}&\leq C|\nabla u_{n}|^{\theta}_{2,B_{R}^{c}}|u_{n}|^{1-\theta}_{2,B_{R}^{c}}\leq C\|u_{n}\|_{\lambda}^{\theta}\bigg[\int_{A(R)}u_{n}^{2}{\rm d}x+\int_{B(R)}u_{n}^{2}{\rm d}x\bigg]^{\frac{1-\theta}{2}}\\&\leq C(\frac{2C_{1}p_{\varepsilon}}{p_{\varepsilon}-1})^{\theta}\bigg[\frac{1}{\lambda M_{0}+1}(\frac{2C_{1}p_{\varepsilon}}{p_{\varepsilon}-1}+o_{n}(1))+C\frac{2C_{1}p_{\varepsilon}}{p_{\varepsilon}-1}\mu(B(R))^{\frac{1}{q^{\prime}}}\bigg]^{\frac{1-\theta}{2}}.\end{align*}

R\lambda很大时, 注意到上式中\mu(B(R))较小, 因此有\underset{n\rightarrow\infty}{\lim\sup}{|u_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu},B_{R}^{c}(0)}\leq\sigma_{1}.证毕.

下面证明泛函I_{\lambda,p_\varepsilon}满足(PS)_{c}条件.

引理 3.6C_{1}>0, 存在\Lambda_{1}=\Lambda(C_{1})>0, 当\lambda\geq\Lambda_{1}时, 对所有的c\in[C_{1}],I_{\lambda,p_{\varepsilon}}满足(PS)_{c}条件.

\{u_{n}\}(PS)_{c}序列, 由引理3.2可得\{u_{n}\}有界, 则存在子列仍定义为\{u_{n}\}

\begin{align*}&u_{n}\rightharpoonup u\quad\quad E_{\lambda},\\&u_{n}\rightarrow u\quad L_{loc}^{q}(\mathbb{R}^N),\quad 1\leq q<2^{\ast},\\&u_{n}\rightarrow u\quad\quad a.e. \quad\mathbb{R}^N,\end{align*}

从而I_{\lambda,p_{\varepsilon}}^{\prime}(u)=0I_{\lambda,p_{\varepsilon}}(u)\geq0. 令v_{n}=u_{n}-u, 由引理 3.2 可知\{v_{n}\}(PS)_{d}序列, 其中d=c-I_{\lambda,p_{\varepsilon}}(u), 故

\begin{equation*}0\leq d=c-I_{\lambda,p_{\varepsilon}}(u)\leq c\leq C_{1}.\end{equation*}

断言d=0. 否则, 若d>0, 通过引理 3.3 有d\geq c_{0}, 再由引理3.4, 可得

\begin{equation*}\underset{n\rightarrow\infty}{\lim\inf}{|v_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu}}\geq\delta_{0}c_{0}>0.\end{equation*}

结合引理 3.5,\sigma_{1}=\frac{\delta_{0}c_{0}}{2}>0, 因此, 存在\Lambda_{1},R>0, 当\lambda\geq\Lambda_{1},有

\begin{equation*}\underset{n\rightarrow\infty}{\lim\sup}{|v_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu},B_{R}^{c}(0)}\leq\frac{\delta_{0}c_{0}}{2},\end{equation*}

所以与

\begin{equation*}\underset{n\rightarrow\infty}{\lim\inf}{|v_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu},B_{R}(0)}\geq\frac{\delta_{0}c_{0}}{2}>0\end{equation*}

矛盾, 因为在E_{\lambda}v_{n}\rightharpoonup0, 嵌入E_{\lambda}\hookrightarrow L^{\frac{2Np_{\varepsilon}}{2N-\mu}}(B_{R}(0))是紧的, 从而

\begin{equation*}\underset{n\rightarrow\infty}{\lim\inf}{|v_{n}|}^{2p_{\varepsilon}} _{\frac{2Np_{\varepsilon}}{2N-\mu},B_{R}(0)}=0.\end{equation*}

由此可得d=0,\{v_{n}\}(PS)_{0}序列, 即在E_{\lambda}v_{n}\rightarrow0. 当\lambda足够大时, 对所有的c\in[C_{1}],I_{\lambda,p_{\varepsilon}}满足(PS)_{c}条件. 证毕.

接下来证明方程(1.1)存在非平凡解关于山路值

m_{\lambda,p_\varepsilon}=\inf\limits_{\gamma\in\Gamma} \max\limits_{t\in[0,1]}I_{\lambda,p_\varepsilon}(\gamma(t)),

其中

\Gamma:=\{\gamma\in C([0,1], E_\lambda): \gamma(0) =0, I_{\lambda,p_\varepsilon}(\gamma(1)) \leq 0, \gamma(1)\not = 0\}.

并定义

m^s_{\lambda,p_\varepsilon}=\inf_{u\in E_\lambda\setminus \{0\}}\sup_{t>0}I_{\lambda,p_\varepsilon}(tu).

类似在文献[29,定理 4.2] 证明, 可以证明

\begin{equation}c_{\lambda,p_\varepsilon} = m_{\lambda,p_\varepsilon}=m^s_{\lambda,p_\varepsilon}.\end{equation}
(3.5)

接下来给出定理 1.1 前半部分的证明, 后半部分将在定理 1.2 的证明中给出.

定理 1.1 的证明 易证I_{\lambda, p_{\varepsilon}}满足山路定理条件, 因此存在一串(PS)_{m_{\lambda,p_\epsilon}}列, 记为\{u_{n}\}; 由引理3.6可知,\{u_{n}\}的子列存在弱收敛极限, 记为u_{\lambda,p_\varepsilon}; 由(3.5)式, 那么u_{\lambda,p_{\varepsilon}}是问题(1.1)的基态解. 又因为I_{\lambda,p_{\varepsilon}}(u_{\lambda,p_{\varepsilon}})=I_{\lambda,p_{\varepsilon}}(|u_{\lambda,p_{\varepsilon}}|), 可以假设u_{\lambda,p_{\varepsilon}}\geq0. 再利用强极值原理, 则u_{\lambda,p_{\varepsilon}}是正解.

4 主要结果的证明

方程(1.1)的极限方程(1.9)的 Nehari 流形定义为

\begin{equation*}\mathcal{M}(p_{\varepsilon},\Omega)=\bigg\{u\in{{H}}^{1}_{0}{(\Omega)}\backslash\{0\}:\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x=\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y\bigg\}.\end{equation*}

\begin{equation*}c(p_{\varepsilon},\Omega)=\underset{u\in\mathcal{M}(p_{\varepsilon},\Omega)}{\inf}I_{p_{\varepsilon},\Omega}(u),\end{equation*}

其中

\begin{equation*}I_{p_{\varepsilon},\Omega}(u)=\frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x-\frac{1}{2p_{\varepsilon}}\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{equation*}

再令

\begin{equation*}c(p_{\varepsilon},r):=c(p_{\varepsilon},B_{r}),\end{equation*}

其中B_{r}=\{x\in\mathbb{R}^N:|x|<r\}.

引理 4.1[14]\varepsilon\rightarrow0时,c(p_{\varepsilon},\Omega)\rightarrow(\frac{1}{2}-\frac{1}{2\cdot2^{\ast}_{\mu}})S_{H,L}^{\frac{2^{\ast}_{\mu}}{2^{\ast}_{\mu}-1}}, 其中

\begin{equation*}S_{H,L}:=\underset{u\in D^{1,2}(\mathbb{R}^N)\backslash\{0\}}{\inf}\frac{\int_{\mathbb{R}^N}|\nabla u|^{2}{\rm d}x}{(\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{|u(x)|^{2^{\ast}_{\mu}}|u(y)|^{2^{\ast}_{\mu}}}{|x-y|^{\mu}}{\rm d}x{\rm d}y)^{\frac{N-2}{2N-\mu}}}\end{equation*}

是最佳常数.

若序列\{u_{n}\}\subset{H}^{1}{(\mathbb{R}^N)}满足

u_{n}\in E_{\lambda_{n}},\quad\quad\lambda_{n}\rightarrow\infty,
I_{\lambda_{n},p_{\varepsilon}}(u_{n})\rightarrow c,\quad\quad c\in \mathbb{R},
\|I_{\lambda_{n},p_{\varepsilon}}^{\prime}(u_{n})\|_{(E_{\lambda_{n}})^{\prime}}\rightarrow 0,

则称\{u_{n}\}(PS)_{c,\infty}序列.

命题 4.1 假设\{u_{n}\}(PS)_{c,\infty}序列,c\in(0,(\frac{1}{2}-\frac{1}{2\cdot2^{\ast}_{\mu}})S_{H,L}^{\frac{2^{\ast}_{\mu}}{2^{\ast}_{\mu}-1}}), 那么存在子列仍记为\{u_{n}\}以及u, 满足

\begin{equation*}u_{n}\rightharpoonup u\quad\quad {H}^{1}{(\mathbb{R}^N)},\end{equation*}

并且

(i) 在\mathbb{R}^N\backslash\Omegau\equiv0,u是方程

\begin{equation*} \begin{cases} -{\Delta}{u}+u=\Big(\int_{\Omega}\frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\Big)|u|^{p_{\varepsilon}-2}u, \quad & x\in\Omega,\\u=0,\quad \quad &x\in\partial\Omega \end{cases}\end{equation*}

的解;

(ii) 在{H}^{1}{(\mathbb{R}^N)}u_{n}\rightarrow u;

(iii) 当n\rightarrow\infty时,\lambda_{n}\int_{\mathbb{R}^N}V(x)|u_{n}|^{2}{\rm d}x\rightarrow0;

(iv) 当n\rightarrow\infty时,

\begin{equation*}I_{\lambda_{n},p_{\varepsilon}}(u_{n})\rightarrow \frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+|u|^{2}){\rm d}x-\frac{1}{2p_{\varepsilon}}\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{equation*}

先证(i), 由引理 3.3,

\begin{equation*}\underset{n\rightarrow\infty}{\lim\sup}{\rVert u_{n} \rVert}^{2} _{\lambda_n}\leq\frac{2p_{\varepsilon}c}{p_{\varepsilon}-1},\end{equation*}

可知\{\|u_{n}\|_{\lambda_{n}}\}\mathbb{R}上有界. 对任意的n\in\mathbb{N}, 有\|u_{n}\|_{\lambda_{n}}\geq\|u_{n}\|, 故\{u_{n}\}{H}^{1}{(\mathbb{R}^N)}中有界, 那么存在子列仍记为\{u_{n}\}, 有u\in {H}^{1}{(\mathbb{R}^N)}满足

\begin{align*}&u_{n}\rightharpoonup u\quad {H}^{1}{(\mathbb{R}^N)},\\&u_{n}\rightarrow u\quad\quad a.e. \quad\mathbb{R}^N\end{align*}

以及

\begin{align*}&u_{n}^+\rightharpoonup u^+\quad {H}^{1}{(\mathbb{R}^N)},\\&u_{n}^+\rightarrow u^+\quad\quad a.e. \quad\mathbb{R}^N.\end{align*}

对每个m\in\mathbb{N}, 定义C_{m}=\{x\in\mathbb{R}^N:V(x)\geq\frac{1}{m}\}, 易知

\begin{equation*}\mathbb{R}^N\backslash\bar{\Omega}=\bigcup_{m=1}^{+\infty}{C_{m}}.\end{equation*}

注意到

\begin{equation*}\int_{C_{m}}|u_{n}|^{2}{\rm d}x=\int_{C_{m}}\frac{\lambda_{n}V(x)}{\lambda_{n}V(x)}|u_{n}|^{2}{\rm d}x\leq\frac{m}{\lambda_{n}}\|u_{n}\|^{2}_{\lambda_{n}}\leq\frac{c}{\lambda_{n}}.\end{equation*}

根据 Fatou 引理

\begin{equation*}\int_{C_{m}}|u|^{2}{\rm d}x\leq\underset{n\rightarrow\infty}{\lim\inf}\int_{C_{m}}|u_{n}|^{2}{\rm d}x\leq\underset{n\rightarrow\infty}{\lim\inf}\frac{c}{\lambda_{n}}=0,\end{equation*}

从而uC_{m}中几乎处处为0, 即u\mathbb{R}^N\backslash\bar{\Omega}中几乎处处为0. 令\varphi\in C_{0}^{\infty}(\Omega), 有

\begin{equation*}\langle{I_{\lambda_n,p_{\varepsilon}}^{\prime}(u_{n}),\varphi}\rangle=\int_{\Omega}(\nabla u_{n}\nabla\varphi+u_{n}\varphi) {\rm d}x-\int_{\Omega}\int_{\Omega}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}-1}\varphi}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{equation*}

由于\{u_{n}\}(PS)_{c,\infty}序列, 所以

\begin{equation*}\langle{I_{\lambda_n,p_{\varepsilon}}^{\prime}(u_{n}),\varphi}\rangle\rightarrow0.\end{equation*}

因为在{H}^{1}{(\mathbb{R}^N)}u_{n}\rightharpoonup u, 故

\begin{equation*}\int_{\mathbb{R}^N}(\nabla u_{n}\nabla\varphi+u_{n}\varphi) {\rm d}x\rightarrow\int_{\Omega}(\nabla u\nabla\varphi+u\varphi) {\rm d}x,\end{equation*}

以及

\begin{equation*}\int_{\Omega}\int_{\Omega}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}-1}\varphi}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}-1}\varphi}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{equation*}

因此对\forall\varphi\in C_{0}^{\infty}(\Omega),

\begin{equation*}\int_{\Omega}(\nabla u\nabla\varphi+u\varphi) {\rm d}x=\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}-1}\varphi}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{equation*}

那么u是问题

\begin{equation*} \begin{cases} -{\Delta}{u}+u=\Big(\int_{\Omega}\frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\Big)|u|^{p_{\varepsilon}-2}u,\quad & x\in\Omega,\\u=0,\quad \quad \ \ \,&x\in\partial\Omega \end{cases}\end{equation*}

的弱解.

其次证 (ii), 由 (i) 可得, 在\mathbb{R}^N\backslash\Omegau\equiv0, 并且V(x)\Omega中等于0, 所以

\begin{equation*}\|u\|_{\lambda_{n}}^{2}=\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x.\end{equation*}

由于u的支集在\Omega中,V(x)\Omega中等于0, 所以即使\lambda_{n}很大,\int_{\mathbb{R}^N}\lambda_{n}V(x)u_{n}u{\rm d}x=0, 那么

\begin{equation*}\int_{\mathbb{R}^N}(\nabla u_{n}\nabla u+(\lambda_{n}V(x)+1)u_{n}u){\rm d}x=\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x+o_{n}(1),\end{equation*}

因此

\begin{align*}\|u_{n}-u\|_{\lambda_{n}}^{2}&=\|u_{n}\|_{\lambda_{n}}^{2}+\|u\|_{\lambda_{n}}^{2}-2\int_{\mathbb{R}^N}(\nabla u_{n}\nabla u+(\lambda_{n}V(x)+1)u_{n}u){\rm d}x\\&=\|u_{n}\|_{\lambda_{n}}^{2}-\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x+o_{n}(1).\end{align*}

结合\{|u_{n}|_{\lambda_{n}}\}有界与\|I_{\lambda_{n},p_{\varepsilon}}^{\prime}(u_{n})\|_{(E_{\lambda_{n}})^{\prime}}\rightarrow 0可知\langle{I_{\lambda_n,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle\rightarrow0,从而

\begin{align*}\|u_{n}\|_{\lambda_{n}}^{2}&=\langle{I_{\lambda_n,p_{\varepsilon}}^{\prime}(u_{n}),u_{n}}\rangle+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y\\&=o_{n}(1)+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{align*}

再由\langle{I_{\lambda_n,p_{\varepsilon}}^{\prime}(u_{n}),u}\rangle\rightarrow0可得

\begin{equation*}\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x=\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{equation*}

故有

\begin{align*}\|u_{n}-u\|_{\lambda_{n}}^{2}&=\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y-\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y+o_{n}(1)\\&=\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{((u_{n}(x)-u(x))^+)^{p_{\varepsilon}}((u_{n}(y)-u(y))^+)^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y+o_{n}(1),\end{align*}

因此

\begin{equation*}\|v_{n}\|_{\lambda_{n}}^{2}=\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(v_{n}^+(x))^{p_{\varepsilon}}(v_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y+o_{n}(1).\end{equation*}

下证:u_n\rightarrow uL^p(\mathbb{R}^N)对于2<p<2^*. 否则由文献[29,引理 1.21], 存在\delta>0,\rho>0,x_n\in\mathbb{R}^N|x_n|\rightarrow\infty, 有

\liminf\limits_{n\rightarrow\infty}\int_{B_\rho(x_n)}|u_n-u|^2\,{\rm d}x\geq\delta>0,

那么

\begin{align*}& I_{\lambda_n,p_\varepsilon}(u_n)-\frac{1}{2p_\varepsilon}\langle I'_{\lambda_n,p_\varepsilon}(u_n),u_n\rangle\\&\geq C\lambda_n\int_{B_\rho(x_n)\cap\{x:V(x)\geq M_0\}}V(x)u_n^2\,{\rm d}x\\&=C\lambda_n\int_{B_\rho(x_n)\cap\{x:V(x)\geq M_0\}}V(x)|u_n-u|^2\,{\rm d}x\\&\geq C\lambda_n\bigg(\int_{B_\rho(x_n)}V(x)|u_n-u|^2\,{\rm d}x-M_0\int_{B_\rho(x_n)\cap\{x:V(x)\leq M_0\}}|u_n-u|^2\,{\rm d}x\bigg)\\&\geq C\lambda_n\bigg(M_0\int_{B_\rho(x_n)}|u_n-u|^2\,{\rm d}x-o(1)\bigg),\end{align*}

最后一个不等式利用了 Hölder 不等式及当n\rightarrow\infty时,\mu(B_\rho(x_n)\cap\{x:V(x)\leq M_0\})\rightarrow0,因此有u_n\rightarrow uL^p(\mathbb{R}^N)对于2<p<2^*. 由 Hardy-Littlewood-Sobolev 不等式, 有\|v_{n}\|_{\lambda_{n}}^{2}\rightarrow0, 即在{H}^{1}{(\mathbb{R}^N)}中,u_{n}\rightarrow u.

再证 (iii), 由

\begin{equation*}\lambda_{n}\int_{\mathbb{R}^N}V(x)|u_{n}|^{2}{\rm d}x=\int_{\mathbb{R}^N}\lambda_{n}V(x)|u_{n}-u|^{2}{\rm d}x\leq\|u_{n}-u\|_{\lambda_{n}}^{2},\end{equation*}

所以\lambda_{n}\int_{\mathbb{R}^N}V(x)|u_{n}|^{2}{\rm d}x\rightarrow0.

最后证 (iv): 下面改写泛函I_{\lambda_{n},p_{\varepsilon}},

\begin{align*}I_{\lambda_{n},p_{\varepsilon}}(u_{n})&=\frac{1}{2}\int_{\Omega}(|\nabla u_{n}|^{2}+(\lambda_{n}V(x)+1)|u_{n}|^{2}){\rm d}x\!+\!\frac{1}{2}\int_{\mathbb{R}^N\backslash\Omega}(|\nabla u_{n}|^{2}\!+\!(\lambda_{n}V(x)+1)|u_{n}|^{2}){\rm d}x\\& \ -\frac{1}{2p_{\varepsilon}}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{align*}

由结论 (ii) 在{H}^{1}{(\mathbb{R}^N)}中,u_{n}\rightarrow u, 以及结论 (iii) 可得

\begin{equation*}\frac{1}{2}\int_{\Omega}(|\nabla u_{n}|^{2}+(\lambda_{n}V(x)+1)|u_{n}|^{2}){\rm d}x\rightarrow\frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+|u|^{2}){\rm d}x,\end{equation*}
\begin{equation*}\frac{1}{2}\int_{\mathbb{R}^N\backslash\Omega}(|\nabla u_{n}|^{2}+(\lambda_{n}V(x)+1)|u_{n}|^{2}){\rm d}x\rightarrow0,\end{equation*}
\begin{equation*}\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y\rightarrow\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{equation*}

因此

\begin{equation*}I_{\lambda_{n},p_{\varepsilon}}(u_{n})\rightarrow \frac{1}{2}\int_{\Omega}(|\nabla u|^{2}+|u|^{2}){\rm d}x-\frac{1}{2p_{\varepsilon}}\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{equation*}

证毕.

接下来证明关于c(p_{\varepsilon},\Omega)c_{\lambda,p_{\varepsilon}}之间的估计.

引理 4.2\lambda_{n}\rightarrow+\infty, 则c_{\lambda_{n},p_{\varepsilon}}\rightarrow c(p_{\varepsilon},\Omega).

不等式c_{\lambda_{n},p_{\varepsilon}}<c(p_{\varepsilon},\Omega)是严格的. 如果c_{\lambda_{n},p_{\varepsilon}}=c(p_{\varepsilon},\Omega), 可找到问题(1.1)的非负解, 并且解在\Omega外部为0, 由极大值原理可知这是不可能的. 假设当\lambda_{n}\rightarrow\infty时, 存在K, 使得

\begin{equation*}\underset{n\rightarrow\infty}{\lim}c_{\lambda_{n},p_{\varepsilon}}=K< c(p_{\varepsilon},\Omega),\end{equation*}

根据引理 3.3,K>0. 由引理 3.6 可知, 存在\Lambda_{1}(p_{\varepsilon})>0, 使得对所有的\lambda_{n}\geq\Lambda_{1}(p_{\varepsilon}),I_{\lambda_{n},p_{\varepsilon}}满足山路定理条件, 因此c_{\lambda_{n},p_{\varepsilon}}可达, 记达到函数为u_{n}. 由\{u_{n}\}\subset {H}^{1}{(\mathbb{R}^N)}有界以及命题 4.1, 存在\{u_{n}\}的子列仍记为\{u_{n}\}u\in {H}^{1}_{0}{(\Omega)}\backslash\{0\}使得

\begin{align*}&\|u_{n}-u\|_{\lambda_{n}}^{2}\rightarrow0,\\&u_{n}\rightarrow u\quad {H}^{1}{(\mathbb{R}^N)},\\&u_{n}\rightarrow u\quad L^{q}{(\mathbb{R}^N)},\ \ q\in[2^{\ast}],\\&I_{p_{\varepsilon},\Omega}^{\prime}(u)=0.\end{align*}

由于u\neq0,\langle{I_{p_{\varepsilon},\Omega}^{\prime}(u),u}\rangle=0, 可得u\in\mathcal{M}(p_{\varepsilon},\Omega), 因此I_{p_{\varepsilon},\Omega}(u)\geq c(p_{\varepsilon},\Omega), 所以I_{\lambda_{n},p_{\varepsilon}}(u_{n})+o_{n}(1)\geq c(p_{\varepsilon},\Omega); 进一步可得当\lambda_{n}\rightarrow+\infty时,c_{\lambda_{n},p_{\varepsilon}}\rightarrow c(p_{\varepsilon},\Omega). 证毕.

定理 1.2 的证明 假设\{u_{n}\}_{n\in\mathbb{N}}是问题(1.1)在\lambda_{n}\rightarrow+\infty时的解序列, 使得

\begin{equation*}\underset{n\rightarrow\infty}{\lim\sup}\,I_{\lambda_{n},p_{\varepsilon}}(u_{n})<\infty,\end{equation*}

通过命题 4.1, 可知在{H}^{1}{(\mathbb{R}^N)}中,u_{n}\rightarrow u,u是问题(1.9)在{H}^{1}_{0}{(\Omega)}中的解. 类似的, 当序列u_{\lambda_n}为关于c_{\lambda_n,p_\varepsilon}的基态解序列时, 由命题 4.1 和引理 4.2, 那么u_{\lambda_n}H^1(\mathbb{R}^N)中强收敛到u,并且u是方程(1.9)的基态解. 证毕.

现在假设\OmegaV^{-1}(0)的内部. 由 (A_{1})可知存在r>0, 使得\Omega^{-}_{r}\hookrightarrow\Omega\hookrightarrow\Omega^{+}_{r}是同伦等价的, 这里

\begin{equation*}\Omega^{+}_{r}:=\{x\in\mathbb{R}^N:\text{dist}(x,\Omega)\leq r\},\end{equation*}
\begin{equation*}\Omega^{-}_{r}:=\{x\in\Omega:\text{dist}(x,\partial\Omega)\geq r\},\end{equation*}

其中r固定.

\eta\in C_{c}^{\infty}(\mathbb{R}^N), 对于x\in\Omega满足\eta(x)=x. 定义非零函数u\in {H}_{0}^{1}(\Omega)的重心为

\begin{equation*}\beta(u)=\frac{\int_{\mathbb{R}^N}\eta(x)|\nabla u|^{2}{\rm d}x}{\int_{\mathbb{R}^N}|\nabla u|^{2}{\rm d}x}.\end{equation*}

那么, 在文献[14]中已经得到下列结果.

引理4.3[14] 对任意的r^{\prime}<r, 存在\varepsilon(r^{\prime})使得对\forall\varepsilon\in(0,\varepsilon(r^{\prime})], 当u\in\mathcal{M}(p_{\varepsilon},\Omega)并且I_{p_{\varepsilon},\Omega}(u)\leq c(p_{\varepsilon},r^{\prime})时,\beta(u)\in\Omega^{+}_{r^{\prime}}.

现在, 类似文献[6]中重心函数的定义, 选取R_0>0满足\bar{\Omega}\subset B_{R_0}并且令

\begin{equation*}\xi(t)=\begin{cases}1,\quad & 0\leq t\leq R_0;\\R_0/t,\quad &R_0\leq t.\end{cases}\end{equation*}

然后定义u\in\mathcal{M}_{\lambda,p_{\varepsilon}}的重心函数为

\begin{equation*}\beta_0(u)=\frac{\int_{\mathbb{R}^N}\xi(|x|)x|\nabla u|^{2}{\rm d}x}{\int_{\mathbb{R}^N}|\nabla u|^{2}{\rm d}x}.\end{equation*}

那么有下列结果.

引理 4.4 存在\varepsilon_{2}>0, 则对任意的\varepsilon\in(0,\varepsilon_{2}], 存在\Lambda_{2}(\varepsilon)>0, 对所有的\lambda\geq\Lambda_{2}(\varepsilon)以及任意的u\in\mathcal{M}_{\lambda,p_{\varepsilon}}, 满足I_{\lambda,p_{\varepsilon}}(u)\leq c(p_{\varepsilon},r), 使得\beta_0(u)\in\Omega^{+}_{r}.

利用反证法. 令引理4.3中的\varepsilon(\frac{r}{2})=\varepsilon_{2}, 存在序列\lambda_{n}\rightarrow+\inftyu_{n}\in\mathcal{M}_{\lambda_{n},p_{\varepsilon}}, 使得I_{\lambda_{n},p_{\varepsilon}}(u_{n})\leq c(p_{\varepsilon},r)并且\beta_0(u_{n})\notin\Omega^{+}_{r}. 已知

\begin{equation*}\underset{n\rightarrow\infty}{\lim\inf}\int_{\mathbb{R}^N}|\nabla u_{n}|^{2}{\rm d}x\geq\int_{\mathbb{R}^N}|\nabla u|^{2}{\rm d}x,\end{equation*}

并且, 当\lambda_{n}\rightarrow+\infty时, 由命题 4.1 的结论, 在\mathbb{R}^N\backslash\Omegau\equiv0, 因此

\begin{align*}\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x&=\int_{\mathbb{R}^N}(|\nabla u|^{2}+u^{2}){\rm d}x\\&\leq\underset{n\rightarrow\infty}{\lim\inf}\int_{\mathbb{R}^N}(|\nabla u_{n}|^{2}+u_{n}^{2}){\rm d}x\\&=\underset{n\rightarrow\infty}{\lim\inf}\bigg(\int_{\mathbb{R}^N}-\lambda_{n}V(x)u_{n}^{2}{\rm d}x+\int_{\mathbb{R}^N}\int_{\mathbb{R}^N}\frac{(u_{n}^+(x))^{p_{\varepsilon}}(u_{n}^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y\bigg)\\&=\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y.\end{align*}

因此, 可得

\begin{equation*}\alpha=\bigg(\frac{\int_{\Omega}(|\nabla u|^{2}+u^{2}){\rm d}x}{\int_{\Omega}\int_{\Omega}\frac{(u^+(x))^{p_{\varepsilon}}(u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y}\bigg)^{\frac{1}{2p_{\varepsilon}-2}}\leq1,\end{equation*}

所以存在\alpha\in(0,1]使得

\begin{equation*}\int_{\Omega}(|\nabla (\alpha u)|^{2}+(\alpha u)^{2}){\rm d}x=\int_{\Omega}\int_{\Omega}\frac{(\alpha u^+(x))^{p_{\varepsilon}}(\alpha u^+(y))^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}x{\rm d}y,\end{equation*}

\alpha u\in\mathcal{M}(p_{\varepsilon},\Omega), 那么有

\begin{align*}I_{p_{\varepsilon},\Omega}(\alpha u)&=(\frac{1}{2}-\frac{1}{2p_{\varepsilon}})\int_{\Omega}(|\nabla (\alpha u)|^{2}+(\alpha u)^{2}){\rm d}x\\& \leq(\frac{1}{2}-\frac{1}{2p_{\varepsilon}})\int_{\mathbb{R}^N}(|\nabla u|^{2}+u^{2}){\rm d}x\\& \leq(\frac{1}{2}-\frac{1}{2p_{\varepsilon}})\underset{n\rightarrow\infty}{\lim\inf}\int_{\mathbb{R}^N}(|\nabla u_{n}|^{2}+(\lambda_{n}V(x)+1)u_{n}^{2}){\rm d}x\\& =\underset{n\rightarrow\infty}{\lim\inf}\,I_{\lambda_{n},p_{\varepsilon}}(u_{n})\\&\leq c(p_{\varepsilon},r).\end{align*}

根据引理 4.3,\beta(\alpha u)\in\Omega^{+}_{\frac{r}{2}}, 并且因为在H^1(\mathbb{R}^N)u_n\rightarrow u, 所以

\begin{equation*}\lim\limits_{n\rightarrow\infty}\beta_0(u_n)=\beta(u)=\beta(\alpha u)\in\Omega^{+}_{\frac{r}{2}},\end{equation*}

这与\beta_0(u_{n})\notin\Omega^{+}_{r}矛盾. 证毕.

由定理 1.1 和极值原理可知存在问题(1.9)的基态解u_{r}>0, 再根据文献[23]知u_{r}是球对称的, 即

\begin{equation*}I_{p_{\varepsilon},\Omega}(u_{r})=c(p_{\varepsilon},r),\quad I_{p_{\varepsilon},\Omega}^{\prime}(u_{r})=0.\end{equation*}

对给定的u_{r}, 定义\psi_{r}:\Omega^{-}_{r}\rightarrow {{H}}^{1}_{0}{(\Omega)},

\begin{equation}\psi_{r}(y)(x)=\begin{cases}u_{r}(x-y), \quad&\text{若 }x\in B_{r}(y),\\0, \quad&\text{若 }x\notin B_{r}(y).\end{cases}\end{equation}
(4.1)

因为u_{r}是球对称的, 对任意y\in\Omega^{-}_{r}, 可以验证\beta_0(\psi_{r}(y))=y.

下面说明\Omega与水平集的畴数之间的关系.

引理 4.5 存在\bar{\varepsilon}>0, 对任意的\varepsilon\in(0,\bar{\varepsilon}), 相应的存在\Lambda_{2}(\varepsilon)>0, 对所有的\lambda\geq\Lambda_{2}(\varepsilon), 有

\begin{equation*}cat_{I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}}(I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)})\geq cat_{\Omega}(\Omega),\end{equation*}

其中

\begin{equation*}I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}:=\{u\in\mathcal{M}_{\lambda,p_{\varepsilon}}:I_{\lambda,p_{\varepsilon}}(u)\leq c(p_{\varepsilon},r)\}.\end{equation*}

\bar{\varepsilon}=\varepsilon(r^{\prime}), 设I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}=P_{1}\cup P_{2}\cdots\cup P_{n}, 其中P_{j},j=1,2,\cdots,n, 是I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}中的可压缩集, 即存在h_{j}\in \mathcal{C}([0,1]\times P_{j},I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}) , 使得对\forall u,v\in P_{j}, 有

\begin{equation*}h_{j}(0,u)=u,\quad\quad\quad h_{j}(1,u)=h_{j}(1,v).\end{equation*}

由 (4.1) 式定义的\psi_{r}, 注意到\psi_{r}(y)(x)\in\mathcal{M}(p_\varepsilon,B_r(0)), 进一步将其延拓至\mathbb{R}^N, 那么有\psi_{r}(y)(x)\in\mathcal{M}_{\lambda,p_\varepsilon}. 接下来令B_{j}=\psi_{r}^{-1}(P_{j}),j=1,2,\cdots,n, 则B_{j}是闭集且B_{j}\subset\Omega_{r}^{-}. 对\forall x\in\Omega_{r}^{-}, 有\psi_{r}(x)\in I_{p_{\varepsilon},\Omega}^{c(p_{\varepsilon},r)}\subset\bigcup\limits_{j=1}^n{P_{j}}, 所以存在j_{0}, 使得\psi_{r}(x)\in P_{j_{0}}, 即x\in\psi_{r}^{-1}(P_{j_{0}})=B_{j_{0}}. 因此

\begin{equation*}\Omega_{r}^{-}=\bigcup\limits_{j=1}^n{B_{j}}.\end{equation*}

再证B_{j}\Omega_{r}^{+}上可收缩. 令g_{j}(t,x)\in \mathcal{C}([0,1] \times B_{j},\Omega_{r}^{+}) ,

\begin{equation*}g_{j}(t,x)=\beta_0(h_{j}(t,\psi_{r}(x))),\quad 1\leq j\leq n,\end{equation*}

g_{j}(0,x)=\beta_0(h_{j}(0,\psi_{r}(x)))=\beta_0(\psi_{r}(x)),\forall x,y\in B_j,

\begin{equation*}g_{j}(1,x)=\beta_0(h_{j}(1,\psi_{r}(x)))=\beta_0(h_{j}(1,\psi_{r}(y)))=g_{j}(1,y). 且\end{equation*}

所以B_{j}\Omega_{r}^{+}上可收缩, 即可得cat_{\Omega}(\Omega)=cat_{\Omega_{r}^{+}}(\Omega_{r}^{-})\leq cat_{I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}}(I_{\lambda,p_{\varepsilon}}^{c(p_{\varepsilon},r)}). 证毕.

最后有如下关于方程(1.1)的多解结果.

定理 1.3 的证明\varepsilon_{0}=\min\{\varepsilon_{1},\varepsilon_{2}\}, 对任意的\varepsilon\in(0,\varepsilon_{0}],\Lambda(\varepsilon)=\max\{\Lambda_{1}{(\varepsilon)},\Lambda_{2}(\varepsilon)\}, 因为c(p_{\varepsilon},r)<(\frac{1}{2}-\frac{1}{22^{\ast}_{\mu}})S_{H,L}^{\frac{2^{\ast}_{\mu}}{2^{\ast}_{\mu}-1}},由引理 3.6, 对所有的c\leq c(p_{\varepsilon},r),I_{\lambda,p_{\varepsilon}}(u)满足(PS)_{c}条件, 再根据文献[29,定理 5.20] 可知问题(1.1)至少有cat_\Omega(\Omega)个非平凡弱解, 结合I_{\lambda,p_\varepsilon}定义及强极值原理和标准的椭圆理论, 那么有cat_\Omega(\Omega)个正解. 证毕.

参考文献

Alves C O, Nóbrega A B, Yang M B.

Multi-bump solutions for Choquard equation with deepening potential well

Calc Var Partial Differ Equ, 2016, 55(3): 1-28

DOI:10.1007/s00526-015-0942-y      URL     [本文引用: 1]

Alves C O, Barros L M.

Existence and multiplicity of solutions for a class of elliptic problem with critical growth

Monatsh Math, 2018, 187(2): 195-215

DOI:10.1007/s00605-017-1117-z      [本文引用: 1]

Ambrosetti A, Brezis H, Cerami G.

Combined effects of concave and convex nonlinearities in some elliptic problems

J Funct Anal, 1994, 122(2): 519-543

DOI:10.1006/jfan.1994.1078      URL     [本文引用: 1]

Alves C O, Ding Y H.

Multiplicity of positive solutions to ap-Laplacian equation involving critical nonlinearity

J Math Anal Appl, 2003, 279(2): 508-521

DOI:10.1016/S0022-247X(03)00026-X      URL     [本文引用: 1]

Bahri A, Coron J M.

On a nonlinear elliptic equation involving the Sobolev exponent: The effect of the topology of the domain

Comm Pure Appl Math, 1988, 41(3): 253-294

DOI:10.1002/cpa.v41:3      URL     [本文引用: 1]

Bartsch T, Wang Z Q.

Multiple positive solutions for a nonlinear Schrödinger equation

Z Angew Math Phys, 2000, 51(3): 366-384

DOI:10.1007/PL00001511      URL     [本文引用: 3]

Benci V, Cerami G.

Positive solutions of some nonlinear elliptic problems in exterior domains

Arch Rational Mech Anal, 1987, 99(4): 283-300

DOI:10.1007/BF00282048      URL     [本文引用: 1]

Benci V, Cerami G.

The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems

Arch Rational Mech Anal, 1991, 114(1): 79-93

DOI:10.1007/BF00375686      URL     [本文引用: 1]

Benci V, Cerami G.

Multiple positive solutions of some elliptic problems via the Morse theorem and the domain topology

Calc Var Partial Differ Equ, 1994, 2: 29-48

DOI:10.1007/BF01234314      URL     [本文引用: 1]

Cingolani S, Clapp M, Secchi S.

Multiple solutions to a magnetic nonlinear Choquard equation

Z Angew Math Phys, 2012, 63: 233-248

DOI:10.1007/s00033-011-0166-8      URL     [本文引用: 1]

Clapp M, Ding Y H.

Positive solutions for a Schrödinger equation with critical nonlinearity

Z Angew Math Phys, 2004, 55(4): 592-605

DOI:10.1007/s00033-004-1084-9      URL     [本文引用: 1]

Gao F S, Da Silva E D, Yang M B, Zhou J Z.

Existence of solutions for critical Choquard equations via the concentration compactness method

Proc R Soc Edinb Sect A Math, 2020, 150(2): 921-954

DOI:10.1017/prm.2018.131      URL    

In this paper, we consider the nonlinear Choquard equation-\\Delta u + V(x)u = \\left( {\\int_{{\\open R}^N} {\\displaystyle{{G(u)} \\over { \\vert x-y \\vert ^\\mu }}} \\,{\\rm d}y} \\right)g(u)\\quad {\\rm in}\\;{\\open R}^N, where 0 &lt; μ &lt;N,N⩾ 3,g(u) is of critical growth due to the Hardy–Littlewood–Sobolev inequality andG(u)=\\int ^u_0g(s)\\,{\\rm d}s. Firstly, by assuming that the potentialV(x) might be sign-changing, we study the existence of Mountain-Pass solution via a nonlocal version of the second concentration- compactness principle. Secondly, under the conditions introduced by Benci and Cerami, we also study the existence of high energy solution by using a nonlocal version of global compactness lemma.

Gao F S, Yang M B.

On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation

Sci China Math, 2018, 61(7): 1219-1242

DOI:10.1007/s11425-016-9067-5      [本文引用: 1]

Ghimenti M, Pagliardini D.

Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains

Calc Var Partial Differ Equ, 2019, 58(5): 1-21

DOI:10.1007/s00526-018-1462-3      [本文引用: 6]

Goel D.

The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent

Topol Methods Nonlinear Anal, 2019, 54(2): 751-771

[本文引用: 1]

Goel D, Rădulescu V D, Sreenadh K.

Coron problem for nonlocal equations involving Choquard Nonlinearity

Adv Nonlinear Stud, 2020, 20(1): 141-161

DOI:10.1515/ans-2019-2064      URL     [本文引用: 1]

We consider the following Choquard equation:

Goel D, Sreenadh K.

Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains

Adv Nonlinear Anal, 2020, 9(1): 803-835

[本文引用: 1]

Lieb E H.

Existence and uniqueness of the minimizing solution Choquard's nonlinear equations

Stud Appl Math, 1977, 57: 93-105

DOI:10.1002/sapm.v57.2      URL     [本文引用: 1]

Lieb E H, Loss M.

Analysis

Rhode Island: AMS, 2001

[本文引用: 1]

Ma P, Zhang J H.

Existence and multiplicity of solutions for fractional Choquard

Nonlinear Anal, 2017, 164: 100-117

DOI:10.1016/j.na.2017.07.011      URL     [本文引用: 1]

Lions P L.

The Choquard equation and related questions

Nonlinear Anal, 1980, 4(6): 1063-1072

DOI:10.1016/0362-546X(80)90016-4      URL     [本文引用: 1]

Moroz V, Van Schaftingen J.

A guide to the Choquard equation

J Fixed Point Theory Appl, 2017, 19(1): 773-813

DOI:10.1007/s11784-016-0373-1      URL     [本文引用: 1]

Moroz V, Van Schaftingen J.

Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics

J Funct Anal, 2013, 265: 153-184

DOI:10.1016/j.jfa.2013.04.007      URL     [本文引用: 2]

Moroz V, Van Schaftingen J.

Existence of groundstates for a class of nonlinear Choquard equations

Trans Am Math Soc, 2015, 367(9): 6557-6579

DOI:10.1090/tran/2015-367-09      URL     [本文引用: 1]

Moroz V, Van Schaftingen J.

Semi-classical states for the Choquard equation

Calc Var Partial Differ Equ, 2015, 52(1/2): 199-235

DOI:10.1007/s00526-014-0709-x      URL     [本文引用: 1]

Palatucci G, Pisante A.

Improved Sobolev embeddings, profile decomposition and concentration compactness fractional Sobolev space

Calc Var Partial Differ Equ, 2014, 50(3/4): 799-829

DOI:10.1007/s00526-013-0656-y      URL    

Pekar S.

Untersuchung über die Elektronentheorie der Kristalle

Berlin: Akademie Berlag, 1954

[本文引用: 1]

Shen Z F, Gao F S, Yang M B.

On critical Choquard equation with potential well

Discrete Contin Dyn Syst, 2018, 38(7): 3567-3593

DOI:10.3934/dcds.2018151      URL     [本文引用: 1]

Willem M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications. Boston: Birkhäuser, 1996, 24

[本文引用: 4]

Xu Z Y, Yang J F.

Multiple solutions to multi-critical Schrödinger equations

Adv Nonlinear Stud, 2022, 22(1): 273-288

DOI:10.1515/ans-2022-0014      URL     [本文引用: 1]

In this article, we investigate the existence of multiple positive solutions to the following multi-critical Schrödinger equation: \n (0.1)\n \n \n \n \n \n \n \n \n −\n Δ\n u\n +\n λ\n V\n \n (\n \n x\n \n )\n \n u\n =\n μ\n ∣\n u\n \n \n \n ∣\n \n \n p\n −\n 2\n \n \n u\n +\n \n \n \n \n ∑\n \n \n \n \n i\n =\n 1\n \n \n k\n \n \n \n (\n \n ∣\n x\n \n \n \n ∣\n \n \n −\n \n (\n \n N\n −\n \n \n α\n \n \n i\n \n \n \n )\n \n \n \n ∗\n ∣\n u\n \n \n \n ∣\n \n \n \n \n 2\n \n \n i\n \n \n ∗\n \n \n \n \n \n )\n \n ∣\n u\n \n \n \n ∣\n \n \n \n \n 2\n \n \n i\n \n \n ∗\n \n \n −\n 2\n \n \n u\n \n \n \n in\n \n \n \n \n \n R\n \n \n N\n \n \n,\n \n \n \n \n \n u\n \n ∈\n \n \n H\n \n \n 1\n \n \n \n (\n \n \n \n R\n \n \n N\n \n \n \n )\n \n,\n \n \n \n \n \n \n \n \\left\\{\\begin{array}{l}-\\Delta u+\\lambda V\\left(x)u=\\mu | u{| }^{p-2}u+\\mathop{\\displaystyle \\sum }\\limits_{i=1}^{k}\\left(| x{| }^{-\\left(N-{\\alpha }_{i})}\\ast | u{| }^{{2}_{i}^{\\ast }})| u{| }^{{2}_{i}^{\\ast }-2}u\\hspace{1.0em}\\hspace{0.1em}\\text{in}\\hspace{0.1em}\\hspace{0.33em}{{\\mathbb{R}}}^{N},\\hspace{1.0em}\\\\ u\\hspace{0.33em}\\in {H}^{1}\\left({{\\mathbb{R}}}^{N}),\\hspace{1.0em}\\end{array}\\right.\n \n where \n \n \n \n λ\n,\n μ\n ∈\n \n \n R\n \n \n +\n \n \n,\n N\n ≥\n 4\n \n \\lambda,\\mu \\in {{\\mathbb{R}}}^{+},N\\ge 4\n \n, and \n \n \n \n \n \n 2\n \n \n i\n \n \n ∗\n \n \n =\n \n \n N\n +\n \n \n α\n \n \n i\n \n \n \n \n N\n −\n 2\n \n \n \n {2}_{i}^{\\ast }=\\frac{N+{\\alpha }_{i}}{N-2}\n \n with \n \n \n \n N\n −\n 4\n &lt;\n \n \n α\n \n \n i\n \n \n &lt;\n N\n \n N-4\\lt {\\alpha }_{i}\\lt N\n \n, \n \n \n \n i\n =\n 1\n,\n 2\n,\n \n …\n \n,\n k\n \n i=1,2,\\ldots,k\n \n are critical exponents and \n \n \n \n 2\n &lt;\n p\n &lt;\n \n \n 2\n \n \n min\n \n \n ∗\n \n \n =\n min\n \n {\n \n \n \n 2\n \n \n i\n \n \n ∗\n \n \n :\n i\n =\n 1\n,\n 2\n,\n \n …\n \n,\n k\n \n }\n \n \n 2\\lt p\\lt {2}_{\\min }^{\\ast }={\\rm{\\min }}\\left\\{{2}_{i}^{\\ast }:i=1,2,\\ldots,k\\right\\}\n \n. Suppose that \n \n \n \n Ω\n =\n int\n \n \n \n V\n \n \n −\n 1\n \n \n \n (\n \n 0\n \n )\n \n ⊂\n \n \n R\n \n \n N\n \n \n \n \\Omega ={\\rm{int}}\\hspace{0.33em}{V}^{-1}\\left(0)\\subset {{\\mathbb{R}}}^{N}\n \n is a bounded domain, we show that for \n \n \n \n λ\n \n \\lambda \n \n large, problem (0.1) possesses at least \n \n \n \n \n \n cat\n \n \n Ω\n \n \n \n (\n \n Ω\n \n )\n \n \n {{\\rm{cat}}}_{\\Omega }\\left(\\Omega )\n \n positive solutions.

Yang J F, Zhu L P.

Multiple solutions to Choquard equation in exterior domain

J Math Anal Appl, 2022, 507(1): 125726

DOI:10.1016/j.jmaa.2021.125726      URL     [本文引用: 1]

/