数学物理学报 ›› 2024, Vol. 44 ›› Issue (1): 60-79.

• • 上一篇    下一篇

次临界 Choquard 方程的多解

温瑞江1(),刘范琴2(),徐子怡3,*()   

  1. 1.江西师范大学数学与统计学院 南昌 330022
    2.首都师范大学数学科学学院 北京 100048
    3.兰州大学数学与统计学院 兰州 730000
  • 收稿日期:2022-09-20 修回日期:2023-10-16 出版日期:2024-02-26 发布日期:2024-01-10
  • 通讯作者: 徐子怡, E-mail:XuZiyi0822@outlook.com
  • 作者简介:温瑞江, E-mail:ruijiangwen@126.com|刘范琴, E-mail:fanqliu@163.com

Multiplicity of Positive Solutions to Subcritical Choquard Equation

Wen Ruijiang1(),Liu Fanqin2(),Xu Ziyi3,*()   

  1. 1. School of Mathematics and Statistics, Jiangxi Normal University, Nanchang 330022
    2. School of Mathematical Sciences, Capital Normal University, Beijing 100048
    3. School of Mathematics and Statistics, Lanzhou University, Lanzhou 730000
  • Received:2022-09-20 Revised:2023-10-16 Online:2024-02-26 Published:2024-01-10

摘要:

该文考虑次临界 Choquard 方程

$\begin{cases} -{\Delta}{u}+(\lambda V(x)+1)u=\Big(\int_{\mathbb{R}^N} \frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu} {\rm d}y\Big)|u|^{p_{\varepsilon}-2}u,\quad x\in\mathbb{R}^N,\\{u\in{{H}}^{1}{(\mathbb{R}^N)}} \end{cases}$(0.1)

多解的存在性, 其中$N>3$,$\lambda$是正实参数,$p_{\varepsilon}=2^\ast_{\mu}-\varepsilon$,$\varepsilon>0$,$0<\mu<N$,$2^\ast_{\mu}=\frac{2N-\mu}{N-2}$是 Hardy-Littlewood-Sobolev 不等式意义下的临界指数. 假定$\Omega:={\rm int}\,V^{-1}(0)$是$\mathbb{R}^N$中非空带光滑边界的有界区域, 利用 Lusternik-Schnirelman 定理,该文证明了当$\lambda$足够大及$\varepsilon$充分小时, 方程(0.1)至少有$cat_\Omega(\Omega)$个正解.

关键词: 次临界 Choquard 方程, Lusternik-Schnirelman 定理, 解的多重性

Abstract:

In this paper, we are concerned with the multiplicity of solutions for the following subcritical Choquard equation

$\begin{equation*} \begin{cases} -{\Delta}{u}+(\lambda V(x)+1)u=\Big(\int_{\mathbb{R}^N}\frac{|u(y)|^{p_{\varepsilon}}}{|x-y|^\mu}{\rm d}y\Big)|u|^{p_{\varepsilon}-2}u,\quad x\in\mathbb{R}^N,\\{u\in{{H}}^{1}{(\mathbb{R}^N)}}, \end{cases}\end{equation*}$

where$N>3$,$\lambda$is a real parameter,$p_{\varepsilon}=2^\ast_{\mu}-\varepsilon$,$\varepsilon>0$,$\mu\in(0,N)$and$2^\ast_{\mu}=\frac{2N-\mu}{N-2}$is the critical Hardy-Littlewood-Sobolev exponent. Suppose that$\Omega:={\rm int}\,V^{-1}(0)$is a nonempty bounded domain in$\mathbb{R}^N$with smooth boundary, using Lusternik-Schnirelman theory, we prove the problem (0.1) has at least$cat_\Omega(\Omega)$positive solutions for$\lambda$large and$\varepsilon$small enough.

Key words: Subcritical Choquard equation, Lusternik-Schnirelman theory, Multiplicity of solutions

中图分类号: 

  • O175.25