数学物理学报, 2023, 43(5): 1595-1606

具有媒体报道的 SVIR 传染病模型的生存性分析

李丹1, 魏凤英,2,*, 毛学荣3

1福州大学数学与统计学院 福州 350116

2福州大学运筹学与控制论福建省高校重点实验室 福州 350116

3思克莱德大学数学与统计系 格拉斯哥 G1 1XH

Survival Analysis of an SVIR Epidemic Model with Media Coverage

Li Dan1, Wei Fengying,2,*, Mao Xuerong3

1School of Mathematics and Statistics, Fuzhou University, Fuzhou 350116

2Key Laboratory of Operations Research and Control of Universities in Fujian, Fuzhou University, Fuzhou 350116

3Department of Mathematics and Statistics, University of Strathclyde, Glasgow G1 1XH, UK

通讯作者: * 魏凤英,Email: weifengying@fzu.edu.cn

收稿日期: 2022-04-22   修回日期: 2022-10-31  

基金资助: 国家自然科学基金-国际(地区)合作与交流项目(61911530398)
福建省科技厅项目(2021L3018)
福建省自然科学基金(2021J01621)
英国皇家学会(WM160014)
英国皇家学会(英国皇家学会沃尔夫森研究优异奖)
英国皇家学会和牛顿基金(NA160317)
英国皇家学会和牛顿基金(皇家学会-牛顿高级奖学金)
工程和物理科学研究委员会(EP/K503174/1)

Received: 2022-04-22   Revised: 2022-10-31  

Fund supported: National Natural Science Foundation of China(61911530398)
Special Projects of the Central Government Guiding Local Science, Technology Development(2021L3018)
Natural Science Foundation of Fujian Province of China(2021J01621)
Royal Society, UK(WM160014)
Royal Society, UK (Royal Society Wolfson Research Merit Award)
Royal Society and the Newton Fund, UK(NA160317)
Royal Society and the Newton Fund, UK (Royal Society-Newton Advanced Fellowship)
EPSRC, the Engineering and Physical Sciences Research Council(EP/K503174/1)

摘要

该文研究了具有Logistic增长和媒体报道的饱和发生率的随机SVIR模型. 为了研究模型的动力学性质, 首先证明了随机模型全局正解的存在唯一性, 其次通过构造合适的李雅普诺夫函数, 探究疾病持久和灭绝的充分性条件. 研究表明: 当${R}_{0}^{s}>1$时, 疾病长时间持续存在. 当${R}_{0}^{e}<1$时, 疾病在流行一段时间后灭绝. 最后, 通过数值模拟验证了以上结论.

关键词: 传染病模型; 疫苗; 媒体报道; 持久性与灭绝性; 平稳分布

Abstract

We consider the long-term properties of a stochastic SVIR epidemic model with media coverage and the logistic growth in this paper. We firstly derive the fitness of a unique global positive solution. Then we construct appropriate Lyapunov functions and obtain the existence of ergodic stationary distribution when ${R}_{0}^{s}>1$ is valid, and also derive sufficient conditions for persistence in the mean. Moreover, the exponential extinction to the density of the infected is figured out when ${R}_{0}^{e}<1$ holds.

Keywords: Epidemic model; Vaccination; Media coverage; Persistence and extinction; Stationary distribution

PDF (1602KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李丹, 魏凤英, 毛学荣. 具有媒体报道的 SVIR 传染病模型的生存性分析[J]. 数学物理学报, 2023, 43(5): 1595-1606

Li Dan, Wei Fengying, Mao Xuerong. Survival Analysis of an SVIR Epidemic Model with Media Coverage[J]. Acta Mathematica Scientia, 2023, 43(5): 1595-1606

1 引言

当疾病在某个地区出现时, 该地的疾病控制中心的首要任务就是竭尽全力防止疾病传播, 重要的预防措施之一就是通过大众传媒向人们普及正确的疾病预防知识. 在传染病传播的早期阶段, 媒体对传染病的报道能够加强公众的防范认识, 避免大众途经感染者停留的地方, 减少感染者的数量. 目前已经建立了一些数学模型研究媒体报道对传染病动力学影响[4,7,10,16,18,33,39,42]. 特别是Cui等[7]、 Caraballo等[4]、 Tchuenche等[32]、 Sun[31]等利用非线性函数$f(I)=\beta-\beta_{1}\frac{I}{b+I}$研究媒体报道的影响, $\beta$代表在媒体报道之前, 接种者和感染者之间的接触率, 而$\beta_{1}$代表在媒体报道后的最大降低接触率. 众所周知, 媒体的报道并不能完全阻止传染病的传播, 因此, $\beta>\beta_{1}$的假设是合理的. 饱和发病率$g(I)=\frac{I}{1+aI}$反映了感染者的行为变化和拥挤效应, $a$称为半饱和常数[11]. 当感染者数量较大时, $g(I)$会趋近于$\frac{1}{a}$[1,3,21,25,26,28,30,34,35,38]. 文献[30]研究具有饱和发生率的传染病模型, 研究表明: 疫苗接种率提高使得感染者的密度降低. 其他发病率函数可以参考相关工作[6,13,14,17,19,24,27,36].

本文假设某个区域的易感者数量变化在一段时间内服从Logistic增长[2,8,15,20,29], 并且接种者随着时间的推移失去疫苗免疫再次回到易感人群, 利用饱和发生率描述感染者的拥挤效应, 因此建立随机SVIR模型

$ \begin{equation} \begin{cases} \displaystyle \mbox{d}S(t)=\left[\gamma S\Big(1-\frac{S}{K}\Big)+\theta V-\zeta S -\rho SI\right]\mbox{d}t +\sigma_{1}S\mbox{d}B_{1}(t), \\ \displaystyle \mbox{d}V(t)=\left[\zeta S-\theta V- \Big(\beta-\beta_{1}\frac{I}{b+I}\Big)\frac{ VI}{1+aI}-\mu V\right]\mbox{d}t +\sigma_{2}V\mbox{d}B_{2}(t), \\ \displaystyle \mbox{d}I(t)=\left[\rho SI +\Big(\beta-\beta_{1}\frac{I}{b+I}\Big)\frac{ VI}{1+aI}-(\mu+\delta+\tau)I\right]\mbox{d}t +\sigma_{3}I\mbox{d}B_{3}(t), \mbox{d}R(t)= \left(\tau I-\mu R\right)\mbox{d}t+\sigma_{4}R\mbox{d}B_{4}(t). \end{cases} \end{equation} $

其中, $S(t), V(t), I(t), R(t)$ 分别表示人群中$t$时刻易感者、接种者、感染者和恢复者的数量, $\gamma$ 和$K$分别代表内禀增长率和环境最大容纳量; $\mu$ 表示自然死亡率; $\delta$代表因病死亡率; $\tau$表示感染者的恢复率; $\rho$表示易感者和感染者的接触率; $\theta$ 表示疫苗失效率; $\zeta$ 表示易感者接种疫苗率; $a, b$ 都是半饱和常数; $B_{1}(t), B_{2}(t), B_{3}(t), B_{4}(t)$是相互独立的标准布朗运动; $\sigma_{1}, \sigma_2, \sigma_{3}, \sigma_{4}$表示白噪声的强度; $(\Omega, \mathcal{F}, \{\mathcal{F}_{t}\}_{t\geqslant 0}, \mathbb{P})$是完备的概率空间, 且滤子$\{\mathcal{F}_{t}\}_{t\geqslant 0}$满足通常情况.

由于恢复者密度的变化不影响易感者、接种者和感染者的密度,所以模型(1.1)变换为

$ \begin{equation} \begin{cases} \displaystyle \mbox{d}S(t)=\left[\gamma S\Big(1-\frac{S}{K}\Big)+\theta V-\zeta S -\rho SI\right]\mbox{d}t +\sigma_{1}S\mbox{d}B_{1}(t), \\ \displaystyle \mbox{d}V(t)=\left[\zeta S-\theta V- \Big(\beta-\beta_{1}\frac{I}{b+I}\Big)\frac{ VI}{1+a I}-\mu V\right]\mbox{d}t +\sigma_{2}V\mbox{d}B_{2}(t), \\ \displaystyle \mbox{d}I(t)=\left[\rho SI +\Big(\beta-\beta_{1}\frac{I}{b+I}\Big)\frac{ VI}{1+a I}-(\mu+\delta+\tau)I\right]\mbox{d}t +\sigma_{3}I\mbox{d}B_{3}(t). \end{cases} \end{equation} $

下面, 我们将证明模型(1.2)全局正解的存在唯一性, 寻找持久和遍历平稳分布存在的充分条件, 以及疾病灭绝的充分条件.

2 解的存在唯一性和持久性

模型(1.2)全局正解的存在性和唯一性是模型主要动力学性质之一. 对任意 $t\geqslant0$, 模型(1.2)的解记为$\textbf{X}(t)=(S(t),V(t),I(t))^{\mbox{T}}$. 定义 $\mbox{d}\textbf{B}(t)=(\mbox{d}B_{1}(t), \mbox{d}B_{2}(t), \mbox{d}B_{3}(t))^{\mbox{T}}$. 设$\mathbb{R}^{n}$是一个$n$维欧氏空间, $X(t)$是$\mathbb{R}^{n}$中的齐次马尔可夫过程, 则随机微分方程为

$\begin{equation*} \mbox{d}X(t)=F(X(t))\mbox{d}t+\sum\limits_{l=1}^{n}g_{l}(X(t))\mbox{d}B_{l}(t), \end{equation*}$

令初始值为 $X(0) = X_{0}\in \mathbb{R}^{n}$, $g_{l}=(g^l_1,g^l_2,\cdots,g^l_n)^T$ 扩散矩阵为 $A(X)=(a_{ij}(X))_{n\times n}$, 其中 $a_{ij}(X)=\sum\limits_{l=1}^{n}g_{l}^{i}(X)g_{l}^{j}(X)$. 定义随机微分方程的微分算子

$\begin{equation*} \mathcal{L}=\sum\limits_{l=1}^{n}F_{i}(X)\frac{\partial}{\partial X_{i}}+ \frac{1}{2}\sum\limits_{l=1}^{n}a_{ij}(X)\frac{\partial^{2}}{\partial X_{i}\partial X_{j}}. \end{equation*}$

根据文献[21,34,35,38], 容易得到定理2.1, 证明细节省略.

定理2.1 对于任意初值$(S(0), V(0), R(0))^{\mbox{T}}\in \mathbb{R}^3_+$, 模型(1.2)存在唯一的正解, 且该解将以概率1留在$\mathbb{R}^3_+ $.

根据文献[40,41]的结论, 得到引理2.1, 省略证明过程.

引理2.1 模型$(1.2)$的解$\textbf{X}(t)$具有以下性质

$\begin{equation*} \lim\limits_{t\rightarrow \infty}\frac{1}{t}X_i(t)=0, \quad \lim\limits_{t\rightarrow \infty}\frac{1}{t}\ln X_i(t)\leqslant 0\quad (i=1,2,3) \quad\mbox{a.s.}. \end{equation*}$

若 $\max\{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\}<2\mu$, 则

$\begin{equation*} \limsup\limits_{t\rightarrow \infty}\frac{1}{t}\int_{0}^{t} X_i(s)\mbox{d}B_{i}(s)= 0 \quad (i=1,2,3) \quad \mbox{a.s.}. \end{equation*}$

依据文献[21,定理4.2]、文献[37,定理3.1]和文献[5,定理4.1]方法, 给出了疾病的持久的充分条件. 令

$ \begin{equation} {R}_{0}^{s}=\frac{p_{1}}{p_{2}p_{3}(1+E)}, \quad\, A=\frac{p_{1} \Big[(2\beta-\beta_{1})\Big(1-\frac{\sigma_{1}^{2}}{2\gamma}-\frac{\zeta}{\gamma}\Big)+3\rho p_{2}\Big]}{\gamma p_{2}^2p_{3} \Big(1-\frac{\sigma_{1}^{2}}{2\gamma}-\frac{\zeta}{\gamma}\Big)}, \end{equation} $
$ \begin{equation} \displaystyle p_{1}=(\beta-\beta_{1})\zeta K\Big(1-\frac{\sigma_{1}^{2}}{2\gamma}-\frac{\zeta}{\gamma}\Big)^{3}, \quad p_{2}=\theta+\mu+\frac{\sigma_{2}^{2}}{2}, \quad p_{3}=\mu+\delta+\tau+\frac{\sigma_{3}^{2}}{2}. \end{equation} $

定理2.2 若满足条件 $ {R}_{0}^{s}>1, \ \sigma_1^2<2(\gamma-\zeta), \ \max\{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\}<2\mu, $ 则疾病是持久的, 且

$\begin{equation*} \mathop{\liminf}\limits_{t\rightarrow\infty}A\langle I\rangle_{t}\geqslant(1+E)({R}_{0}^{s}-1)>0\quad \mbox{a.s.}. \end{equation*}$

构造如下$C^2$函数

$\begin{align*} V_{1}=\frac{a}{\mu+\delta+\tau}(S+V+I)-c_{1}\ln V-c_{2}\ln I, \quad V_{2}=\frac{2(S+V)}{3\gamma K}-\frac{\ln S}{\gamma}, \end{align*}$

其中$c_1$和$c_2$是待定正常数, 对$V_{1}$ 应用Itô公式, 得到

$\begin{matrix} \mbox{d}V_{1}=\displaystyle \mathcal{L}V_{1}&\mbox{d}t +\frac{aS\sigma_{1}}{\mu+\delta+\tau}\mbox{d}B_{1}(t) +\Big(\frac{aV}{\mu+\delta+\tau}-c_{1}\Big)\sigma_{2}\mbox{d}B_{2}(t) +\Big(\frac{aI}{\mu+\delta+\tau}-c_{2}\Big)\sigma_{3}\mbox{d}B_{3}(t), \\ \displaystyle\mathcal{L}V_{1} & <E-aI -\frac{c_{1}\zeta S}{V}+c_{1}p_2+c_{2}p_3 +\Big(\beta-\frac{\beta_{1}I}{b+I}\Big)\Big(c_{1}\frac{I}{1+a I}- c_{2}\frac{V}{1+a I}\Big) \\ & < -\frac{c_{1}\zeta S}{V}- \frac{c_{2}\big(\beta-\beta_{1}\big)V}{1+a I}-(1+a I)+1+c_{1}p_2+c_{2}p_3 +E+c_{1}(2\beta-\beta_{1}) I \\ &< -3\sqrt[3]{c_{1}c_{2}(\beta-\beta_{1})\zeta S}+c_{1}p_2 +c_{2}p_3+E+c_{1}(2\beta-\beta_{1}) I+1, \end{matrix}$

并且

$ \begin{equation} \displaystyle\, E=\displaystyle\mathop{\max}\limits_{S\in \mathbb R_{+}}\Big \{\frac{a \gamma S}{\mu+\delta+\tau} \Big(1-\frac{S}{K}\Big)-c_{2}\rho S\Big\}=\frac{K [a \gamma-c_{2}\rho(\mu+\delta+\tau)]^{2}} {4a \gamma(\mu+\delta+\tau)}. \end{equation} $

对$V_{2}$应用Itô公式, 得到

$ \mbox{d}V_{2}=\mathcal{L}V_{2}\mbox{d}t +\Big(\frac{2S}{3\gamma K}-\frac{1}{\gamma}\Big)\sigma_{1}\mbox{d}B_{1}(t)+\frac{2V}{3\gamma K}\sigma_{2}\mbox{d}B_{2}(t), $

其中

$\begin{equation} \mathcal{L}V_{2} <\frac{2S}{3K}\Big(1-\frac{S}{K}\Big)+\frac{S}{K}-1 +\frac{\zeta}{\gamma}+\frac{\rho I}{\gamma}+\frac{\sigma_{1}^{2}}{2\gamma} <\sqrt [3] {\frac{S}{K}}+\frac{\rho I}{\gamma}-\Big(1-\frac{\sigma_{1}^{2}}{2\gamma}-\frac{\zeta}{\gamma}\Big). \end{equation}$

定义$V_{3}=V_{1}+3\sqrt [3] {c_{1}c_{2}(\beta-\beta_{1})\zeta K}V_{2}$, 先对$V_{3}$应用Itô公式, 然后结合(2.3)和(2.5)式, 得到

$\begin{matrix} \mathcal{L}V_{3} &<1+E+c_{1} p_2+c_{2}p_3+ \frac{3\rho I}{\gamma}\sqrt [3]{c_{1}c_{2}(\beta-\beta_{1})\zeta K}\notag\\ &\quad\ -3\sqrt [3] {c_{1}c_{2}(\beta-\beta_{1})\zeta K}\Big(1-\frac{\sigma_{1}^{2}}{2\gamma}-\frac{\zeta}{\gamma}\Big)+c_{1}(2\beta-\beta_{1})I. \end{matrix}$

根据(2.2)式, 令

$\begin{equation*} \displaystyle c_{1}=\frac{p_{1}}{p_{2}^{2}p_{3}}, \quad c_{2}=\frac{p_{1}}{p_{2}p_{3}^{2}}, \end{equation*}$

因此

$ \begin{equation} \mathcal{L}V_{3}<-(1+E)({R}_{0}^{s}-1)+AI:=-\lambda+AI. \end{equation} $

定义一个行向量$\textbf{D}_1(t)$和列向量 $\mbox{d}\textbf{B}(t)=(\mbox{d}B_{1}(t), \mbox{d}B_{2}(t), \mbox{d}B_{3}(t))^{\mbox{T}}$, 因此

$ \begin{equation} \displaystyle\mbox{d}V_{3} = \mathcal{L}V_{3}\mbox{d}t +\textbf{D}_1(t)\mbox{d}\textbf{B}(t), \end{equation} $

对等式(2.8)两边同时积分, 再除以$t$, 结合(2.7)式得

$ \begin{equation} \frac{1}{t}[V_{3}(t)-V_{3}(0)]< A\langle I\rangle_{t}-\lambda+\Psi_{1}(t), \end{equation} $

其中

$\begin{matrix} \displaystyle\Psi_{1}(t)&=\frac{1}{t}\int_{0}^{t}\textbf{D}_1(s)\mbox{d}\textbf{B}(s)\notag\\ &=\frac{1}{t}\int_{0}^{t}\Big[\frac{a S(s)}{\mu+\delta+\tau}+3\sqrt[3]{c_{1}c_{2} (\beta-\beta_{1})\zeta K} \Big(\frac{2S(s)}{3\gamma K}-\frac{1}{\gamma}\Big)\Big]\sigma_{1}\mbox{d}B_{1}(s)\notag\\ &\quad+\frac{1}{t}\int_{0}^{t}\Big(\frac{a V(s)}{\mu+\delta+\tau} +\sqrt[3]{c_{1}c_{2}(\beta-\beta_{1}) \zeta K}\frac{2V(s)}{\gamma K}-c_{1}\Big)\sigma_{2}\mbox{d}B_{2}(s)\notag\\ &\quad +\frac{1}{t}\int_{0}^{t}\Big(\frac{a I(s)}{\mu+\delta+\tau}-c_{2}\Big)\sigma_{3}\mbox{d}B_{3}(s). \end{matrix}$

根据引理2.1和强大数定理[23] 可知$\limsup\limits_{t\rightarrow\infty}\Psi_{1}(t) = 0$, 对(2.9)式取下极限得$\mathop{\liminf}\limits_{t\rightarrow\infty}A\langle I\rangle_{t}> \lambda>0. $ 证毕.

3 平稳分布的存在性

根据文献[38,定理3.3], 文献[5,注5.1], 得到定理3.1.

定理3.1 若${R}_{0}^{s}>1$, 则模型(1.2)存在平稳分布, 并且具有遍历性.

定义有界集为

$ \begin{equation} \displaystyle D_{\varepsilon}=\Big\{\textbf{X}\in \mathbb R_{+}^{3}, \varepsilon\leqslant S\leqslant \frac{1}{\varepsilon}, \varepsilon^{2}\leqslant V \leqslant \frac{1}{\varepsilon^{2}}, \varepsilon\leqslant I \leqslant \frac{1}{\varepsilon} \Big\}, \end{equation} $

这里的$\varepsilon$ 是非常小的正常数, 且满足以下条件

$ \begin{matrix} \displaystyle &\frac{AM\rho\varepsilon}{\mu+\delta+\tau}\leqslant \min\Big\{m(m+2)(\mu+\delta+\tau), \frac{\gamma(m+3)}{2K}, \frac{m+3}{m+2}\Big\}, \end{matrix} $
$ \begin{matrix} &F+1\leqslant \min\Big\{\frac{\zeta}{\varepsilon}, \frac{\gamma}{4K\varepsilon^{m+3}}, \frac{m(\mu+\delta+\tau)}{2\varepsilon^{m+2}}, \frac{\mu m}{\varepsilon^{2m+4}}\Big\}. \end{matrix} $

模型(1.2)扩散矩阵为

$ \displaystyle\tilde{A}=\mbox{diag}\{\sigma_{1}^{2}S^{2}, \sigma_{2}^{2}V^{2}, \sigma_{3}^{2}I^{2}\}=(a_{ij})_{3\times 3}, $

设模型(1.2)的扩散项最小值为

$ \eta=\mathop{\min}\limits_{\textbf{X}\in D_{\varepsilon}}\{\sigma_{1}^{2}S^{2}, \sigma_{2}^{2}V^{2}, \sigma_{3}^{2}I^{2}\}>0, $

对任意的 $\textbf{X}\in D_{\varepsilon}, \xi=(\xi_{1}, \xi_{2}, \xi_{3})^{\mbox{T}}\in \mathbb R_{+}^{3}$, 都有

$\begin{equation*} \begin{aligned} \displaystyle \sum\limits_{i, j=1}^{n}a_{ij}\xi_{i}\xi_{j} =(\xi_{1}, \xi_{2}, \xi_{3})\tilde{A}(\xi_{1}, \xi_{2}, \xi_{3})^{{\mbox{T}}} =(\sigma_{1}S)^{2}\xi_{1}^{2}+(\sigma_{2}V)^{2}\xi_{2}^{2}+(\sigma_{3}I)^{2}\xi_{3}^{2} \geqslant\eta\|\xi\|^{2}, \end{aligned} \end{equation*}$

这意味着文献[5,注5.1]条件(i)已满足.

构造Lyapunov函数

$W=M(V_3+V_4)+V_5+V_6, $

其中

$\begin{equation*} V_4=\frac{A}{\mu+\delta+\tau}(V+I), \quad V_5=\frac{1}{m+2}(S+I+V)^{m+2}, \quad V_6=-\ln V, \end{equation*}$

$m>0$ 是充分小的常数满足

$ \begin{equation} \displaystyle m<\frac{\mu-0. 5(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2})} {\mu+0. 5(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2})}, \end{equation} $

$M>0$ 是充分大的常数满足

$ \begin{equation} \displaystyle -M\lambda+B+\theta+\mu+\frac{\sigma_{2}^{2}}{2}+\frac{2\beta-\beta_{1}}{a}\leqslant -2. \end{equation} $

显然, $W(\textbf{X})$ 是连续函数, 所以存在最小值$W(\bar{\textbf{X}})$, 因此可构造非负的 $C^{2}$ 函数

$ \begin{equation} Q=M(V_{3}+V_{4})+V_{5}+V_{6}-W(\bar{\textbf{X}}). \end{equation} $

依次对$V_{4}, V_{5}, V_{6}$ 应用 Itô 公式, 可得

$ \begin{matrix} \displaystyle\mathcal{L}V_{4} &=\frac{A}{\mu+\delta+\tau}\Big[\zeta S-(\theta+\mu)V +\rho SI-(\mu+\delta+\tau)I\Big]\notag\\ &<\frac{A\zeta S}{\mu+\delta+\tau}+\frac{A\rho SI}{\mu+\delta+\tau}-AI, \end{matrix} $
$ \begin{matrix} \quad\displaystyle\mathcal{L}V_{5}&=(S+V+I)^{m+1} \Big[\gamma S\Big(1-\frac{S}{K}\Big)-\mu V-(\mu+\delta+\tau)I\Big]\notag\\ &\quad+\frac{m+1}{2}(S+V+I)^{m}(\sigma_{1}^{2}S^{2}+\sigma_{2}^{2}V^{2}+\sigma_{3}^{2}I^{2})\notag\\ &<\gamma S(S+V+I)^{m+1}-\frac{\gamma}{K}S^{m+3}-\mu V^{m+2}-(\mu+\delta+\tau)I^{m+2}\notag\\ &\quad+\frac{m+1}{2}(S+V+I)^{m+2}(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2}), \end{matrix} $
$ \begin{matrix} \mathcal{L}V_{6}&=\displaystyle -\frac{\zeta S}{V}+\Big(\beta-\frac{\beta_{1}I}{b+I}\Big) \frac{I}{1+aI}+p_2 \leqslant-\frac{\zeta S}{V}+\frac{2\beta-\beta_{1}}{a}+p_2, \end{matrix} $

其中

$\begin{align*} \displaystyle B=\mathop{\max}\limits_{\textbf{X}\in \mathbb R_{+}^{3}} &\Big\{-\frac{\gamma}{2K}S^{m+3}-\mu(1-m) V^{m+2}-(\mu+\delta+\tau)(1-m)I^{m+2}\\ &\quad+\gamma S(S+V+I)^{m+1}+\frac{AM\zeta S}{\mu+\delta+\tau} +\frac{m+1}{2}(S+V+I)^{m+2}(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2})\Big\}, \end{align*}$

结合(2.7)式和(3.7)-(3.9)式, 我们得到

$ \begin{matrix} \displaystyle\mathcal{L}Q &< \frac{MA\rho SI} {\mu+\delta+\tau}-M\lambda -\frac{\gamma}{2K}S^{m+3}-\mu m V^{m+2}\notag\\ &\quad\ -m(\mu+\delta+\tau)I^{m+2}+B-\frac{\zeta S}{V}+\frac{2\beta-\beta_{1}}{a}+p_2. \end{matrix} $

将$\mathbb R_{+}^{3}\backslash D_{\varepsilon}$ 分成六个子区间, 证明 $\mathcal{L}Q$ 在这六个区间内满足$\mathcal{L}Q<-1$, 其中$\mathbb R_{+}^{3}\backslash D_{\varepsilon}=D_{1}\cup D_{2}\cup D_{3}\cup D_{4}\cup D_{5}\cup D_{6}$.

$\begin{gathered} D_{1} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},0<S<\varepsilon\right\}, D_{2} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},0<I<\varepsilon\right\}, \\ D_{3} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},S>\varepsilon,I>\varepsilon,0<V<\varepsilon^{2}\right\},D_{4} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},S>\frac1\varepsilon\right\}, \\ D_{5} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},I>\frac1\varepsilon\right\}, D_{6} =\left\{\mathbf{X}\in\mathbb{R}_{+}^{3},V>\frac1{\varepsilon^{2}}\right\}. \end{gathered}$

情形 1 若$\textbf{X}\in D_{1}$, 则

$\begin{equation*} SI\leqslant\varepsilon I\leqslant \varepsilon\frac{m+1+I^{m+2}}{m+2}, \end{equation*}$

根据(3.2), (3.5), (3.10)式, 可得

$\begin{equation*} \mathcal{L}Q<-2+\frac{AM\rho \varepsilon(m+1)}{(\mu+\delta+\tau)(m+2)} +\Big[\frac{AM\rho\varepsilon}{(\mu+\delta+\tau)(m+2)} -m(\mu+\delta+\tau)\Big]I^{m+2} \leqslant-1. \end{equation*}$

情形 2 若$\textbf{X}\in D_{2}$, 则

$\begin{equation*} SI\leqslant\varepsilon S\leqslant \varepsilon\frac{m+2+S^{m+3}}{m+3}, \end{equation*}$

根据(3.2), (3.5), (3.10)式, 可得

$\begin{equation*} \mathcal{L}Q\displaystyle<-2+\frac{AM \rho\varepsilon(m+2)} {(\mu+\delta+\tau)(m+3)}+\Big(\frac{AM \rho\varepsilon} {(\mu+\delta+\tau)(m+3)}-\frac{\gamma}{2K}\Big)S^{m+3}\leqslant-2+1=-1. \end{equation*}$

情形 3 若$\textbf{X}\in D_{3}$, 则通过(3.3), (3.10)式可得

$\begin{equation*} \mathcal{L}Q\displaystyle< -\frac{\zeta S}{V} +F< -\frac{\zeta}{\varepsilon}+F\leqslant-1, \end{equation*}$

其中

$\begin{equation*} F=\displaystyle\mathop{\sup}\limits_{\textbf{X}\in \mathbb R_{+}^{3}}\left\{\frac{AM\rho SI}{\mu+\delta+\tau} -\frac{\gamma}{4K}S^{m+3}-\frac{m}{2}(\mu+\delta+\tau)I^{m+2}+B+p_2+\frac{2\beta-\beta_{1}}{a}\right\}. \end{equation*}$

情形 4 若 $\textbf{X}\in D_{4}$, 则通过(3.3), (3.10)式可得

$\begin{equation*} \mathcal{L}Q<-\frac{\gamma}{4K}S^{m+3}+F <-\frac{\gamma}{4K\varepsilon^{m+3}}+F \leqslant-1. \end{equation*}$

情形 5 若$\textbf{X}\in D_{5}$, 则通过(3.3), (3.10)式可得

$\begin{equation*} \mathcal{L}Q<-\frac{m}{2}(\mu+\delta+\tau)I^{m+2}+F <-\frac{(\mu+\delta+\tau)m}{2 \varepsilon^{m+2}}+F \leqslant-1. \end{equation*}$

情形 6 若$\textbf{X}\in D_{6}$, 则通过(3.3), (3.10)式可得

$\begin{equation*} \mathcal{L}Q<-\mu m V^{m+2}+F <-\frac{\mu m}{\varepsilon^{2m+4}}+F \leqslant-1. \end{equation*}$

所以文献[5,注5.1]条件(ii)已满足; 因此模型(1.2)存在遍历的平稳分布. 证毕.

4 疾病的灭绝性

定理4.1 若满足条件

$ \begin{equation} \displaystyle \displaystyle {R}_{0}^{e}=\frac{\gamma K(\rho\mu+\rho\theta+2\beta\zeta-\beta_{1}\zeta)}{4\big(\mu+\delta+\tau+0. 5\sigma_{3}^{2}\big)\zeta\mu}<1, \quad \displaystyle \max\{\sigma_{1}^{2}, \sigma_{2}^{2}, \sigma_{3}^{2}\}<2\mu, \end{equation} $

则疾病将指数灭绝.

对模型(1.2) 的第一个方程两边同时从0到$t$ 积分, 然后再除以$t$, 最后进行适当地放缩

$ \begin{equation} \displaystyle \frac{1}{t}[S(t)-S(0)]<\frac{\gamma K}{4}+\theta\langle V\rangle_{t}-\zeta\langle S\rangle_{t}+\frac{\sigma_{1}}{t}\int_{0}^{t}S(s)\mbox{d}B_{1}(s), \end{equation} $

根据引理2.1, 可知

$\begin{equation*} \limsup\limits_{t\rightarrow\infty} \left\{\frac{\sigma_{1}}{t}\int_{0}^{t}S(s)\mbox{d}B_{1}(s)-\frac{1}{t}[S(t)-S(0)]\right\}=0. \end{equation*}$

对(4.2)式两边同时取上确界极限

$ \begin{equation} \mathop{\limsup}\limits_{t\rightarrow\infty}\langle S\rangle_{t} <\frac{\gamma K}{4\zeta}+\frac{\theta}{\zeta} \mathop{\limsup}\limits_{t\rightarrow\infty}\langle V\rangle_{t}. \end{equation} $

定义一个行向量 $\textbf{D}_2(t)=(\sigma_{1}S, \sigma_{2}V, \sigma_{3}I)$, 对模型(1.2)三个方程之和先积分再除以$t$可得

$ \begin{equation} \displaystyle \mu\langle V\rangle_{t}<\Big\langle\gamma S\Big(1-\frac{S}{K}\Big)\Big\rangle_{t} +\Psi_2(t)<\frac{\gamma K}{4}+\Psi_2(t), \end{equation} $

其中

$\begin{equation*} \displaystyle\Psi_2(t)=\frac{1}{t}\int_{0}^{t}\textbf{D}_2(s)\mbox{d}\textbf{B}(s) -\frac{1}{t}[S(t)-S(0)]-\frac{1}{t}[V(t)-V(0)]-\frac{1}{t}[I(t)-I(0)], \end{equation*}$

由引理2.1可知 $\limsup\limits_{t\rightarrow\infty}\Psi_2(t)=0$, 对(4.4)式取上确界极限得

$ \begin{equation} \mathop{\limsup}\limits_{t\rightarrow\infty}\langle V\rangle_{t}<\frac{\gamma K}{4\mu}. \end{equation} $

现在对函数$\ln I(t)$ 应用Itô公式, 得到

$ \begin{equation} \mbox{d}\ln I(t)=\mathcal{L}\ln I(t) \mbox{d}t+\sigma_{3}\mbox{d}B_{3}(t), \end{equation} $

其中

$\begin{equation*} \mathcal{L}\ln I(t)=\rho S+\Big(\beta-\frac{\beta_{1}I}{b+I}\Big)\frac{VI}{1+aI}-p_{3}. \end{equation*}$

对(4.6)式两侧同时0到$t$ 积分, 再除以$t$, 得

$ \begin{equation} \displaystyle \frac{1}{t}[\ln I(t)-\ln I(0)] <\rho\langle S\rangle_{t} +(2\beta-\beta_{1})\langle V\rangle_{t}-p_3+\frac{\sigma_{3}B_{3}(t)}{t}, \end{equation} $

根据强大数定理[23] 可得 $\lim\limits_{t\rightarrow\infty}\frac{\sigma_{3}B_{3}(t)}{t}=0$, 对 (4.7) 式两侧取上极限, 则有

$ \begin{matrix} \mathop{\limsup}\limits_{t\rightarrow\infty}\frac{1}{t}\ln I(t) &<\rho\mathop{\limsup}\limits_{t\rightarrow\infty}\langle S\rangle_{t} +(2\beta-\beta_{1})\mathop{\limsup}\limits_{t\rightarrow\infty}\langle V\rangle_{t} -p_3\notag\\ &<\frac{\rho\gamma K}{4\zeta}\Big(1+\frac{\theta}{\mu}\Big)+(2\beta-\beta_{1})\frac{\gamma K}{4\mu} -p_3\notag\\ &=p_3({R}_{0}^{e}-1)<0. \end{matrix} $

这说明 $\mathop{\lim}\limits_{t\rightarrow\infty}I(t)=0$, 证明完成.

5 数值模拟

Milstein高阶方法[12]和截断的Euler-Maruyama 方法[9,22]都可以应用于模型(1.2)的数值模拟, 但是两种方法的模拟都具有很高的相似性. 因此本文采用随机微分方程的Milstein 高阶方法写出模型(1.2)离散化方程, 细节见文献[21,24,37].

例 5.1 通过数值模拟展现持久性的理论结果. 设模型(1.2)初值为$S(0)=1, V(0)=0. 8,$ $I(0)=0.8$, 其他参数取值为$\gamma=0. 5, K=5. 5, \beta=0. 9, $ $\beta_{1}=0. 1, \tau=0. 1, \delta=0. 08, $ $ \zeta=0. 15, \theta=0. 1, $ $ \rho=0. 085, \mu=0. 15, $ $\sigma_{1}=0. 05, \sigma_{2}=0. 05, $ $ \sigma_{3}=0. 05, a=0. 85, $ $ b=2$. 这组参数值满足定理2.2的条件$ R_{0}^{s}\approx2. 6024>1, $ $ 0. 15=\mu>0. 5(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2})=0. 00125,$ $ 0. 7=2(\gamma-\zeta)>\sigma_1^2=0. 0025. $

图1所示, 易感者、接种者和感染者密度在长时间内平均持久; 如图2所示, 当$\beta_{1}$变化时, 易感者和接种者密度增加, 感染者的密度减少, 但是易感者、接种者和感染者密度仍然是平均持久的; 从图3图4注意到, 当$\zeta$和$\theta$ 分别增加时, 易感者和接种者的密度具有相反的性质. 研究表明: 在传染病传播的早期阶段, 媒体报道的干预有利于疾病控制.

图1

图1   易感者、 接种者、感染者的持久性


图2

图2   当 $\beta_{1}$ 增加时, 易感者、感染者、接种者的密度变化


图3

图3   当$\zeta$增加时, 易感者和接种者密度变化


图4

图4   当$\theta$增加时, 易感者、接种者密度变化


例 5.2 疾病的灭绝性在此例子中讨论, 设模型(1.2)初值$S(0)=1, V(0)=0.8,$ $I(0)=0.8,$ 以及其他参数取值为 $ \gamma=0.65, K=1.25, \beta=0.9,$ $ \beta_{1}=0.1, $ $\tau=0.65, \delta=0.35, $ $\zeta=0.3,$ $\theta=0.2, $ $\rho=0.8, \mu=0.5,$ $ \sigma_{1}=0.05, \sigma_{2}=0.05, $ $\sigma_{3}=0.05, a=0.85, b=0.3$. 这些参数值满足定理4.1的条件 $ R_{0}^{e}\approx0.9628<1,\ 0.5=\mu>0.5(\sigma_{1}^{2}\vee\sigma_{2}^{2}\vee\sigma_{3}^{2})=0.0012. $

研究表明: 当$\zeta, \delta, \tau, \mu, \sigma_{3}$ 增加和 $\theta$ 减少时(图5-图7), 感染者密度趋于灭绝的时间缩短; 当$\beta_{1}$增加时, 媒体报道对疾病的灭绝有一定的影响(图8).

图5

图5   当$\zeta$和$\theta$ 增加时, 疾病的灭绝性


图6

图6   当$\tau$和$\sigma_{3}$ 增加时, 疾病的灭绝性


图7

图7   当$\delta$和$\mu$分别增加时, 疾病的灭绝性


图8

图8   当$\beta_{1}$增加时, 疾病的灭绝性


参考文献

Adimy M, Chekroun A, Kuniya T.

Traveling waves of a differential-difference diffusive Kermack-McKendrick epidemic model with age-structured protection phase

J Math Anal Appl, 2022, 505(1): 125464

DOI:10.1016/j.jmaa.2021.125464      URL     [本文引用: 1]

Cao Z W, Feng W, Wen X D.

Dynamical behavior of a stochastic SEI epidemic model with saturation incidence and logistic growth

Physica A, 2019, 523: 894-907

DOI:10.1016/j.physa.2019.04.228      URL     [本文引用: 1]

Capasso V, Serio G.

A generalization of the Kermack-McKendrick deterministic epidemic model

Math Biosci, 1978, 42: 43-61

DOI:10.1016/0025-5564(78)90006-8      URL     [本文引用: 1]

Caraballo T, El Fatini M, Pettersson R, et al.

A stochastic SIRI epidemic model with relapse and media coverage

Discrete Cont Dyn Sys B, 2018, 23(8): 3483-3501

[本文引用: 2]

Chen L H, Wei F Y.

Persistence and distribution of a stochastic susceptible-infected-removed epidemic model with varying population size

Physica A, 2017, 483: 386-397

DOI:10.1016/j.physa.2017.04.114      URL     [本文引用: 4]

Chen L J, Wei F Y.

Study on a susceptible-exposed-infected-recovered model with nonlinear incidence rate

Adv Differ Equ, 2020, Article number 206

[本文引用: 1]

Cui J G, Sun Y H, Zhu H P.

The impact of media on the control of infectious diseases

J Dyn Differ Equ, 2008, 20(1): 31-53

DOI:10.1007/s10884-007-9075-0      PMID:32214759      [本文引用: 2]

We develop a three dimensional compartmental model to investigate the impact of media coverage to the spread and control of infectious diseases (such as SARS) in a given region/area. Stability analysis of the model shows that the disease-free equilibrium is globally-asymptotically stable if a certain threshold quantity, the basic reproduction number (), is less than unity. On the other hand, if, it is shown that a unique endemic equilibrium appears and a Hopf bifurcation can occur which causes oscillatory phenomena. The model may have up to three positive equilibria. Numerical simulations suggest that when and the media impact is stronger enough, the model exhibits multiple positive equilibria which poses challenge to the prediction and control of the outbreaks of infectious diseases.© Springer Science+Business Media, LLC 2007.

Feng T, Meng X Z, Zhang T H, et al.

Analysis of the predator-prey interactions: A stochastic model incorporating disease invasion

Qual Theory Dyn Sys, 2020, 19: Article number 55

[本文引用: 1]

Guo Q, Liu W, Mao X R, et al.

The partially truncated Euler-Maruyama method and its stability and boundedness

Appl Numer Math, 2017, 115: 235-251

[本文引用: 1]

Guo W J, Zhang Q M, Li X N, et al.

Dynamic behavior of a stochastic SIRS epidemic model with media coverage

Math Method Appl Sci 2018, 41(14): 5506-5525

DOI:10.1002/mma.v41.14      URL     [本文引用: 1]

Han B T, Jiang D Q, Zhou B Q, et al.

Stationary distribution and probability density function of a stochastic SIRSI epidemic model with saturation incidence rate and logistic growth

Chaos, Solitons Fractals, 2011, 142: 110519

DOI:10.1016/j.chaos.2020.110519      URL     [本文引用: 1]

Higham D J.

An algorithmic introduction to numerical simulation of stochastic differential equations

SIAM Rev, 2001, 43: 525-546

DOI:10.1137/S0036144500378302      URL     [本文引用: 1]

Hou T F, Lan G J, Yuan S L, et al.

Threshold dynamics of a stochastic SIHR epidemic model of COVID-19 with general population-size dependent contact rate

Math Biosci Eng, 2022, 19: 4217-4236

DOI:10.3934/mbe.2022195      PMID:35341295      [本文引用: 1]

In this paper, we propose a stochastic SIHR epidemic model of COVID-19. A basic reproduction number $ R_{0}^{s} $ is defined to determine the extinction or persistence of the disease. If $ R_{0}^{s} < 1 $, the disease will be extinct. If $ R_{0}^{s} > 1 $, the disease will be strongly stochastically permanent. Based on realistic parameters of COVID-19, we numerically analyze the effect of key parameters such as transmission rate, confirmation rate and noise intensity on the dynamics of disease transmission and obtain sensitivity indices of some parameters on $ R_{0}^{s} $ by sensitivity analysis. It is found that: 1) The threshold level of deterministic model is overestimated in case of neglecting the effect of environmental noise; 2) The decrease of transmission rate and the increase of confirmed rate are beneficial to control the spread of COVID-19. Moreover, our sensitivity analysis indicates that the parameters $ \beta $, $ \sigma $ and $ \delta $ have significantly effects on $ R_0^s $.

Lan G J, Yuan S L, Song B J.

The impact of hospital resources and environmental perturbations to the dynamics of SIRS model

J Frankl Inst-Eng Appl Math, 2021, 358(4): 2405-2433

DOI:10.1016/j.jfranklin.2021.01.015      URL     [本文引用: 1]

Li J H, Teng Z D, Wang G Q, et al.

Stability and bifurcation analysis of an SIR epidemic model with logistic growth and saturated treatment

Chaos Solitons Fractals, 2017, 99: 63-71

DOI:10.1016/j.chaos.2017.03.047      URL     [本文引用: 1]

Li Y F, Cui J G.

The effect of constant and pulse vaccination on SIS epidemic models incorporating media coverage

Commun Nonlinear Sci Numer Simul, 2019, 14(5): 2353-2365

DOI:10.1016/j.cnsns.2008.06.024      URL     [本文引用: 1]

Liu J M, Chen L J, Wei F Y.

The persistence and extinction of a stochastic SIS epidemic model with Logistic growth

Adv Differ Equ, 2018, Article number 68

[本文引用: 1]

Liu Q, Jiang D Q, Hayat T, et al.

Dynamical behavior of a higher order stochastically perturbed SIRI epidemic model with relapse and media coverage

Chaos Solitons Fractals, 2020, 139: 110013

DOI:10.1016/j.chaos.2020.110013      URL     [本文引用: 1]

Liu Q, Jiang D Q, Hayat T, et al.

Dynamics of a stochastic predator-prey model with stage structure for predator and Holling type II functional response

J Nonlinear Sci, 2018, 28: 1151-1187

DOI:10.1007/s00332-018-9444-3      [本文引用: 1]

Liu Q, Jiang D Q, Shi N, et al.

Dynamical behavior of a stochastic HBV infection model with logistic hepatocyte growth

Acta Math Sci, 2017, 37B(4): 927-940

[本文引用: 1]

Lu R X, Wei F Y.

Persistence and extinction for an age-structured stochastic SVIR epidemic model with generalized nonlinear incidence rate

Physica A, 2019, 513: 572-587

DOI:10.1016/j.physa.2018.09.016      URL     [本文引用: 4]

Mao X R, Wei F Y, Wiriyakraikul T.

Positivity preserving truncated Euler-Maruyama method for stochastic Lotka-Volterra competition model

J Comput Appl Math, 2021, 394: 113566

DOI:10.1016/j.cam.2021.113566      URL     [本文引用: 1]

Mao X R. Stochastic Differential Equations and Applications. Chichester: Horwood Publishing, 2007

[本文引用: 2]

Mu X J, Zhang Q M, Rong L B.

Optimal vaccination strategy for an SIRS model with imprecise parameters and Lèvy noise

J Frankl Inst-Eng Appl Math, 2019, 356(18): 11385-11413

DOI:10.1016/j.jfranklin.2019.03.043      URL     [本文引用: 2]

Nguyen D H, Nguyen N N, Yin G.

Stochastic functional Kolmogorov equations, I: Persistence

Stoch Process Appl, 2021, 142: 319-364

DOI:10.1016/j.spa.2021.09.007      URL     [本文引用: 1]

Nguyen D H, Nguyen N N, Yin G.

Stochastic functional Kolmogorov equations II: Extinction

J Differ Equ, 2021, 294(5): 1-39

DOI:10.1016/j.jde.2021.05.043      URL     [本文引用: 1]

Nguyen D H, Yin G, Zhu C.

Long-term analysis of a stochastic SIRS model with general incidence rates

SIAM J Appl Math, 2020, 80(2): 814-838

DOI:10.1137/19M1246973      URL     [本文引用: 1]

Rajasekar S P, Pitchaimani M, Zhu Q X.

Dynamic threshold probe of stochastic SIR model with saturated incidence rate and saturated treatment function

Physica A, 2019, 535: 122300

DOI:10.1016/j.physa.2019.122300      URL     [本文引用: 1]

Rajasekar S P, Pitchaimani M.

Ergodic stationary distribution and extinction of a stochastic SIRS epidemic model with logistic growth and nonlinear incidence

Appl Math Comput, 2020, 377: 125143

[本文引用: 1]

Sahu G P, Dhar J.

Analysis of an SVEIS epidemic model with partial temporary immunity and saturation incidence rate

Appl Math Model, 2012, 36(3): 908-923

DOI:10.1016/j.apm.2011.07.044      URL     [本文引用: 2]

Sun C J, Yang W, Arino J, et al.

Effect of media-induced social distancing on disease transmission in a two patch setting

Math Biosci, 2011, 230(2): 87-95

DOI:10.1016/j.mbs.2011.01.005      PMID:21296092      [本文引用: 1]

We formulate an SIS epidemic model on two patches. In each patch, media coverage about the cases present in the local population leads individuals to limit the number of contacts they have with others, inducing a reduction in the rate of transmission of the infection. A global qualitative analysis is carried out, showing that the typical threshold behavior holds, with solutions either tending to an equilibrium without disease, or the system being persistent and solutions converging to an endemic equilibrium. Numerical analysis is employed to gain insight in both the analytically tractable and intractable cases; these simulations indicate that media coverage can reduce the burden of the epidemic and shorten the duration of the disease outbreak.Copyright © 2011 Elsevier Inc. All rights reserved.

Tchuenche J M, Dube N, Bhunu C P, et al.

The impact of media coverage on the transmission dynamics of human influenza

BMC Public Health, 2011, 11(1): Article number S5

[本文引用: 1]

Wang L W, Liu Z J, Zhang X G.

Global dynamics for an age-structured epidemic model with media impact and incomplete vaccination

Nonlinear Anal: Real World Appl, 2016, 32: 136-158

DOI:10.1016/j.nonrwa.2016.04.009      URL     [本文引用: 1]

Wei F Y, Chen F X.

Stochastic permanence of an SIQS epidemic model with saturated incidence and independent random perturbations

Physica A, 2016, 453: 99-107

DOI:10.1016/j.physa.2016.01.059      URL     [本文引用: 2]

Wei F Y, Chen L H.

Psychological effect on single-species population models in a polluted environment

Math Biosci, 2017, 290: 22-30

DOI:S0025-5564(17)30142-6      PMID:28583848      [本文引用: 2]

We formulate and investigate the psychological effect of single-species population models in a polluted environment in this paper. For the deterministic single-species population model, the conditions that guarantee the local extinction and persistence in the mean are derived firstly. We then show that, around the pollution-free equilibrium, the stochastic single-species population is weakly persistent in the mean, and is stochastically permanent under some conditions. As a consequence, some numerical simulations demonstrate the efficiency of the main results.Copyright © 2017 Elsevier Inc. All rights reserved.

Wei F Y, Jiang H, Zhu Q X.

Dynamical behaviors of a heroin population model with standard incidence rates between distinct patches

J Frankl Inst-Eng Appl Math, 2021, 358(9): 4994-5013

DOI:10.1016/j.jfranklin.2021.04.024      URL     [本文引用: 1]

Wei F Y, Wang C J.

Survival analysis of a single-species population model with fluctuations and migrations between patches

Appl Math Model, 2020, 81: 113-127

DOI:10.1016/j.apm.2019.12.023      URL     [本文引用: 2]

Wei F Y, Xue R.

Stability and extinction of SEIR epidemic models with generalized nonlinear incidence

Math Comput Simul, 2020, 170: 1-15

DOI:10.1016/j.matcom.2018.09.029      URL     [本文引用: 3]

Zhang Y, Fan K G, Guo S J, et al.

Ergodic stationary distribution of a stochastic SIRS epidemic model incorporating media coverage and saturated incidence rate

Physica A, 2019, 514: 671-685

DOI:10.1016/j.physa.2018.09.124      [本文引用: 1]

This study investigates the disease dynamics of a SIRS epidemic model as affected by environment fluctuations and media coverage. A unique global positive solution for the epidemic model is obtained. The stochastic endemic dynamics of the system is discussed by constructing suitable Lyapunov functions, and the ergodic stationary distribution of the stochastic model is established based on the method of Khasminskii. The extinction of the epidemic disease is also analyzed. (C) 2018 Elsevier B.V.

Zhao Y N, Jiang D Q.

Dynamics of stochastically perturbed SIS epidemic model with vaccination

Abstr Appl Anal, 2013, Article number 517439

[本文引用: 1]

Zhao Y N, Jiang D Q.

The threshold of a stochastic SIS epidemic model with vaccination

Appl Math Comput, 2014, 243: 718-727

[本文引用: 1]

Zhao Y, Zhang Y P, Yuan S L.

The effect of media coverage on threshold dynamics for a stochastic SIS epidemic model

Physica A, 2018, 512: 248-260

DOI:10.1016/j.physa.2018.08.113      PMID:32288106      [本文引用: 1]

Media coverage is one of the important measures for controlling infectious diseases, but the effect of media coverage on diseases spreading in a stochastic environment still needs to be further investigated. Here, we present a stochastic susceptible-infected-susceptible (SIS) epidemic model incorporating media coverage and environmental fluctuations. By using Feller's test and stochastic comparison principle, we establish the stochastic basic reproduction number, which completely determines whether the disease is persistent or not in the population. If, the disease will go to extinction; if, the disease will also go to extinction in probability, which has not been reported in the known literatures; and if, the disease will be stochastically persistent. In addition, the existence of the stationary distribution of the model and its ergodicity are obtained. Numerical simulations based on real examples support the theoretical results. The interesting findings are that (i) the environmental fluctuation may significantly affect the threshold dynamical behavior of the disease and the fluctuations in different size scale population, and (ii) the media coverage plays an important role in affecting the stationary distribution of disease under a low intensity noise environment.© 2018 Elsevier B.V. All rights reserved.

/