含混合项的拟线性Schrödinger方程的正规化基态解
Normalized Ground States for the Quasi-linear Schrödinger Equation with Combined Nonlinearities
通讯作者:
收稿日期: 2022-06-17 修回日期: 2023-01-12
基金资助: |
|
Received: 2022-06-17 Revised: 2023-01-12
Fund supported: |
|
作者简介 About authors
归坤明,E-mail:
陶虹杉,
该文研究了一类含混合项拟线性Schrödinger方程正规化基态解的存在性. 推广了文献[
关键词:
In this paper, we mainly investigate the existence of normalized ground states for the Schrödinger equation with combined nonlinearities. Our results extend those reported in [
Keywords:
本文引用格式
归坤明, 陶虹杉, 杨俊.
Gui Kunming, Tao Hongshan, Yang Jun.
1 引言
拟线性Schrödinger方程
考虑方程(1.1)形如
其中
其中
关于方程(1.2)正规化解的研究, 近期吸引了很多学者的关注. 当
本文考虑方程(1.2)的一种混合情形, 即非线性项包含
定义 1.1 称
其中泛函为
限制在
上, 这里
并记
同时令
下面是本文的主要结论.
定理 1.1 当
(i)当指标处于以下范围之一
时, 有
(ii)当
定理 1.2 当
(i) 当
(ii) 当指标处于以下范围之一
时, 有
(iii) 当
定理 1.3 当
注 1.1 本文用
2 预备
为了证明主要结论, 需要用到下列的Gagliardo-Nirenberg不等式.
引理 2.1 (文献[Gagliardo Nirenberg不等式]) 设
其中
和
取
其中
当
于是定义
下面以
注意到
显然, 当
故
下面说明其它情形时,
直接计算得
显然, 当
当
则
3 基态解的存在性
在引言中提到, 拟线性项对应的能量泛函可微性的不足是寻找问题(1.4)基态解的首要阻碍. 为此, 本节采取添加扰动项的方式解决该问题. 且由于证明过程十分相似, 本节将一并说明定理1.1和1.2(i).
令
其中
其中
同时由文献[9]知,
引理 3.1 在定理
证 当
当
注意到
上述
另一方面, 对于
注意到
注意到
则当
对于
显然有
当
令
则
同理得, 当
当
注意到
令
故
上述过程证明了总有
注 3.1 若记
且还有
因此在之后的证明中, 若出现
引理 3.2 任意给定
证 当
注意到
即
当
注意到
注意到
将上述四项有界性直接带入
引理 3.3 设
证 任取
令
显然这不可能. 故有
取
命题 3.1 设
证 利用集中紧原理, 以下三条结论有且仅有一条成立
(i)消失性:
(ii)二分性:
(iii)紧性:
若(i)成立, 则由文献[12,引理I.1]知:
若(ii)成立, 则有
与引理
因此必有(iii)成立. 令
由Hölder不等式和引理
故
在本文中, 文献[10]中的定理4.1可写为如下引理.
引理 3.4 给定
其中
则
特别的, 若
定理1.1和1.2的(i)的证明 由命题
任取
其中
由引理
故有Pohozaev恒等式
代入
显然有
综上, 定理
4 问题无解的情形
在引言中提到, 问题(1.4)的可解性既与临界质量有关, 又与扰动系数有关. 本节将说明问题无解的情形, 证明定理
若
将上式与(3.4)式联立, 消去
但显然
另一方面,利用(2.2)式得, 对
且
综上, 定理
5 泛函无下界的情形
寻找问题(1.4)的基态解, 重点在能量泛函的下确界. 而如果泛函无下界, 则问题的可解性是不明确的. 本节将说明能量泛函无下界的情形, 证明定理
定理1.2的(ii)的证明 对于
直接计算得
令
则
对于
注意到
定理1.3的证明 由文献[8,定理1.9]知,
注意到
参考文献
Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions
Normalized ground states for the NLS equation with combined nonlinearities
DOI:10.1016/j.jde.2020.05.016 URL [本文引用: 4]
Dynamical modulation of an ultrashort high-intensity laser pulse in matter
Relativistic self-focusing and channel formation in laser-plasma interactions
A general method for the solution of nonlinear soliton and kink Schrödinger equations
Soliton solutions for generalized quasilinear Schrödinger equations
DOI:10.1016/j.na.2012.10.005 URL [本文引用: 1]
Existence and asymptotic behavior of a class of quasilinear Schrödinger equations
DOI:10.1515/ans-2017-6026
URL
[本文引用: 1]
In this paper, we study the quasilinear Schrödinger equation \n \n \n \n \n \n \n -\n \n Δ\n \n u\n \n \n +\n \n V\n \n \n (\n x\n )\n \n \n u\n \n \n -\n \n \n γ\n 2\n \n \n \n (\n \n Δ\n \n \n u\n 2\n \n \n )\n \n \n u\n \n \n =\n \n \n \n |\n u\n |\n \n \n p\n -\n 2\n \n \n \n u\n \n \n \n \n {-\\Delta u+V(x)u-\\frac{\\gamma}{2}(\\Delta u^{2})u=|u|^{p-2}u}\n \n, \n \n \n \n x\n ∈\n \n ℝ\n N\n \n \n \n \n {x\\in\\mathbb{R}^{N}}\n \n, where \n \n \n \n \n V\n \n \n (\n x\n )\n \n \n :\n \n \n ℝ\n N\n \n →\n ℝ\n \n \n \n \n {V(x):\\mathbb{R}^{N}\\to\\mathbb{R}}\n \n is a given potential, \n \n \n \n γ\n >\n 0\n \n \n \n {\\gamma>0}\n \n, and either \n \n \n \n p\n ∈\n \n (\n 2\n,\n \n 2\n *\n \n )\n \n \n \n \n {p\\in(2,2^{*})}\n \n, \n \n \n \n \n 2\n *\n \n =\n \n \n 2\n \n N\n \n \n N\n -\n 2\n \n \n \n \n \n {2^{*}=\\frac{2N}{N-2}}\n \n for \n \n \n \n N\n ≥\n 4\n \n \n \n {N\\geq 4}\n \n or \n \n \n \n p\n ∈\n \n (\n 2\n,\n 4\n )\n \n \n \n \n {p\\in(2,4)}\n \n for \n \n \n \n N\n =\n 3\n \n \n \n {N=3}\n \n. If \n \n \n \n γ\n ∈\n \n (\n 0\n,\n \n γ\n 0\n \n )\n \n \n \n \n {\\gamma\\in(0,\\gamma_{0})}\n \n for some \n \n \n \n \n γ\n 0\n \n >\n 0\n \n \n \n {\\gamma_{0}>0}\n \n, we establish the existence of a positive solution \n \n \n \n u\n γ\n \n \n \n {u_{\\gamma}}\n \n satisfying \n \n \n \n \n \n max\n \n x\n ∈\n \n ℝ\n N\n \n \n \n \n \n |\n \n \n γ\n μ\n \n \n \n u\n γ\n \n \n \n (\n x\n )\n \n \n |\n \n \n →\n 0\n \n \n \n {\\max_{x\\in\\mathbb{R}^{N}}|\\gamma^{\\mu}u_{\\gamma}(x)|\\to 0}\n \n as \n \n \n \n γ\n →\n \n 0\n +\n \n \n \n \n {\\gamma\\to 0^{+}}\n \n for any \n \n \n \n μ\n >\n \n 1\n 2\n \n \n \n \n {\\mu>\\frac{1}{2}}\n \n. Particularly, if \n \n \n \n \n V\n \n \n (\n x\n )\n \n \n =\n λ\n >\n 0\n \n \n \n {V(x)=\\lambda>0}\n \n, we prove the existence of a positive classical radial solution \n \n \n \n u\n γ\n \n \n \n {u_{\\gamma}}\n \n and up to a subsequence, \n \n \n \n \n u\n γ\n \n →\n \n u\n 0\n \n \n \n \n {u_{\\gamma}\\to u_{0}}\n \n in \n \n \n \n \n \n H\n 2\n \n \n \n (\n \n ℝ\n N\n \n )\n \n \n ∩\n \n \n C\n 2\n \n \n \n (\n \n ℝ\n N\n \n )\n \n \n \n \n \n {H^{2}(\\mathbb{R}^{N})\\cap C^{2}(\\mathbb{R}^{N})}\n \n as \n \n \n \n γ\n →\n \n 0\n +\n \n \n \n \n {\\gamma\\to 0^{+}}\n \n, where \n \n \n \n u\n 0\n \n \n \n {u_{0}}\n \n is the ground state of the problem \n \n \n \n \n \n -\n \n Δ\n \n u\n \n \n +\n \n λ\n \n u\n \n \n =\n \n \n \n |\n u\n |\n \n \n p\n -\n 2\n \n \n \n u\n \n \n \n \n {-\\Delta u+\\lambda u=|u|^{p-2}u}\n \n, \n \n \n \n x\n ∈\n \n ℝ\n N\n \n \n \n \n {x\\in\\mathbb{R}^{N}}\n \n.
Stability and instability results for standing waves of quasi-linear Schrödingerr equations
Quasilinear elliptic equations with critical growth via perturbation method
DOI:10.1016/j.jde.2012.09.006 URL [本文引用: 3]
Multiple normalized solutions for quasi-linear Schrödingerr equations
DOI:10.1016/j.jde.2015.05.008 URL [本文引用: 3]
Existence and asymptotic behavior for the ground state of quasilinear elliptic equations
DOI:10.1515/ans-2018-0005
URL
[本文引用: 2]
In this paper, we are concerned with the existence and asymptotic behavior of minimizers of a minimization problem related to some quasilinear elliptic equations. Firstly, we prove that there exist minimizers when the exponent q is the critical one \n \n \n \n \n q\n *\n \n =\n \n 2\n +\n \n 4\n N\n \n \n \n \n \n {q^{*}=2+\\frac{4}{N}}\n \n. Then, we prove that all minimizers are compact as q tends to the critical case \n \n \n \n q\n *\n \n \n \n {q^{*}}\n \n when \n \n \n \n a\n <\n \n a\n \n q\n *\n \n \n \n \n \n {a<a_{q^{*}}}\n \n is fixed. Moreover, we find that all the minimizers must blow up as the exponent q tends to the critical case \n \n \n \n q\n *\n \n \n \n {q^{*}}\n \n for any fixed \n \n \n \n a\n >\n \n a\n \n q\n *\n \n \n \n \n \n {a>a_{q^{*}}}\n \n.
The concentration-compactness principle in the calculus of variations, the locally compact case, part 2
Nonlinear scalar field equations, II existence of infinitely many solutions
/
〈 |
|
〉 |
