[1] |
Li H W, Zou W M. Quasilinear Schrödinger equations: ground state and infinitely many normalized solutions. arXiv preprint, 2021, 2101.07574
|
[2] |
Soave N. Normalized ground states for the NLS equation with combined nonlinearities. J Differ Equ, 2020, 269: 6941-6987
doi: 10.1016/j.jde.2020.05.016
|
[3] |
Borovskii A V, Galkin A L. Dynamical modulation of an ultrashort high-intensity laser pulse in matter. J Exp Theor Phys, 1993, 77(4): 562-573
|
[4] |
Ritchie B. Relativistic self-focusing and channel formation in laser-plasma interactions. Phys Rev E, 1994, 50: 687-689
pmid: 9962176
|
[5] |
Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys B: Condens Matter, 1980, 37: 83-87
|
[6] |
Shen Y T, Wang Y J. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal Theory Methods Appl, 2013, 80: 194-201
doi: 10.1016/j.na.2012.10.005
|
[7] |
Wang Y J, Shen Y T. Existence and asymptotic behavior of a class of quasilinear Schrödinger equations. Adv Nonlinear Stud, 2018, 18(1): 131-150
doi: 10.1515/ans-2017-6026
|
[8] |
Colin M, Jeanjean L, Squassina M. Stability and instability results for standing waves of quasi-linear Schrödingerr equations. Adv Nonlinear Stud, 2010, 23(6): 1353-1385
|
[9] |
Liu X Q, Liu J Q, Wang Z Q. Quasilinear elliptic equations with critical growth via perturbation method. J Differ Equ, 2013, 254(1): 102-124
doi: 10.1016/j.jde.2012.09.006
|
[10] |
Jeanjean L, Luo T J, Wang Z Q. Multiple normalized solutions for quasi-linear Schrödingerr equations. J Differ Equ, 2015, 259(8): 3894-3928
doi: 10.1016/j.jde.2015.05.008
|
[11] |
Zeng X Y, Zhang Y M. Existence and asymptotic behavior for the ground state of quasilinear elliptic equations. Adv Nonlinear Stud, 2018, 18(4): 725-744
doi: 10.1515/ans-2018-0005
|
[12] |
Lions P L. The concentration-compactness principle in the calculus of variations, the locally compact case, part 2. Ann I H Poincare-AN, 1984, 1(4): 223-283
|
[13] |
Berestycki H, Lions P L. Nonlinear scalar field equations, II existence of infinitely many solutions. Arch Rat Mech AN, 1983, 82: 347-375
doi: 10.1007/BF00250556
|