数学物理学报, 2023, 43(4): 1009-1023

一类高阶自伴向量微分算子谱的离散性及其应用

钱志祥,

广东理工学院基础教学部 广东肇庆 526100

Discreteness of the Spectrum of a Class of Higher Order Self-adjoint Vector Differential Operators and its Application

Qian Zhixiang,

The Department of Basic Education, Guangdong Polytechnic College, Guangdong Zhaoqing 526100, China

收稿日期: 2022-08-26   修回日期: 2022-11-8  

基金资助: 广东省教育厅自然基金项目(2019KTSCX248)
广东省教育厅自然基金项目(2021KTSCX157)

Received: 2022-08-26   Revised: 2022-11-8  

Fund supported: Nature Foundation of Guangdong Education Department(2019KTSCX248)
Nature Foundation of Guangdong Education Department(2021KTSCX157)

作者简介 About authors

钱志祥,E-mail:qzx20062006@126.com

摘要

该文研究了由向量微分表达式: $Au(x)=\sum\limits^n_{k=0}(-1)^n(P_k(x)u^{(k)}(x))^{(k)},$$x\in [0,+\infty)$产生的自伴向量微分算子. 首先, 通过引理2.1和引理2.2得到两个向量不等式, 利用算子分解定理, 分别研究了当系数矩阵$P_k(x),$$k=0,1,\cdots,n$$m\times m$ 阶实对称正定矩阵和$m\times m$ 阶实正定对角矩阵时, 这类高阶自伴向量微分算子谱的离散性, 得到了这类算子谱离散的充分条件, 但是必要条件难以给出; 其次, 作为一个特例,作者研究了只有两项的向量微分算子 $Au(x)=-(P(x)u^{(n)}(x))^{(n)}+Q(x)u(x),$$u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,+\infty)$.得到了这类算子的谱是离散的一个充分必要条件, 并把这个结论应用到向量值Sturm-Liouville算子和向量值Schrodinger算子, 得到了这两类算子的谱离散的充分必要条件; 最后, 研究了$2n$阶单项自伴向量微分算子, 得到了该类算子谱离散的充分必要条件.

关键词: 自伴向量微分算子; 自伴扩张; 剩余谱; 本质谱; 离散谱; 预紧

Abstract

This paper deals with the vector differential operators generated by vectorial differential expression $Au(x)=\sum\limits^n_{k=0}(-1)^n(P_k(x)u^{(k)}(x))^{(k)},$$x\in [0,+\infty)$. First, we obtain two vector inequality in Lemma 2.1 and Lemma 2.2, by using operator decomposition theorem, when the coefficient matrix $P_k(x),$$k=0,1,\cdots,n$ is an $m\times m$ order real symmetric positive definite matrix and an order real symmetric positive definite diagonal matrix respectively, the dispersion of the spectrum of the class of higher order self-adjoint vector differential operators is studied,some sufficient conditions for the spectrum of this kind of operators to be discrete are obtained; The second, in the special case, the vector differential operator with only two terms $Au(x)=-(P(x)u^{(n)}(x))^{(n)}+Q(x)u(x),$$u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,+\infty)$ is discussed, the smallest operator generated in its self-adjoint domain is the self-adjoint operator, the sufficient and necessary condition for the spectrum of the kind of operator to be discrete is given; The third, by applying this conclusion to vector-valued Sturm-Liouville operators and vector-valued Schrodinger operators, the necessary and sufficient conditions for spectral dispersion of these two types of operators are obtained. The last, the $2n$-th-order mono-term self-adjoint vector differential operator is considered, The necessary and sufficient condition that the spectrum of this kind of operator is discrete is obtained.

Keywords: Self-adjoint vector differential operator; Self-adjoint extension; Residual spectrum; Essential spectrum; discrete spectrum; Precompact

PDF (404KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

钱志祥. 一类高阶自伴向量微分算子谱的离散性及其应用[J]. 数学物理学报, 2023, 43(4): 1009-1023

Qian Zhixiang. Discreteness of the Spectrum of a Class of Higher Order Self-adjoint Vector Differential Operators and its Application[J]. Acta Mathematica Scientia, 2023, 43(4): 1009-1023

1 前言

向量值微分算子最早是由Weidman在他的著作[1]中引入的, 他在这本书中详细地研究了对称向量微分算子的自伴扩张理论及其谱理论.在1954年, Naimark在他的论著[2]的序言中指出, 向量函数空间中的微分算子的研 究成果较少, 尤其是如何利用微分算子的系数来确定它的谱.自伴向 量值微分算子是向量函数空间中的微分算子, 它广泛出现于系统理论, 非线性分析以及发展方程等领域, 例如, 由无穷维Hamilton系统导出的 无穷维Hamilton算子, 由电磁场理论问题导出的Dirac算子以及Krein空 间中的标准对称算子等.从实际应用的角度来看, 向量微分算子在应用 偏微分方程求解问题, 弹性力学, 流体力学, 磁流体动力学以及量子 力学等数学物理问题中有重要应用. 近年来关于向量值微分算子的谱 分析, 越来越成为国内外学者研究的热点, 产生了一些研究成果, 如刘肖云[3-4], GLAN MARIA Dall'ARA[5], Eckhardt J, Gesztesy F等[6], 钱志祥[7-8]等等, 但是这些成果都是基于对二阶向量微分算子的谱进行分析.

本文研究一类高阶向量微分算式(1.1)通过自伴扩张所产生的自伴算子的离散谱的充分条件, 在几种特殊情形下, 我们也给出了这类算子的谱是离散的充分和必要条件

$\begin{equation}Au(x)=\sum\limits^n_{k=0}(-1)^k(P_k(x)u^{(k)}(x))^{(k)}, u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,+\infty).\end{equation}$

其中,$P_k(x)=P^*_k(x), k=0,1,\cdots,n$ 均为$m\times m$ 阶Hermite矩阵, 并且 $P_n(x)>0, P_k(x)\in W^n_2((0,\infty))$.为方便起见, 在全文中, 我们记 $\lambda_1(x),\lambda_2(x),\cdots,\lambda_m(x)$为实对称矩阵 $P(x)$$m$ 个连续的特征根函数, $\lambda_{\min}(x)=\min\{\lambda_1(x),\lambda_2(x),\lambda_3(x),\cdots,\lambda_m(x)$,$\lambda_{\max}(x)=\max\{\lambda_1(x),$$\lambda_2(x),\lambda_3(x),\cdots,\lambda_m(x)$ 分别表示其最小特征根函数和最大特征根函数, tr$(P_k(x))$ 表示矩阵$P_k(x)$ 的迹, $P^{-1}_k(x)$ 表示矩阵 $P_k(x)$的逆.

这篇文章分为3个部分, 第1部分是前言, 简单地介绍了向量值微分算子的发展历程及其应用范围; 第2部分是预备知识, 我们首先证得了两个关于向量值微分算子的不等式, 然后给出关于自伴微分算子的预紧定理和算子分解定理; 第3部分是主要结论部分, 我们先在一般情形下, 研究了由微分算式(1.1)在其自伴定义域内生成的自伴算子的谱是离散的充分条件(定理3.1), 当微分算式(1.1)的系数为对角矩阵时, 其自伴扩张的算子的谱是离散的充分条件比定理3.1宽松许多.然后当微分算式(1.1)只有二项情形时, 我们给出了其自伴扩张的谱是离散的一个充分必要条件, 并由此推出向量值Sturm-Liouville算子和向量值Schrodinger算子的谱的离散性的一个充分必要条件.最后当微分算式(1.1)只含有一项情形时, 我们也得到了这类算子的谱是离散的充分必要条件, 这些条件有点类似于纯量情形下这类微分算子的谱的离散性.然而在一般情形下, 这类向量值微分算子的谱的离散性的必要条件仍然是个悬而未决的问题.

2 预备知识

定义 2.1$\omega=(x_1,x_2)$ 为一个区间, 向量值函数$u(t)=(u_1(t),u_2(t),\cdots,u_m(t))^T$, 其每个分量函数 $u_i(t)\in W^l_p(x_1,x_2),i=1,2,3,\cdots,m$, 由这样的向量值函数形成的函数空间, 记为 $ W^l_p(\omega,C^m)$; 其每个分量函数$u_i(t)\in C^k(x_1,x_2),i=1,2,3,\cdots,m$, 由这样的向量值函数形成的函数空间, 记为$ C^k(\omega,C^m)$; 其每个分量函数$u_i(t)\in L^k(x_1,x_2),i=1,2,3,\cdots,m$, 由这样的向量值函数形成的函数空间, 记为 $ L^k(\omega,C^m)$.相应的模分别记为

$\begin{equation}\|u(x)\|^2_{C^k(\omega,C^m)}=\sum\limits^m_{i=1}\|u_i\|^2_{C^k(\omega)},\end{equation}$
$\begin{equation}\|u(x)\|_{W^l_p(\omega,C^m)}=\sum\limits^m_{i=1}\|u_i\|_{W^l_p(\omega)},\end{equation}$
$\begin{equation}\|u(x)\|_{L^p(\omega,C^m)}=\sum\limits^m_{i=1}\|u_i\|_{L^p(\omega)}.\end{equation}$

引理 2.1$m$ 维列向量 $u(x)\in C^n(\omega,R^m)$,$\omega=[x_1,x_2]$, 若存在 $x_0\in \omega$, 使得 $u(x_0)=\vec{0}$,$P(x)=(p_{ij}(x))_{m\times m}$$m$ 阶正定可逆矩阵,tr$P^{-1}(x)$ 表示逆矩阵$P^{-1}(x)$ 的迹, 且$P^{-1}(x)$$\omega$ 上可积, 则有

$\begin{equation} \int_w \left(u^{(k)}(x)\right)^* P(x)u^{(k)}(x) {\rm d}t \geq \frac{1} {|w|\big( \int_w {\rm tr} P^{-1}(x) {\rm d}x\big)}\|u^{k-1}(x)\|^2_w.\end{equation}$

其中$k=1,2,\cdots,n,P(x)$ 中的每个元素满足$p_{ij}(x)\in W^k_2(\omega)$, $*$号表示转置.

$x\in \omega$, 那么由 $u(x_0)=\vec{0}$可得

$\begin{aligned}\left(u^{(k-1)}(x)\right)^{*} \cdot u^{(k-1)}(x) & =\int_{x_{0}}^{x}\left(u^{(k)}(t)\right)^{*} \mathrm{~d} t \cdot \int_{x_{0}}^{x} u^{(k)}(t) \mathrm{d} t \\ & =\int_{x_{0}}^{x}\left(u^{(k)}(t) P^{-\frac{1}{2}}(t) P^{\frac{1}{2}}(t)\right)^{*} \mathrm{~d} t \cdot \int_{x_{0}}^{x} u^{(k)}(t) P^{\frac{1}{2}}(t) P^{-\frac{1}{2}}(t) \mathrm{d} t\end{aligned}$

$h(t)=u^{(k)}(t) P^{\frac{1}{2}}(t), A(t)=P^{-\frac{1}{2}}(t)$, 则上述表达式变成

$ \begin{matrix} \left(u^{(k-1)}(x)\right)^* \cdot u^{(k-1)}(x)&=& \int_{x_0}^x\left(u^{(k)}(t)\right)^* {\rm d}t \cdot \int_{x_0}^x u^{(k)}(t) {\rm d}t \\& =&\int_{x_0}^x h^*(t) A^*(t) {\rm d}t \cdot \int_{x_0}^x h(t)(A(t) {\rm d}t. \end{matrix}$

设向量$\int_{x_0}^x h(t)A(t){\rm d}t$ 的第$i$ 个分量为 $\left(\int_{x_0}^x h(t) A(t) {\rm d}t\right)_i,$$ i=1,2,3 \cdots, m,$$ a_{i j}$ 表示矩阵$A(t)$$i$ 行, 第 $j$列元素, $h_j(t)$ 表示行向量$h(t)$ 的第$j$ 个分量, 那么由Cauchy不等式可以证得

$ \begin{matrix}\left(\int_{x_0}^x h(t) A(t) {\rm d}t\right)_i=\sum_{j=1}^m \int_{x_0}^x h_j(t) a_{i j}(t) {\rm d}t \leq \sum_{j=1}^m\left(\int_{x_0}^x h_j^2(t) {\rm d}t\right)^{\frac{1}{2}}\left(\int_{x_0}^x a_{i j}^2(t) {\rm d}t\right)^{\frac{1}{2}}\end{matrix}$

那么

$\begin{aligned}\left(\int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t\right)^{*} \cdot \int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t & =\sum_{i=1}^{m}\left(\int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t\right)_{i}^{2} \\ & \leq \sum_{i=1}^{m}\left\{\sum_{j=1}^{m}\left(\int_{x_{0}}^{x} h_{j}^{2}(t) \mathrm{d} t\right)^{\frac{1}{2}} \cdot\left(\int_{x_{0}}^{x} a_{i j}^{2}(t) \mathrm{d} t\right)^{\frac{1}{2}}\right\}^{2} \\ & \leq \sum_{i=1}^{m} \sum_{j=1}^{m}\left[\int_{x_{0}}^{x} h_{j}^{2}(t) \mathrm{d} t \cdot \int_{x_{0}}^{x} a_{i j}^{2}(t) \mathrm{d} t\right]\end{aligned}$

所以, 由(2.6)、(2.8)式可得: 对于$x\in \omega$,有

$\begin{aligned}\left(u^{(k-1)}(x)\right)^{*} \cdot u^{(k-1)}(x) & =\int_{x_{0}}^{x}\left(u^{(k)}(t)\right)^{*} \mathrm{~d} t \cdot \int_{x_{0}}^{x} u^{(k)}(t) \mathrm{d} t \\ & =\left(\int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t\right)^{*} \cdot \int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t \\ & =\sum_{i=1}^{m}\left(\int_{x_{0}}^{x} h(t) A(t) \mathrm{d} t\right)_{i}^{m} \\ & \leq \sum_{i=1}^{m} \sum_{j=1}^{m}\left[\int_{x_{0}}^{x} h_{j}^{2}(t) \mathrm{d} t \cdot \int_{x_{0}}^{x} a_{i j}^{2}(t) \mathrm{d} t\right] \\ & =\left(\int_{\omega} \operatorname{tr} P^{-1}(x) \mathrm{d} x\right) \int_{x_{0}}^{x}\left(u^{(k)}(t)\right)^{*} P(t) u^{(k)}(t) \mathrm{d} t.\end{aligned}$

再对上式的两边在区间$\omega $上积分得

$\begin{matrix}\int_\omega\left(u^{(k-1)}(x)\right)^* \cdot u^{(k-1)}(x) {\rm d}x \leq \mid \omega\left(\int_\omega {\rm tr} P^{-1}(x) {\rm d}x\right) \int_\omega\left(u^{(k)}(t)\right)^* P(t) u^{(k)}(t) {\rm d}t.\end{matrix}$

所以

$\begin{aligned} \int_{\omega}\left(u^{(k)}(x)\right)^{*} P(x) u^{(k)}(x) \mathrm{d} x & \geq \frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P^{-1}(x) \mathrm{d} x\right)} \int_{\omega}\left(u^{(k-1)}(x)\right)^{*} u^{(k-1)}(x) \mathrm{d} x \\ & =\frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)\right\|_{\omega}^{2}.\end{aligned}$

证毕.

引理 2.2$\omega=\left[x_1, x_2\right], u(x) \in C^n\left(\omega, R^m\right)$, 正定矩阵

$P_{k}(x)=\left(p_{k, i j}(x)\right)_{m \times m} \quad(k=0,1,2, \cdots, n ; 1 \leq i, j \leq m)$

中的每个元素满足$p_{k, i j}(x) \in W_2^k(\omega),$ 非零矩阵满足 $P_0^*(x)=P_0(x)>0$, 那么有下列不等式成立

$\begin{eqnarray*}\sum_{k=0}^n \int_\omega[(u^{(k)}(x))^* P_k(x) u^{(k)}(x) {\rm d}x &\geq &\sum_{k=1}^{n-1} \frac{1}{| \omega|\left (\int_\omega {\rm tr}P _k^{-1}(x) {\rm d}x\right)}\| u^{(k-1)}(x)\|_\omega^2\\&&+\frac{\mu_\omega}{1+|\omega| \mu_\omega\left(\int_\omega {\rm tr}P_n^{-1}(x) {\rm d}x\right)} \| u(x) \|_\omega^2,\end{eqnarray*}$

其中, $\mu_\omega=\min\limits_{x \in \omega}\left(\frac{\lambda_{\min }\left(P_0(x)\right)}{{\rm tr} P_0(x)}\right) \cdot \frac{\int_\omega {\rm tr} P_0(x) {\rm d}x}{|\omega|}$.

由于 $ P_0(x)>0$, 且$p_{0, i j}(x) \in W_2^k(\omega)$, 则其特征值不全为0, 其迹 ${\rm tr} P_0(x)>0$, 那么函数$y(x)=\frac{u^*(x) P_0(x) u(x)}{{\rm {\rm tr}P}_0(x)}$ 在闭区间$\omega=\left[x_1, x_2\right]$ 上一定存在最小值记为

$y(x_0)=\frac{u^*(x_0) P_0(x_0) u(x_0)}{{\rm tr} P_0(x_0)}, x_0 \in\left[x_1, x_2\right],$

于是有下列不等式成立

$ \begin{matrix} \frac{u^*(x) P_0(x) u(x)}{{\rm tr} P_0(x)} &\geq& \frac{u^*(x_0) P_0(x_0) u(x_0)}{{\rm tr} P_0(x_0)} \geq\frac{\lambda_{\min }\left(P_0(x_0)\right)}{{\rm tr} P_0(x_0)} \cdot\left(u^*(x_0) u(x_0)\right) \\& \geq &\min\limits_{x \in\left[x_1, x_2\right]} \frac{\lambda_{\min } \left(P_0(x)\right)}{{\rm tr} P_0(x)} \cdot\left(u^*(x_0) u(x_0)\right).\end{matrix}$

因此

$\begin{matrix}u^*(x) P_0(x) u(x) \geq \min\limits_{x \in[x_1, x_2]} \frac{\lambda_{\min }\left(P_0(x)\right)} {{\rm tr} P_0(x)} \cdot {\rm tr} P_0(x) \cdot \left(u^*(x_0) u(x_0)\right).\end{matrix}$

上式两端积分得

$\begin{aligned} \int_{\omega} u^{*}(x) P_{0}(x) u(x) \mathrm{d} x & \geq \int_{\omega} \min _{x \in\left[x_{1}, x_{2}\right]} \frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)} \cdot \operatorname{tr} P_{0}(x) \cdot\left(u^{*}\left(x_{0}\right) u\left(x_{0}\right)\right) \mathrm{d} x \\ & =\min _{x \in\left[x_{1}, x_{2}\right]} \frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)} \cdot\left(u^{*}\left(x_{0}\right) u\left(x_{0}\right)\right) \cdot \int_{\omega} \operatorname{tr} P_{0}(x) \mathrm{d} x \\ & =\min _{x \in\left[x_{1}, x_{2}\right]} \frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)} \cdot\left|u\left(x_{0}\right)\right|^{2} \cdot \int_{\omega} \operatorname{tr} P_{0}(x) \mathrm{d} x \\ & =\min _{x \in\left[x_{1}, x_{2}\right]} \frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)} \cdot \frac{1}{|\omega|} \int_{\omega}\left|u\left(x_{0}\right)\right|^{2} \mathrm{~d} x \cdot \int_{\omega} \operatorname{tr} P_{0}(x) \mathrm{d} x \\ & =\min _{x \in\left[x_{1}, x_{2}\right]} \frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)} \cdot \frac{\int_{\omega} \operatorname{tr} P_{0}(x) \mathrm{d} x}{|\omega|}\left\|u\left(x_{0}\right)\right\|_{\omega}^{2} \\ & =\mu_{\omega}\left\|u\left(x_{0}\right)\right\|_{\omega}^{2}.\end{aligned}$

由引理2.1可以得到

$\begin{matrix}\sum_{k=1}^n \int_\omega\left(u^{(k)}(x)\right)^* P_k(x) u^{(k)}(x) {\rm d}x \geq \sum_{k=1}^n \frac{1}{|\omega|\left(\int_\omega {\rm tr}P_k^{-1}(x) {\rm d}x\right)}\left\|u^{(k-1)}(x)-u(x_0)\right\|_\omega^2.\end{matrix}$

由(2.14)和(2.15)式得到

$\begin{array}{l}\sum_{k=0}^{n} \int_{\omega}\left(u^{(k)}(x)\right)^{*} P_{k}(x) u^{(k)}(x) \mathrm{d} x \\ =\sum_{k=1}^{n} \int_{\omega}\left(u^{(k)}(x)\right)^{*} P_{k}(x) u^{(k)}(x) \mathrm{d} x+\int_{\omega} u^{*}(x) P_{0}(x) u(x) \mathrm{d} x \\ \geq \sum_{k=1}^{n} \frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega}^{2}+\mu_{\omega}\left\|u\left(x_{0}\right)\right\|_{\omega}^{2} \\ =\sum_{k=1}^{n-1} \frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega}^{2} \\ +\frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P_{n}^{-1}(x) \mathrm{d} x\right)}\left(\left\|u(x)-u\left(x_{0}\right)\right\|_{\omega}^{2}+\mu_{\omega}\left\|u\left(x_{0}\right)\right\|_{\omega}^{2}\right) \\ \geq \sum_{k=1}^{n-1} \frac{1}{|\omega|\left(\int_{\omega} \operatorname{trP}_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega}^{2} \\ +\mu_{\omega}\left(\frac{1}{|\omega| \mu_{\omega}\left(\int_{\omega} \operatorname{tr} P_{n}^{-1}(x) \mathrm{d} x\right)}\left\|u(x)-u\left(x_{0}\right)\right\|_{\omega}^{2}+\left\|u\left(x_{0}\right)\right\|_{\omega}^{2}\right) \\ \geq \sum_{k=1}^{n-1} \frac{1}{|\omega|\left(\int_{\omega} \operatorname{trP}_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega}^{2} \\ +\frac{\mu_{\omega}}{1+|\omega| \mu_{\omega}\left(\int_{\omega} \operatorname{tr} P_{n}^{-1}(x) \mathrm{d} x\right)}\left(\left\|u(x)-u\left(x_{0}\right)\right\|_{\omega}^{2}+\left\|u\left(x_{0}\right)\right\|_{\omega}^{2}\right) \\ \geq \sum_{k=1}^{n-1} \frac{1}{|\omega|\left(\int_{\omega} \operatorname{tr} P_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega}^{2} \\ +\frac{\mu_{\omega}}{1+|\omega| \mu_{\omega}\left(\int_{\omega} \operatorname{trP} P_{n}^{-1}(x) \mathrm{d} x\right)}\|u(x)\|_{\omega}^{2}. \\\end{array}$

从而引理得证.

引理 2.3[9] (预紧定理) 设$A_0$ 为Hilbert空间 $H$中的一个对称算子, $A$ 为其一自伴扩张. 下方有界自伴算子$A$ 的谱是离散的充分必要条件是: 在能量空间 $H_{A_0}$中的每个有界集在$H$ 中是预紧的.

引理 2.4[10] (算子分解定理) 若任何算子 $A$是自伴算子 $A_1,A_2$的直和, 则$A=A_1\oplus A_2$ 是Hilbert空间$X$ 上的一个自伴算子; 而且 $\sigma(A)=\sigma\left(A_1\right) \cup \sigma\left(A_2\right),$ $\sigma_p(A)=\sigma_p\left(A_1\right) \cup \sigma_p\left(A_2\right)$, $\sigma_c(A)=\sigma_c\left(A_1\right) \cup \sigma_c\left(A_2\right),$ $ \sigma_d(A)=\sigma_d\left(A_1\right) \cup \sigma_d\left(A_2\right),$ $\sigma_e(A)=\sigma_e\left(A_1\right) \cup \sigma_e\left(A_2\right)$.

3 主要结论

接下来研究由向量微分算式(1.1)通过自伴扩张所产生的算子$A$ 的离散谱的条件.如果对于$\forall x \in[0,+\infty)$, 系数矩阵$P_k(x)=\left(p_{k, i j}(x)\right)_{m \times m}, k=1,2,3 \cdots, n$ 是定义在$[0,+\infty)$, 上的$m\times m$ 阶实对称函数矩阵, 其中$p_{k, ij}(x) \in W_2^n(0, X), $$i, j=1,2, \cdots, m, X>0$.由微分算式(1.1)通过自伴扩张所生成的微分算子$A$是一个自伴向量微分算子, 它的谱的离散性条件由定理3.1、定理3.2和定理3.3给出.

定理 3.1 设矩阵$P_k(x)=\left(p_{k, i j}(x)\right)_{m \times m}, p_{k, i j}(x) \in W_2^k(0, \infty), k=1,2,3 \cdots, n$ 为定义在$[0,+\infty)$ 上的 $m\times m$ 阶实对称正定函数矩阵, 其特征根函数满足条件

$\lambda_{\max }\left(P_k(x)\right) / \lambda_{\min }\left(P_k(x)\right)<\infty,$

且存在正数 $h_0,c,C$使得

$c \lambda_{\max }\left(P_k\left(x_1\right)\right) \leq \lambda_{\max }\left(P_k\left(x_2\right)\right) \leq C \lambda_{\max } \left(P_k\left(x_1\right)\right),$

对于$0 \leq x_1 \leq x_2 \leq x_1+h_0 \sqrt{\lambda_{\max } \left(P_k\left(x_2\right)\right)}$ 成立. 且函数矩阵$P_k(x)$ 均可逆, $P^{-1}_k(x)$ 在区间 $\omega=\left[x, x+h \sqrt{\lambda_{\max }\left(P_n(x)\right)}\,\right]$上可积.

则向量微分算式

$\begin{equation}A u(x)=\sum_{k=0}^n(-1)^k\left(P_k(x) u^{(k)}(x)\right)^{(k)}, uad u(x) \in C^n\left((0, \infty), C^m\right), x \in[0, \infty)\end{equation}$

在其自伴域内生成的最小算子$A_0$ 的任何自伴扩张$A$ 的谱是离散的充分条件是

$\begin{equation}\lim\limits_{x \rightarrow+\infty} \frac{q_{k \omega}}{|\omega|} \int_x^{x+h \sqrt{\lambda_{\max }\left(P_n(x)\right)}} {\rm tr} P_k(x) {\rm d}x=+\infty,\end{equation}$

对任意的$h>0$ 成立. 这里$k=0,1,2, \cdots, n-1, $

$q_{k \omega}=\min\limits_{x \in \omega}\left(\frac{\lambda_{\min }\left(P_k(x)\right)}{{\rm tr} P_k(x)}\right), \omega=\left[x, x+h \sqrt{\lambda_{\max }\left(P_n(x)\right)}\,\right], $

$|\omega|$表示区间长度.

$x_{v+1}=x_v+h \sqrt{\lambda_{\max }\left(P_n\left(x_v\right)\right)}, v=0,1 \cdots,$ 其中 $0<h<\min \left(h_0, 1\right)$, 取 $\omega_v=\left(x_v, x_{v+1}\right)$,$v=0,1,\cdots,$ 则可以证明$\{\omega_v\}$ 覆盖整个 $[0,+\infty)$. 由于自伴微分算子的剩余谱为空集, 所以自伴微分算子的 谱集只含有本质谱和离散谱, 即 $\sigma(A)=\sigma_e(A) \cup \sigma_d(A)$.再 由算子分解定理引理2.4知, 自共轭微分算子的本质谱范围主要由下列二次型确定, 利用乘积函数的高级导数求导公式,分部积分公式, 对于任意的$m$ 维向量 $u(x) \in C_0^{\infty}\left(R^{+}, C^m\right)$.

$\begin{aligned}\left(A_{0} u(x), u(x)\right) & =\int_{0}^{+\infty} \sum_{k=0}^{n}(-1)^{k}\left(P_{k}(x) u^{(k)}(x)\right)^{*(k)} \bar{u}(x) \mathrm{d} x \\ & =\int_{0}^{+\infty} \sum_{k=0}^{n}(-1)^{k} \sum_{i=1}^{m} \sum_{j=1}^{m}\left(p_{k, i j}(x) \cdot u_{i}^{(k)}(x)\right)^{(k)} \mid \bar{u}_{j}(x) \mathrm{d} x \\ & =\int_{0}^{+\infty} \sum_{k=0}^{n}(-1)^{k} \sum_{i=1}^{m} \sum_{j=1}^{m}\left(\begin{array}{c}n \\ k\end{array}\right)\left(p_{k, i j}^{(k)}(x) u_{i}^{(2 n-k)}(x) \cdot \bar{u}_{j}(x)\right) \mathrm{d} x \\ & =\int_{0}^{+\infty} \sum_{k=0}^{n}\left(\sum_{i=1}^{m} \sum_{j=1}^{m}\left(\begin{array}{c}n \\ k\end{array}\right)\left(u_{i}^{(k)}(x) p_{k, i j}(x) \bar{u}_{j}^{(k)}(x)\right)\right) \mathrm{d} x \\ & =\int_{0}^{+\infty} \sum_{k=0}^{n}\left(u^{(k)}(x)\right)^{*} P_{k}(x) \bar{u}^{(k)}(x) \mathrm{d} x\end{aligned}$ $\begin{array}{l}=\sum_{v=0}^{\infty} \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}}\left(\sum_{k=0}^{n}\left(u^{(k)}(x)\right)^{*} P_{k}(x) \bar{u}^{(k)}(x)\right) \mathrm{d} x \\ =\sum_{v=0}^{\infty} \sum_{k=0}^{n} \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}}\left(u^{(k)}(x)\right)^{*} P_{k}(x) \bar{u}^{(k)}(x) \mathrm{d} x.\end{array}$

由(3.3)式, 利用引理2.2得

$\begin{aligned}\left(A_{0} u(x), u(x)\right) \geq & \sum_{v=0}^{\infty}\left(\sum_{k=1}^{n-1} \frac{1}{\left|\omega_{v}\right|\left(\int_{\omega_{v}} \operatorname{tr} P_{k}^{-1}(x) \mathrm{d} x\right)}\left\|u^{(k-1)}(x)-u\left(x_{0}\right)\right\|_{\omega_{v}}^{2}\right. \\ & +\frac{\mu_{\omega_{v}}}{1+|\omega| \mu_{\omega_{v}}\left(\int_{\omega_{v}} \operatorname{tr}_{n}^{-1}(x) \mathrm{d} x\right)}\|u(x)\|_{\omega_{v}}^{2}.\end{aligned}$

其中 $\mu_{\omega_v}=\min\limits_{x \in \omega_v}\left(\frac{\lambda_{\min }\left(P_0(x)\right)}{{\rm tr} P_0(x)}\right) \cdot \frac{\int_{\omega_v} {\rm tr} P_0(x) {\rm d}x}{\left|\omega_v\right|}, uad \omega=\left[x_v, x_v+h \sqrt{\lambda_{\max }\left(P_n\left(x_v\right)\right)}\right]$, 根据定理条件: 矩阵$P_k(x)=\left(p_{k, i j}(x)\right)_{m \times m}, p_{i j}(x) \in W_2^k(0, \infty), k=1,2,3 \cdots, n$ 为定义在$[0,+\infty)$ 上的$m\times m$ 阶实对称正定函数矩阵, 易知

$ \begin{matrix}\sum_{k=1}^{n-1} \frac{1}{\left|\omega_v\right|\left(\int_{\omega_v} {\rm {\rm tr}P} P_k^{-1}(x) {\rm d}x\right)}\left\|u^{(k-1)}(x)-u(x_0)\right\|_{\omega_v}^2 \geq 0.\end{matrix}$

所以由(3.4)式可以得到

$\begin{matrix}\left(A_0 u(x), u(x)\right) \geq \sum_{v=0}^{\infty} \frac{\mu_{\omega_v}}{1+\left|\omega_v\right| \mu_{\omega_v}\left(\int_{\omega_v} {\rm {\rm tr}P}_n^{-1}(x) {\rm d}x\right)}\|u(x)\|_{\omega_v}^2,\end{matrix}$

再根据矩阵$P_n(x)$ 的特征根函数所满足的条件$\lambda_{\max }\left(P_n(x)\right) / \lambda_{\min }\left(P_n(x)\right)<\infty$, 可知一定存在一个常数$a$, 使得

$\lambda_{\max }\left(P_n(x)\right) \leq a \lambda_{\min }\left(P_n(x)\right), x \in[0,+\infty), $

于是

$\begin{aligned} \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}(x)\right)}} \operatorname{tr} P_{n}^{-1}(x) \mathrm{d} x & =\int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}}\left(\sum_{i=1}^{m} \frac{1}{\lambda_{i}\left(P_{n}(x)\right)}\right) \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \frac{m}{\lambda_{\min }(P(x))} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \frac{a m}{\lambda_{\max }\left(P_{n}(x)\right)} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \frac{a m}{\lambda_{\max }\left(P_{n}(x)\right)} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P\left(x_{v}\right)\right)}} \frac{a m}{c \lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)} \mathrm{d} x \\ & \leq h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)} \cdot \frac{a m}{c \lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}\end{aligned}$

所以

$\begin{matrix}\left|\omega_v\right| \int_{x_v}^{x_v+h \sqrt{\lambda_{\max }\left(P_n\left(x_v\right)\right)}} {\rm tr} P_n^{-1}(x) {\rm d}x& \leq &h \sqrt{\lambda_{\max }\left(x_v\right)} \cdot h \sqrt{\lambda_{\max }\left(x_v\right)} \cdot \frac{a m}{c \lambda_{\max }\left(x_v\right)}\\ &=&\frac{h^2 a m}{c}.\end{matrix}$

结合(3.7)、(3.8)式有

$\begin{aligned}\left(A_{0} u(x), u(x)\right) & \left.\geq \sum_{v=0}^{\infty} \frac{\mu_{\omega_{v}}}{1+|\omega| \mu_{\omega_{v}} \int_{\omega_{v}} \operatorname{tr} P^{-1}(x) \mathrm{d} x}\|u(x)\|_{\left[x_{v}, x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}\right.}^{2}\right] \\ & \geq \frac{\mu_{\omega_{v}}}{1+\frac{h^{2} a m}{c} \cdot \mu_{\omega_{v}}}\|u(x)\|_{[0,+\infty)}^{2} \\ & =\frac{1}{\mu_{\omega_{v}}^{-1}+h^{2} a m \cdot c^{-1}}\|u(x)\|_{[0,+\infty)}^{2}.\end{aligned}$

由条件(3.2)对于任意 $h>0, $$\lim\limits_{x \rightarrow+\infty}\Big(\frac{q_{0 \omega}}{|\omega|} \int_{x_v}^{x_v+h \sqrt{\lambda_{\max }\left(P_n\left(x_v\right)\right)}} {\rm tr} P_0(x)\Big) {\rm d}x=+\infty$成立, 则存在 $X>0$, 对于充分大$v$, 使得 $x_v>X$时, 恒有

$\begin{aligned} \mu_{\omega}^{-1} & =\left(\min _{x \in \omega_{v}}\left(\frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)}\right) \cdot \frac{\int_{\omega_{v}} \operatorname{tr} P_{0}(x) \mathrm{d} x}{\left|\omega_{v}\right|}\right)^{-1} \\ & =\left(q_{0, \omega_{v}} \cdot \frac{\int_{\omega_{v}} \operatorname{tr} P_{0}(x) \mathrm{d} x}{\left|\omega_{v}\right|}\right)^{-1} \\ & =\left|\omega_{v}\right|\left(q_{0 \omega_{v}} \cdot \int_{\omega_{v}} \operatorname{tr} P_{0}(x) \mathrm{d} x\right)^{-1} \leq \varepsilon.\end{aligned}$

可以取$h$ 充分小, 使得对任意的$ \varepsilon>0$, 都有$h^2amc^{-1}<\varepsilon$ 成立, 那么由(3.9)式就得到如下的估计式

$\begin{equation}\left(A_0 u(x), u(x)\right) \geq \frac{1}{\mu_\omega^{-1}+h^2 a m \cdot c^{-1}}\|u(x)\|_{[0,+\infty)}^2 \geq(2 \varepsilon)^{-1}\|u(x)\|_{[0,+\infty)}^2.\end{equation}$

所以 $\sigma_e\big(\hat{A}_{[0, \infty)}\big) \cap\left(-\infty,(2 \varepsilon)^{-1}\right)=\phi$, 其中 $\hat{A}_{[0, \infty)}$$A_{[0, \infty)}$ 的任意Friedrichs自伴扩张, 它们具有相同的本质谱, 故有 $\sigma_e(A) \cap\left(-\infty, \varepsilon^{-1}\right)=\phi$, 由 $\varepsilon$ 的任意性, 可以得到

$\sigma_e(A) \cap(-\infty,+\infty)=\phi, $

因此 $\sigma_e(A)=\phi$, 所以算子$A$ 的谱是离散的. 定理得证.

定理 3.2 设矩阵 $P_k(x), k=1,2,3 \cdots, n$ 为定义在 $(0,+\infty)$ 上的正定对角矩阵, 且 $P_n(x)$ 可逆, $P_n^{-1}(x)$$\omega$ 上可积, 记 $p(x)=\frac{1}{{\rm tr} P^{-1}(x)}$, 存在正数 $h_0, c, C$ 使得 $c p\left(x_1\right) \leq p\left(x_2\right) \leq C p\left(x_1\right)$, 对于 $0 \leq x_1 \leq x_2 \leq x_1+h_0 \sqrt{p\left(x_2\right)}$ 成立. 则向量微分算式

$\begin{equation}A u(x)=\sum_{k=0}^n(-1)^k\left(P_k(x) u^{(k)}(x)\right)^{(k)}, uad u(x) \in C_0^{\infty} \mid\left((0, \infty), C^m\right), x \in[0, \infty).\end{equation}$

在其自伴域内生成的最小算子 $A_0$的任何自伴扩张$A$ 的谱是离散的必要条件是

$\begin{equation}\lim\limits_{x \rightarrow+\infty} \frac{q_{k \omega}}{|\omega|} \int_x^{x+h \sqrt{{\rm tr}(P_{k}(x))}} {\rm tr} P_k(x) {\rm d}x=+\infty,\end{equation}$

对任意的 $h>0$ 成立. 这里 $k=0,1,2, \cdots, n-1, $

$q_{k \omega}=\min\limits_{x \in \omega}\left(\frac{\lambda_{\min }\left(P_k(x)\right)}{{\rm tr} P_k(x)}\right), \omega=\left[x, x+h \sqrt{{\rm tr}\left(P_k(x)\right)} \right], $

$|\omega|$ 表示区间长度.

类似定理3.1, 首先得到算子的二次型估计式为

$\begin{matrix}\left(A_0 u(x), u(x)\right) & \geq &\sum_{v=0}^{\infty} \frac{\mu_\omega}{1+|\omega| \mu_\omega\left(\int_\omega {\rm {\rm tr}P}_n^{-1}(x) {\rm d}x\right)}\|u(x)\|_\omega^2 \\& =&\sum_{v=0}^{\infty} \frac{1}{\mu_\omega^{-1}+|\omega|\left(\int_\omega {\rm tr} P_n^{-1}(x) {\rm d}x\right)}\|u(x)\|_\omega^2.\end{matrix}$

由定理条件知

$\begin{aligned}|\omega|\left(\int_{x_{v}}^{x_{v}+h \sqrt{p\left(x_{v}\right)}} \operatorname{tr}_{n}^{-1}(x) \mathrm{d} x\right) & =|\omega|\left(\int_{x_{v}}^{x_{v}+h \sqrt{p\left(x_{v}\right)}} p^{-1}(x) \mathrm{d} x\right) \\ & \leq|\omega|\left(\int_{x_{v}}^{x_{v}+h \sqrt{p\left(x_{v}\right)}} c_{0}^{-1} p^{-1}\left(x_{v}\right) \mathrm{d} x\right) \\ & \leq h \sqrt{p\left(x_{v}\right)} \cdot h \sqrt{p\left(x_{v}\right)} \cdot c_{0}^{-1} \cdot p^{-1}\left(x_{v}\right)=h^{2} \cdot c_{0}^{-1}.\end{aligned}$

$\begin{matrix}\mu_{\omega_v}^{-1}&=&\left(\min\limits_{x \in \omega_v}\left(\frac{\lambda_{\min }\left(P_0(x)\right)}{{\rm tr} P_0(x)}\right) \cdot \frac{\int_{\omega_v} {\rm tr} P_0(x) {\rm d}x}{\left|\omega_v\right|}\right)^{-1}=\left(q_{0 \omega_v} \cdot \frac{\int_{\omega_v} {\rm tr} P_0(x) {\rm d}x}{\left|\omega_v\right|}\right)^{-1} \\&=&\left|\omega_v\right| \cdot\left(q_{0 \omega_v} \cdot \int_{\omega_v} {\rm tr} P_0(x) {\rm d}x\right)^{-1}.\end{matrix}$

把(3.15)、(3.16)式代入(3.14)式得到

$\begin{matrix} \left(A_0 u(x), u(x)\right) &\geq& \sum_{v=0}^{\infty} \frac{1}{\mu_{\omega_v}^{-1}+\left|\omega_v\right|\left(\int_{\omega_v} {\rm {\rm tr}P}_n^{-1}(x) {\rm d}x\right)}\|u(x)\|_{\omega_v}^2 \\& \geq& \sum_{v=0}^{\infty} \frac{1}{\left|\omega_v\right| \cdot\left(q_{0 \omega_v} \cdot \int_{\omega_v} {\rm tr} P_0(x) {\rm d}x\right)^{-1}+h^2 \cdot c_0^{-1}}\|u(x)\|_{\omega_v}^2. \end{matrix}$

由条件(3.13)对于任意 $h>0,$$\lim\limits_{x \rightarrow+\infty}\Big(\frac{q_{0 \omega}}{|\omega|} \int_{x_v}^{x_v+h \sqrt{\lambda_{\max }\left(P_n\left(x_v\right) \right)}} {\rm tr} P_0(x)\Big) {\rm d}x=+\infty$ 成立, 则存在$X>0$, 对于充分大时$v$, 使得$x_v>X$ 时, 恒有

$\begin{aligned} \mu_{\omega_{v}}^{-1} & =\left(\min _{x \in \omega_{v}}\left(\frac{\lambda_{\min }\left(P_{0}(x)\right)}{\operatorname{tr} P_{0}(x)}\right) \cdot \frac{\int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \operatorname{tr} P_{0}(x) \mathrm{d} x}{\left|\omega_{v}\right|}\right)^{-1} \\ & =\left(q_{0 \omega_{v}} \cdot \frac{\int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \operatorname{tr} P_{0}(x) \mathrm{d} x}{\left|\omega_{v}\right|}\right)^{-1} \\ & =\left|\omega_{v}\right| \cdot\left(q_{0 \omega_{v}} \cdot \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(P_{n}\left(x_{v}\right)\right)}} \operatorname{tr} P_{0}(x) \mathrm{d} x\right)^{-1} \leq \varepsilon.\end{aligned}$

可以取$h$ 充分小, 使得对任意的$\varepsilon>0$, 都有

$\begin{equation}h^2 c_0^{-1}<\varepsilon.\end{equation}$

那么由(3.17)式就得到如下的估计式

$\begin{matrix}\left(A_0 u(x), u(x)\right) & \geq &\frac{1}{\left|\omega_v\right| \cdot\left(q_{0 \omega_v} \cdot \int_{\omega_v} {\rm tr}P(x) {\rm d}x\right)^{-1}+h^2 \cdot c_0^{-1}}\|u(x)\|_{[0,+\infty)}^2 \\& \geq&(2 \varepsilon)^{-1}\|u(x)\|_{[0,+\infty)}^2.\end{matrix}$

所以 $\sigma_e\big(\hat{A}_{[0, \infty)}\big) \cap\left(-\infty,(2 \varepsilon)^{-1}\right)=\phi$, 其中 $\hat{A}_{[0, \infty)}$$A_{[0, \infty)}$ 的任意 Friedrichs 自伴扩张, 它们有 相同的本质谱, 故有 $\sigma_e\left(A_{[0, \infty)}\right) \cap\left(-\infty, \varepsilon^{-1}\right)=\phi$, 由 $\varepsilon$ 的任意性, 可以得到 $\sigma_e(A) \cap(-\infty, \infty)=\phi$, 所以$\sigma_e(A)=\phi$, 所以算子 $A$ 的谱是离散的, 定理得证.

定理 3.3 设系数矩阵 $P(x)$ 为定义在 $(0,+\infty)$ 上的 $m \times m$ 阶实对称函数矩阵, $P(x)>0$$P^{-1}(x)$$\omega$ 上可积, 且 $\lambda_{\max }(x) / \lambda_{\min }(x)<\infty$, 这里 $\lambda_{\max }(x)$ 为矩阵 $P(x)$ 的最大特征根函 数, $\lambda_{\min }(x)$ 为矩阵 $P(x)$ 的最小特征根函数, 存在正数 $h_0, c, C$ 使得

$c \lambda_{\max }\left(x_1\right) \leq \lambda_{\max }\left(x_2\right) \leq C \lambda_{\max }\left(x_1\right),$

对于$0 \leq x_1 \leq x_2 \leq x_1+h_0 \sqrt{\lambda_{\max }\left(x_2\right)}$ 成立. 则由向量微分算式

$\begin{equation}A u(x)=-\left(P(x) u^{(n)}(x)\right)^{(n)}+Q(x) u(x) uad u(x) \in C_0^{\infty}\left((0, \infty), C^m\right), x \in[0, \infty).\end{equation}$

在其自伴域内生成的最小算子$T_0$ 是自伴算子, $T_0$ 的任何自伴扩张 $T$的谱是离散的充分必要条件是

$ \begin{equation}\lim\limits_{x \rightarrow+\infty} q_\omega \int_x^{x+h \sqrt{\lambda_{\max }(x)}} {\rm tr} Q(x) {\rm d}x=+\infty,\end{equation}$

对任意的 $h>0$ 成立. 这里 $q_\omega=\min\limits_{x \in \omega}\left(\frac{\lambda_{\min }(Q(x))}{{\rm tr} Q(x)}\right), \omega=\left[x, x+h \sqrt{\lambda_{\max }(x)}\right], |\omega|$ 表示区间 长度.

$x_{v+1}=x_v+h \sqrt{\lambda_{\max }\left(x_v\right)}, v=0,1 \cdots$, 其中 $0<h<\min \left(h_0, 1\right)$, 取 $\omega_v=\left(x_v, x_{v+1}\right)$, $v=0,1 \cdots$, 则可以证明 $\left\{\omega_v\right\}$ 覆盖整个 $(0,+\infty)$. 由于自伴微分算子的剩余谱为空集, 所以自 伴微分算子的谱集合只包含本质谱和离散谱, 即 $\sigma(A)=\sigma_e(A) \cup \sigma_d(A)$.再由算子分解定理 引理 $2.4$ 知, 自伴微分算子的本质谱范围主要由下列二次型确定, 利用乘积函数的高级导数求导公式, 分部积分公式和引理 $2.2$, 对于任意的 $m$ 维向量 $u(x) \in C_0^{\infty}\left(R^{+}, C^m\right)$.

. $\begin{aligned} & \left(A_{0} u(x), u(x)\right) \\ = & \int_{0}^{+\infty}(-1)^{n}\left(P(x) u^{(n)}(x)\right)^{*(n)} \bar{u}(x)+u^{*}(x) Q(x) \bar{u}(x) \mathrm{d} x \\ = & \int_{0}^{+\infty}\left((-1)^{n} \sum_{i=1}^{m} \sum_{j=1}^{m}\left(p_{i j}(x) \cdot u_{i}^{(n)}(x)\right)^{(n)} \bar{u}_{j}(x)+\sum_{i=1}^{m} \sum_{j=1}^{m}\left(u_{i}(x) q_{i j}(x) \bar{u}_{j}(x)\right)\right) \mathrm{d} x \\ = & \int_{0}^{+\infty}\left((-1)^{n} \sum_{i=1}^{m} \sum_{j=1}^{m}\left(\begin{array}{l}n \\ k\end{array}\right) p_{i j}^{(k)}(x) u_{i}^{(2 n-k)}(x) \cdot \bar{u}_{j}(x)+\sum_{i=1}^{m} \sum_{j=1}^{m}\left(u_{i}(x) q_{i j}(x) \bar{u}_{j}(x)\right)\right) \mathrm{d} x \\ = & \int_{0}^{+\infty}\left(\sum_{i=1}^{m} \sum_{j=1}^{m}\left(\begin{array}{l}n \\ k\end{array}\right) u_{i}^{(n)}(x) p_{i j}(x) \bar{u}_{j}^{(n)}(x)+\sum_{i=1}^{m} \sum_{j=1}^{m}\left(u_{i}(x) q_{i j}(x) \bar{u}_{j}(x)\right)\right) \mathrm{d} x\end{aligned}$ $\begin{array}{l}=\int_{0}^{+\infty}\left(u^{*(n)}(x) P(x) u^{(n)}(x)+u^{*}(x) Q(x) \bar{u}(x)\right) \mathrm{d} x \\ =\sum_{v=0}^{\infty} \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}}\left(u^{*(n)}(x) P(x) u^{(n)}(x)+u^{*}(x) Q(x) \bar{u}(x)\right) \mathrm{d} x \\ \geq \sum_{v=0}^{\infty} \frac{\mu_{\omega_{v}}}{1+|\omega| \mu_{\omega_{v}} \int_{\omega_{v}} \operatorname{tr} P^{-1}(x) \mathrm{d} x}\|u(x)\|_{\left[x_{v}, x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}\right.}^{2} \\\end{array}$

根据矩阵 $P(x)$ 的特征根函数所满足的条件 $\lambda_{\max }(x) / \lambda_{\min }(x)<\infty$, 可知一定存在一个常数 $a$, 使得 $\lambda_{\max }(x) \leq a \lambda_{\min }(x), x \in[0,+\infty)$, 于是

$\begin{aligned} \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}} \operatorname{tr} P^{-1}(x) \mathrm{d} x & =\int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}}\left(\sum_{i=1}^{m} \frac{1}{\lambda_{i}(x)}\right) \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}} \frac{m}{\lambda_{\min }(x)} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}} \frac{a m}{\lambda_{\max }(x)} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\max _{\max }\left(x_{v}\right)}} \frac{a m}{\lambda_{\max }(x)} \mathrm{d} x \\ & \leq \int_{x_{v}}^{x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}} \frac{a m}{c \lambda_{\max }\left(x_{v}\right)} \mathrm{d} x \\ & \leq h \sqrt{\lambda_{\max }\left(x_{v}\right)} \cdot \frac{a m}{c \lambda_{\max }\left(x_{v}\right)}.\end{aligned}$

所以

$\begin{matrix}|\omega| \int_{x_v}^{x_v+h \sqrt{\lambda_{\max }\left(x_v\right)}} {\rm tr} P^{-1}(x) {\rm d}x &\leq& h \sqrt{\lambda_{\max }\left(x_v\right)} \cdot h \sqrt{\lambda_{\max }\left(x_v\right)} \cdot \frac{a m}{c \lambda_{\max }\left(x_v\right)}\\&=&\frac{h^2 a m}{c}.\end{matrix}$

结合(3.25)、(3.23)式有

$\begin{aligned}\left(A_{0} u(x), u(x)\right) & \geq \sum_{v=0}^{\infty} \frac{\mu_{\omega_{v}}}{1+\left|\omega_{v}\right| \mu_{\omega_{v}} \int_{\omega_{v}} \operatorname{tr} P^{-1}(x) \mathrm{d} x}\|u(x)\|_{\left[x_{v}, x_{v}+h \sqrt{\lambda_{\max }\left(x_{v}\right)}\right]}^{2}\|u(x)\|_{[0,+\infty)}^{2} \\ & \geq \frac{\mu_{\omega_{v}}}{1+\frac{h^{2} a m}{c} \cdot \mu_{\omega_{v}}}\left\|\frac{1}{\mu_{\omega_{v}}^{-1}+h^{2} a m \cdot c^{-1}}\right\| u(x) \|_{[0,+\infty)}^{2}.\end{aligned}$

由条件(3.22)对于任$h>0$, $\lim\limits_{x\rightarrow +\infty} \Big(q_{\omega_v}\int_{x_v}^{x_v+h \sqrt{\lambda_{\max }(x_v)}} {\rm tr} Q(x)\Big){\rm d}x=+\infty$成立, 则存在$X>0$, 对于充分大时$v$, 使得$x_v>X$时, 恒有

$\begin{equation}\mu^{-1}_\omega=q_\omega\cdot \frac{ \int_{\omega_v}{\rm tr}Q(x){\rm d}x}{|\omega|}=|\omega_v|\bigg(q_{\omega_v}\int_{\omega_v}{\rm tr}Q(x){\rm d}x\bigg)^{-1}\leq \varepsilon.\end{equation}$

可以取$h$充分小, 使得对任意的$\varepsilon>0$, 都有

$\begin{equation}h^2amc^{-1}<\varepsilon \end{equation}$

成立, 结合(3.28)、(3.27)式, 由(3.26)式就得到如下的估计式

$\begin{equation}\left(A_0 u(x), u(x)\right) \geq \frac{1}{\mu^{-1}_{\omega_v}+h^2am\cdot c^{-1}}\|u(x)\|^2_{[0,+\infty)}\geq (2\varepsilon)^{-1}\|u(x)\|^2_{[0,+\infty)}. \end{equation}$

所以$ \sigma_e(\hat{A}_{[0,+\infty)})\cap (-\infty,(2\varepsilon)^{-1})=\phi$, 其中$ \hat{A}_{[0,+\infty)}$${A}_{[0,+\infty)}$的任意Friedrichs自伴扩张, 它们有相同的本质谱, 故有$ \sigma_e({A}_{[0,+\infty)})\cap (-\infty,\varepsilon^{-1})=\phi$, 由$ \varepsilon$的任意性, 可以得到 $\sigma_e(A)\cap (-\infty,\infty)=\phi$, 所以$\sigma_e(A)=\phi$, 所以算子 $A$的谱是离散的, 充分性得证.

下证定理的必要性, 假设存在一个常数$h^*$, 以及一列 $x_v$,$ \omega_v=[x_v,x_v+h^*\sqrt{\lambda_1(x_v)}],$$v=0,1,2,\cdots $, 使得

$\begin{equation}\min_{x\in \omega_v}q_\omega\cdot\int_{x_v}^{x_v+h \sqrt{\lambda_1(x_v)}}{\rm tr} Q(x){\rm d}x\leq C^*\ \mbox{(常数).}\end{equation}$

并且$x_v+h^* \sqrt{\lambda_{\max }(x_v)}<x_{v+1}$.$\varphi(x)\in C^\infty_0 (-\infty,\infty)$, 为函数

$\begin{equation}\chi(x)=\left\{\begin{array}{ll}0,& |x|>\frac{1}{2},\\[3mm]1,& |x|\leq \frac{1}{2}\end{array}\right.\end{equation} $

的磨光函数, 其磨光半径为 $\frac{1}{2}$, 并且满足$\|\varphi(x)=1$, 再设 ${\mathop{e}\limits^{\rightharpoonup}}^T=(1,0,0,\cdots,0)$ 为一个$m$ 维单位向量, 取 $y_v(x)=u_x(x)\mathop{e}\limits^{\rightharpoonup}, v=0,1,2,3,\cdots,$ 其中

$\begin{matrix}u_v(x)=\frac{\sqrt{q_{\omega_v}}}{\sqrt{h^*}\sqrt[4]{\lambda_{\max}(x_v)}}\varphi \bigg(\frac{1}{\sqrt[2n]{\lambda_{\max}(x_v)}}(x-x_v)\bigg).\end{matrix}$

$\varphi(x)$ 所满足的性质可知$y_v(x)$ 是正交的,$v=0,1,2,\cdots$, 所以, 函数集 $\{y_v\}^\infty_{v=1}$在空间$H$ 中非予紧的. 于是利用放大, 复合函数导数公式得到下列不等式

$\begin{aligned}\left(A y_{v}, y_{v}\right)= & \int_{\omega_{v}}\left(y_{v}^{(n)} P(x) \bar{y}_{v}^{(n)}+y_{v} Q(x) \bar{y}_{v}\right) \mathrm{d} x \\ \leq & \int_{\omega_{v}}\left(\lambda_{1}(x) y_{v}^{(n)} \bar{y}_{v}^{(n)}+\operatorname{tr} Q(x) y_{v} \bar{y}_{v}\right) \mathrm{d} x \\ \leq & \int_{\omega_{v}} \lambda_{1}(x) \frac{q_{\omega_{v}}}{h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)}} \cdot \frac{1}{\sqrt{\lambda_{1}\left(x_{v}\right)}} \cdot \frac{1}{\sqrt{\lambda_{1}\left(x_{v}\right)}}\left|\varphi^{(n)}\right|^{2} \mathrm{~d} x \\ & +\int_{\omega_{v}} \operatorname{tr} Q(x) \cdot \frac{q_{\omega_{v}}}{h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)}} \varphi^{2} \mathrm{~d} x.\end{aligned}$

再根据积分中值定理和假设(3.30)得到

$\begin{aligned}\left(A y_{v}, y_{v}\right) \leq & C_{0} \lambda_{1}\left(x_{v}\right) \cdot h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)} \cdot \frac{q_{\omega_{v}}}{h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)}} \cdot \frac{1}{\sqrt{\lambda_{1}\left(x_{v}\right)}} \cdot \frac{1}{\sqrt{\lambda_{1}\left(x_{v}\right)}} \\ & +C^{*} \frac{1}{h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)}} h^{*} \sqrt{\lambda_{1}\left(x_{v}\right)} \Phi_{0} \\ = & C_{0} q_{\omega_{v}}+C^{*} \Phi_{0}<\infty,\end{aligned}$

其中$C_0$ 是与$\varphi^{(n)}$ 有关的常数, $\Phi_0$是与$\varphi$ 有关的常数, 即$\{y_v\}^\infty_{v=1}$ 在能量空间$H_{A_0}$ 中有界的, 而$\bar{A}$ (是$A_0$ 的任意自伴扩张)的谱是离散的, 因而由引理2.3知$\{y_v\}^\infty_{v=1}$$H$内是予紧的, 这与$\{y_v\}^\infty_{v=1}$ 非予紧相矛盾, 因而假设错误, 因此必要性得证.

推论 3.4 设矩阵$P(x)$ 为定义在$(0,+\infty)$ 上的$m\times m$ 阶实对称函数矩阵, $P(x)>0$$P^{-1}(x)$$\omega$ 上可积, $\lambda_{\max}(x)/\lambda_{\min}(x)<\infty$,这里$\lambda_{\max}(x)$ 为矩阵$P(x)$ 的最大特征根函数,$\lambda_{\min}(x) $为矩阵$P(x)$ 的最小特征根函数, 存在正数$h_0,c,C$使得

$c\lambda_{\max}(x_1)\leq \lambda_{\max}(x_2)\leq C\lambda_{\max}(x_1),$

对于$0\leq x_1\leq x_2\leq x_1+h_0\sqrt{\lambda_{\max}(x_2)}$ 成立,则Sturm-Liouville向量微分算式

$\begin{equation}Au(x)=-(P(x)y'(x))'+Q(x)u(x)\ u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,\infty).\end{equation}$

在其自伴域内生成的最小算子$A_0$ 的任何自伴扩张 $A$的谱是离散的充分必要条件为

$\begin{equation}\lim_{x\rightarrow +\infty}q_\omega \int_{x}^{x+h \sqrt{\lambda_{\max}(x)}}{\rm tr} Q(x){\rm d}x=+\infty,\end{equation}$

对任意的$h>0$ 成立. 这里 $q_\omega=\min\limits_{x\in \omega} \Big(\frac{\lambda_m(Q(x))}{trQ(x)}\Big),$$\omega=\Big[x,x+h\sqrt{\lambda_max(x)}\Big],$$|\omega|$表示区间长度.

推论 3.5 设Schrodinger向量微分算式

$\begin{equation}Au(x)=-u''(x)+Q(x)u(x)\ u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,\infty).\end{equation}$

在其自伴域内生成的最小算子 $A_0$的任何自伴扩张$A$ 的谱是离散的充分必要条件为

$\begin{equation}\lim_{x\rightarrow +\infty}q_\omega \int_{x}^{x+h \sqrt{\frac{1}{m}}}{\rm tr} Q(x){\rm d}x=+\infty,\end{equation}$

对任意的$h>0$成立. 这里 $q_\omega=\min\limits_{x\in \omega}\Big(\frac{\lambda_m(Q(x))}{{\rm tr}Q(x)}\Big),$$\omega=\Big[x,x+h\sqrt{\frac{1}{m}}\ \Big],$$|\omega|$ 表示区间长度.

推论 3.6 设矩阵 $P(x)$为定义在$(0,+\infty)$ 上的$m\times m$ 阶实对称矩阵函数, $P(x)>0$,且 $P^{-1}(x)$$\omega$ 上可积, $\lambda_1(x)/\lambda_m(x)<\infty$, 存在正数 $h_0,c,C$ 使得$c\lambda_1(x_1)\leq\lambda_2(x_2)\leq C\lambda_2(x_1)$, 对于$0\leq x_1\leq x_2\leq x_1+h_0\sqrt{\lambda_1(x_2)}$ 成立.则由单项$2N$阶向量微分算式

$\tau(u(x))=(-1)^{n}\left(P(x) u^{(n)}(x)\right)^{(n)} \quad 0<x<+\infty$,

在其自伴域内生成的最小算子$T_0$ 是自伴算子, $T_0$的任何自伴扩张 $T$的谱是离散的充分必要条件是

$\begin{equation}\lim_{x\rightarrow +\infty}\frac{1}{|\omega|\int_{x}^{x+h \sqrt{\lambda_1(x)}}{\rm tr} P^{-1}(x){\rm d}x}=+\infty,\end{equation}$

对任意的$h>0$ 成立, 这里 $\omega=[x,x+h \sqrt{\lambda_1(x)}],$$|\omega|$ 表示区间长度.

见文献[8].

例 3.1 设向量微分表达式

$\begin{equation}A_0(u(x))=-\left(\left[\begin{array}{cc}\cos x+a&0\\0&\cos x+a\end{array}\right]u^{(n)}(x)\right)^{(n)}+\left[\begin{array}{cc}x+b&0\\0&x+b\end{array}\right]^ru(x),\ x\in (0,\infty).\end{equation}$

这里$m=2,u(x)=(u_1(x),u_2(x))^T$,有

$P(x)=\left[\begin{array}{cc}\cos x+a&0\\0&\cos x+a\end{array}\right],Q(x)= +\left[\begin{array}{cc}x+b&0\\0&x+b\end{array}\right]^r,$

$a>1,b>1,r>1$ 时, 则算子 $A_0$的任何自伴扩张的谱是离散的充要条件为

$\begin{equation}\lim_{x\rightarrow +\infty}q_\omega\int_{x}^{x+h \sqrt{p(x)}}{\rm tr} Q(x){\rm d}x=+\infty,\end{equation}$

对任意的$h>0$ 成立. 这里,$q_\omega=\min\limits_{x\in \omega}\Big(\frac{\lambda_{\min} (Q(x))}{{\rm tr}Q(x)}\Big),$$\omega=\Big[x,x+h\sqrt{p(x)}\ \Big],$$|\omega|=h\sqrt{p(x)}$ 表示区间长度, $p(x)=({\rm tr}P^{-1}(x))^{-1}$.

例 3.2 设Schrodinger向量微分算式

$\begin{equation}Au(x)=-u''(x)+\left[\begin{array}{cc}x^2-2&0\\0&x-4\end{array}\right]u(x) u(x)\in C^\infty_0((0,\infty),C^2),x\in (0,\infty),\end{equation}$

这里$m=2,u(x)=(u_1(x),u_1(x))^T$,$Q(x)=\left[\begin{array}{cc}x^2-2&0\\0&x-4\end{array}\right],$ 在其自伴域内生成的最小算子$A_0$的任何自伴扩张$A$ 的谱是离散的充分必要条件为

$\begin{equation}\lim_{x\rightarrow +\infty}q_\omega\int_{x}^{x+h \sqrt{\frac{1}{2}}}{\rm tr} Q(x){\rm d}x=+\infty,\end{equation}$

对任意的$h>0$ 成立. 这里$q_\omega=\min\limits_{x\in \omega}\Big(\frac{\lambda_m(Q(x))}{{\rm tr}Q(x)}\Big),$$\omega=\Big[x,x+h\sqrt{\frac{1}{2}}\ \Big],$$|\omega|$ 表示区间长度.

很多物理和力学中的偏微分方程, 还有一些高阶常微分方程, 一般都可以转化为向量值微分算子问题来求解, 因此研究向量值微分算子谱的离散性对于求解常微分方程和偏微分方程具有重要理论意义, 本文给出了一类高阶向量值微分算子谱离散性一些充分必要条件, 希望对求解微分方程提供一些理论支持.

参考文献

Weidman J. Linear Operators in Hilbert Space. New York: Springer-Verlag, 1980

[本文引用: 1]

Naimark M A. 线性微分算子. 北京: 科学出版社, 1964: 108-127

[本文引用: 1]

Naimark M A. Linear Differential Operators. Beijing: Science Press, 1964: 108-127

[本文引用: 1]

Liu X, Wang Z.

Conditions for the discreteness of spectra of two-iten self-adjoint vector differential operators

Inn Mong Norm Univ, 2009, 2: 153-156

[本文引用: 1]

Liu X, Shi G.

Discreteness of the spectrum of vectorial Schrödinger operators with $\delta$-interactions

Boundary Value Problems, 2016, 24: 1-16

[本文引用: 1]

Dall'Ara G M.

Discreteness of the spectrum of Schrodinger operators with non-negative matrix-valued potentials

Journal of Functional Analysis, 2015, 268(12): 3649-3679

DOI:10.1016/j.jfa.2014.10.007      URL     [本文引用: 1]

Eckhardt J, Gesztesy F, et al.

Supersymmetry and Schrodinger-type operators with distributional matrix-valued potentials

Spectrum Theory, 2014, 4: 715-768

[本文引用: 1]

钱志祥.

二阶自伴向量微分算子的本质谱

应用泛函分析学报, 2017, 19(3): 287-293

[本文引用: 1]

Qian Z X.

Essential spectrum of second-order self-adjoint vector differential operators

Acta Analysis Functionalis Applicata, 2017, 19(3): 287-293

[本文引用: 1]

钱志祥.

单项$2N$阶自伴向量微分算子谱的离散性的充要条件

兰州理工大学学报, 2018, 44(6): 163-166

[本文引用: 2]

Qian Z X.

Sufficient and necessary condition for discreteness of differential operator spectrum of $2N$-th-order mono-term self-adjoint vector

Joural of Lanzhou University of Technology, 2018, 44(6): 163-166

[本文引用: 2]

Muller-Pfeiffer E.

Spectral Theory of Ordinary Differential Operators

Chichester: Ellis Hopwood Limited, 1981

[本文引用: 1]

Glazman I M.

Direct Methods of Qualitative Spectral Analysis of Singular Differential Operators

Jerusalem: Israel Program for Scientific Translations, 1965: 71-83

[本文引用: 1]

/