数学物理学报 ›› 2023, Vol. 43 ›› Issue (4): 1009-1023.

• • 上一篇    下一篇

一类高阶自伴向量微分算子谱的离散性及其应用

钱志祥()   

  1. 广东理工学院基础教学部 广东肇庆 526100
  • 收稿日期:2022-08-26 修回日期:2022-11-08 出版日期:2023-08-26 发布日期:2023-07-03
  • 作者简介:钱志祥, E-mail: qzx20062006@126.com
  • 基金资助:
    广东省教育厅自然基金项目(2019KTSCX248);广东省教育厅自然基金项目(2021KTSCX157)

Discreteness of the Spectrum of a Class of Higher Order Self-adjoint Vector Differential Operators and its Application

Qian Zhixiang()   

  1. The Department of Basic Education, Guangdong Polytechnic College, Guangdong Zhaoqing 526100, China
  • Received:2022-08-26 Revised:2022-11-08 Online:2023-08-26 Published:2023-07-03
  • Supported by:
    Nature Foundation of Guangdong Education Department(2019KTSCX248);Nature Foundation of Guangdong Education Department(2021KTSCX157)

摘要:

该文研究了由向量微分表达式: $Au(x)=\sum\limits^n_{k=0}(-1)^n(P_k(x)u^{(k)}(x))^{(k)},$ $x\in [0,+\infty)$产生的自伴向量微分算子. 首先, 通过引理2.1和引理2.2得到两个向量不等式, 利用算子分解定理, 分别研究了当系数矩阵$P_k(x),$ $k=0,1,\cdots,n$$m\times m$ 阶实对称正定矩阵和$m\times m$ 阶实正定对角矩阵时, 这类高阶自伴向量微分算子谱的离散性, 得到了这类算子谱离散的充分条件, 但是必要条件难以给出; 其次, 作为一个特例,作者研究了只有两项的向量微分算子 $Au(x)=-(P(x)u^{(n)}(x))^{(n)}+Q(x)u(x),$ $u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,+\infty)$.得到了这类算子的谱是离散的一个充分必要条件, 并把这个结论应用到向量值Sturm-Liouville算子和向量值Schrodinger算子, 得到了这两类算子的谱离散的充分必要条件; 最后, 研究了$2n$阶单项自伴向量微分算子, 得到了该类算子谱离散的充分必要条件.

关键词: 自伴向量微分算子, 自伴扩张, 剩余谱, 本质谱, 离散谱, 预紧

Abstract:

This paper deals with the vector differential operators generated by vectorial differential expression $Au(x)=\sum\limits^n_{k=0}(-1)^n(P_k(x)u^{(k)}(x))^{(k)},$ $x\in [0,+\infty)$. First, we obtain two vector inequality in Lemma 2.1 and Lemma 2.2, by using operator decomposition theorem, when the coefficient matrix $P_k(x),$ $k=0,1,\cdots,n$ is an $m\times m$ order real symmetric positive definite matrix and an order real symmetric positive definite diagonal matrix respectively, the dispersion of the spectrum of the class of higher order self-adjoint vector differential operators is studied,some sufficient conditions for the spectrum of this kind of operators to be discrete are obtained; The second, in the special case, the vector differential operator with only two terms $Au(x)=-(P(x)u^{(n)}(x))^{(n)}+Q(x)u(x),$ $u(x)\in C^\infty_0((0,\infty),C^m),x\in [0,+\infty)$ is discussed, the smallest operator generated in its self-adjoint domain is the self-adjoint operator, the sufficient and necessary condition for the spectrum of the kind of operator to be discrete is given; The third, by applying this conclusion to vector-valued Sturm-Liouville operators and vector-valued Schrodinger operators, the necessary and sufficient conditions for spectral dispersion of these two types of operators are obtained. The last, the $2n$-th-order mono-term self-adjoint vector differential operator is considered, The necessary and sufficient condition that the spectrum of this kind of operator is discrete is obtained.

Key words: Self-adjoint vector differential operator, Self-adjoint extension, Residual spectrum, Essential spectrum, discrete spectrum, Precompact

中图分类号: 

  • O175.3