数学物理学报, 2023, 43(3): 657-668

迷向增长曲面的结构表达式

钱金花,1,*, 卞金鑫1, 付雪山2

1东北大学理学院 沈阳 110819

2沈阳工业大学理学院 沈阳 110870

Structure Expression Form of Isotropic Growth Surface

Qian Jinhua,1,*, Bian Jinxin1, Fu Xueshan2

1College of Science, Northeastern University, Shenyang 110819

2College of Science, Shenyang University of Technology, Shenyang 110870

通讯作者: *钱金花, E-mail: qianjinhua@mail.neu.edu.cn

收稿日期: 2022-05-12   修回日期: 2023-02-6  

基金资助: 国家自然科学基金(11801065)
沈阳工业大学青年教师科研能力培育基金(QNPY202209-24)

Received: 2022-05-12   Revised: 2023-02-6  

Fund supported: NSFC(11801065)
Research Ability Cultivation Fund for Young Teachers of Shenyang University of Technology(QNPY202209-24)

摘要

在三维复空间中研究由迷向曲线按照给定的生长速度生成的迷向增长曲面. 利用迷向生成曲线的结构函数探索迷向增长曲面的结构表达式. 作为一项重要的应用, 讨论由特殊的迷向曲线即迷向螺线生成的迷向增长曲面的结构表达式, 同时给出一些具体实例表明此类增长曲面的生成过程.

关键词: 复空间; 迷向曲线; 增长曲面; 迷向螺线; 结构函数

Abstract

The isotropic growth surface in complex 3-space is investigated by evolving an isotropic curve as dictated growth velocity. The structure expression form of the isotropic growth surface is explored by the aid of the structure function of its generating isotropic curve. As an important application, the isotropic growth surface initiated by the isotropic helix is discussed deeply and explicitly. At the same time, several typical examples are constructed to characterize the generating process of such growth surfaces.

Keywords: Complex space; Isotropic curve; Growth surface; Isotropic helix; Structure function

PDF (992KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

钱金花, 卞金鑫, 付雪山. 迷向增长曲面的结构表达式[J]. 数学物理学报, 2023, 43(3): 657-668

Qian Jinhua, Bian Jinxin, Fu Xueshan. Structure Expression Form of Isotropic Growth Surface[J]. Acta Mathematica Scientia, 2023, 43(3): 657-668

1 引言

曲面增长, 或者增积生长是指质量在物体表面的沉积. 当质量沉积在不易变形的物体表面时,这种现象称为硬物体的吸积[1]. 通过硬体增长的生物体有贝壳, 骨头, 鹿角和牙齿等. 它们的生长是通过在结构边界局部增加质量来实现的, 而且在质量增长过程中材料不会发生形变. 曲面增长经常出现在物理学, 生物学和工业设计中, 例如行星吸积, 细胞活性, 树木的次生长和工业表面涂层等[2-4].

从数学的角度描述曲面增长可以追溯到1838年Moseley以及1942年Thompson的代表性工作, 他们均描述了若干螺旋状生物体的线圈结构[5-6] (如图 1).

图 1

图 1   贝壳螺旋结构示意图


近些年来, 许多学者开始研究生物进化问题. 例如, Illert在实空间中描述了海洋贝壳的几何结构[7], 并将其理解为一类增长模型; Skalak 等人详细解释了增长曲面模型的运动学特征; Moulton和Goriely用某些生物体, 如贝壳和角的中心曲线构建了增长曲面的数学模型; Cowin, Hollister和Huiskes通过定义一个垂直于增长曲面的生长速度向量场来描述曲面增长的几何特征[8-9]. 后来, Illert和Reverberi等人将实空间中增长曲面的研究工作推广到了复空间, 他们结合物理学的运动规律, 利用复坐标讨论了贝壳、角、牙齿等生物结构的生成机制[10], 相关研究结果与欧氏空间相比十分简洁和美观. 为了深入探索和发现不同类型的生物结构, 尤其是它们的生成机制, 本文在三维复空间中定义并讨论由一类特殊的复曲线, 即迷向曲线, 生成的增长曲面的结构表达式, 将由迷向曲线演化而得到的增长曲面与迷向曲线的基本性质关联起来, 进而对增长曲面进行局部内在的描述.

2 预备知识

${\Bbb C}^{3}$是具有标准度量的三维复空间, 即满足 $ \langle \cdot,\cdot\rangle=dx_{1}^{2}+dx_{2}^{2}+dx_{3}^{2}, $ 这里($x_{1}$,$x_{2}$,$x_{3}$)是复坐标. 如果一个非零复向量 $v\in{\Bbb C}^{3}$ 满足 $\langle v,v\rangle=0$, 则称该向量为迷向向量. 如果${\Bbb C}^{3}$空间中的一条曲线$a(t)$在任意一点的切向量都是迷向向量, 则称其为一条迷向曲线, 其满足如下向量微分方程, 即 $\big\langle \frac{da}{dt}, \frac{da}{dt}\big\rangle=0.$

由曲线$a(t)$的一个不变量, 即[11]$ds=-\big\langle \frac{d^{2}a}{dt^{2}}, \frac{d^{2}a}{dt^{2}}\big\rangle^{\frac{1}{4}}{\rm d}t,$ 可以定义迷向曲线的伪弧长参数$s$. 今后除非另作说明, 本文总是假定迷向曲线以伪弧长为参数, 即满足$\langle a''(s), a''(s)\rangle=-1$, 这里$'$ 表示变量关于伪弧长参数$s$求导.

在正则迷向曲线$a(s)$上的任意一点可以构造E. Cartan标架$\{e_1, e_2, e_3\}$如下

$\begin{equation}\label{a1} \left\{ \begin{array}{ll} e_1=a',\\ e_2=ia'',\\ e_3=-\frac{1}{2}\langle a''', a'''\rangle a'+a'''. \end{array} \right. \end{equation} $

这里

$\langle e_j, e_k\rangle= \left\{\begin{array}{ll} 0,~ & \mbox{if } j+k=1,2,3; {\rm Mod}(4),\\ 1, & \mbox{if }j+k=4, \end{array}\right.$

$e_j\times e_k=ie_{j+k-2},\quad \det(e_{1},e_{2},e_{3})=i,\quad (j,k=1,2,3).$

由方程组(2.1)可得到如下命题.

${\bf命题2.1}$[12]$a(s):{\Bbb C}\to{\Bbb C}^{3}$是一条迷向曲线, 则$a(s)$的E. Cartan标架$\{e_1, e_2, e_3\}$满足如下的Frenet公式

$ \left( \begin{array}{ccc} e_{1}'(s)\\ e_{2}'(s)\\ e_{3}'(s) \end{array} \right)=\left( \begin{array}{ccc} 0 & -i & 0\\ i\kappa(s) & 0 & i\\ 0 &~ -i\kappa(s) ~& 0 \end{array} \right) \left( \begin{array}{ccc} e_{1}(s)\\ e_{2}(s)\\ e_{3}(s) \end{array} \right), $

这里$e_1, e_2, e_3$分别称为$a(s)$的切向量, 主法向量和副法向量, 函数$\kappa(s)=\frac{1}{2}\langle a''', a'''\rangle$称为曲线$a(s)$的伪曲率.

${\bf注2.1}$ 本文假设所讨论迷向曲线的伪曲率均不为零.

2015年, 作者在[13]中定义了一个非常值解析函数, 类似Weierstrass表示, 给出了任意一条迷向曲线的参数表达式.

${\bf命题2.2}$[13]$a(s)$${\Bbb C}^{3}$中的任意一条迷向曲线, 则其可以由非常值解析函数$f=f(s)$表示为 $ a(s)=\frac{i}{2}\int \frac{1}{f_{s}}\big(f^{2}-1,2f,-i(f^{2}+1)\big){\rm d}s; $ 同时, $a(s)$的伪曲率$\kappa(s)$可以表示为 $ \kappa(s)=-S(f)(s)=\frac{1}{2}\left(\frac{f_{ss}}{f_{s}}\right)^{2}-\left(\frac{f_{ss}}{f_{s}}\right)_{s},$ 这里$f(s)$称为$a(s)$的结构函数, $(Sf)(s)$是结构函数的Schwarzian导数.

${\bf定义2.1}$[13]$a(s)$${\Bbb C}^{3}$中的任意一条迷向曲线, 其E. Cartan标架为$\{e_1,e_2,e_3\}$. 若存在一个非零常向量场$V\in{\Bbb C}^{3}$使得$\langle e_1,V\rangle$$\big(\langle e_2,V\rangle$, $\langle e_3,V\rangle \big)$是一个非零复常数, 则称$a(s)$为一条$1$ -型$(2$ -型, $3$ -型)迷向螺线.

3 迷向增长曲面及其一般结构表达式

本节首先构造由迷向曲线生成的增长曲面, 然后研究该类增长曲面的一般结构表达式.

${\bf定义3.1}$$a(s)$${\Bbb C}^{3}$中的一条正则迷向曲线, 将$a(s)$上每点在$t$时刻沿着$\rho(s,t)$的方向移动$\lambda(s)$距离得到的曲面$r(s,t)$称为迷向增长曲面. 它可以表示为

$\begin{eqnarray*} r(s,t)=a(s)+\lambda(s)\rho(s,t), \end{eqnarray*}$

其中$r(s,0)=a(s)$, $\rho(s,t)$$\lambda(s)$分别称为$r(s,t)$的生成曲线, 生长速度和生长因子.

${\bf注3.1}$ 迷向增长曲面的生长速度$\rho(s,t)$可以由生成曲线$a(s)$的E. Cartan标架$\{e_1, e_2, $$e_3\}$ 线性表出, 于是$r(s,t)$可以进一步表示为

$ r(s,t)=a(s)+\lambda(s)[\rho_1(s,t)e_1+\rho_2(s,t)e_2+\rho_3(s,t)e_3], $

其中$\rho_{i}(s,t), (i=1,2,3)$是关于$s$$t$的解析函数. 迷向增长曲面的生成过程如图 2所示.

图 2

图 2   迷向增长曲面示意图


由命题2.1和命题2.2, $a(s)$的E. Cartan标架$\{e_1, e_2, e_3\}$可以表示为

$\begin{equation}\label{a2} \left\{ \begin{array}{ll} e_1=\bigg(\frac{i(f^2-1)}{2f_s},\frac{if}{f_s},\frac{f^2+1}{2f_s}\bigg), \\[3mm] e_2=\bigg(\frac{(f^2-1)f_{ss}}{2f^2_s}-f,\frac{ff_{ss}}{f^2_s}-1,i\bigg(f-\frac{(f^2+1)f_{ss}}{2f^2_s}\bigg)\bigg), \\[3mm] e_3=\bigg(i\bigg(f_s+\frac{(f^2-1)f^2_{ss}}{4f^3_s}-\frac{ff_{ss}}{f_s}\bigg),i\bigg(\frac{ff^2_{ss}}{2f^3_s}-\frac{f_{ss}}{f_s}\bigg),f_s+\frac{(f^2+1)f^2_{ss}}{4f^3_s}-\frac{ff_{ss}}{f_s}\bigg). \end{array} \right. \end{equation}$

结合命题2.2和方程(3.1), 我们有下面的结论.

${\bf定理3.1}$$r(s,t)=\{r_ {1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$${\Bbb C}^{3}$中的迷向增长曲面, 则其可表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=i\int\frac{f^{2}-1}{2f_{s}}{\rm d}s+\frac{i(f^2-1)}{2f_s}\lambda\rho_1 +\bigg(\frac{(f^2-1)f_{ss}}{2f^2_s}-f\bigg)\lambda\rho_2 \\[3mm] +\; i \bigg(f_s+\frac{(f^2-1)f^2_{ss}}{4f^3_s}-\frac{ff_{ss}}{f_s}\bigg)\lambda\rho_3,\\[3mm] r_2(s,t)=i\int\frac{f}{f_{s}}{\rm d}s+\frac{if}{f_s}\lambda\rho_1+\bigg(\frac{ff_{ss}}{f^2_s}-1\bigg)\lambda\rho_2+i\bigg(\frac{ff^2_{ss}}{2f^3_s}-\frac{f_{ss}}{f_s}\bigg)\lambda\rho_3,\\[3mm] r_3(s,t)=\int\frac{f^{2}+1}{2f_{s}}{\rm d}s+\frac{f^2+1}{2f_s}\lambda\rho_1 +i\bigg(f-\frac{(f^2+1)f_{ss}}{2f^2_s}\bigg)\lambda\rho_2\\[3mm] +\bigg(f_s+\frac{(f^2+1)f^2_{ss}}{4f^3_s}-\frac{ff_{ss}}{f_s}\bigg)\lambda\rho_3, \end{array} \right. \end{eqnarray*}$

其中$f=f(s)$是生成曲线$a(s)$的结构函数, $\lambda=\lambda(s)$, $\rho_i=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例3.1}$$a(s)$是一条伪曲率$\kappa(s)=\frac{1}{2}(3\csc^2s-1)$的迷向曲线. 根据命题$2.2$, 通过解方程可得$f(s)=\cos s$. 若取生长因子$\lambda(s)=\sin s$, 同时生长速度向量的分量为

$ \left\{ \begin{array}{ll} \rho_1(s,t)=t^3,\\ \rho_2(s,t)=t\sin s,\\ \rho_3(s,t)=t^2\sin^2s, \end{array} \right. $

则根据定理$3.1$, 迷向增长曲面$r(s,t)=\{r_1(s,t),r_2(s,t),r_3(s,t)\}$可以表示为(如图 3, 图 4)

$ \left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{8}\big(4\cos s-(\cos 2s+4t-7)t^2\sin^2s\big)-\frac{1}{2}t\sin^2s\cos s, \\[3mm] r_2(s,t)=-\frac{i}{4}\big((\cos 2s-4t-3)t^2\cos s-4\ln\sin s\big)-t,\\[3mm] r_3(s,t)=-\frac{i}{2}(\sin^2s+2)t\cos s+\ln\cos\frac{s}{2}-\ln\sin\frac{s}{2}-\frac{\cos s+2t^3+t^2}{2} \\[3mm] +\frac{t^2}{8}(\cos 2s\sin^2s+4t-3). \end{array} \right. $

图 3

图 3   曲面$r(s,t)$的实部图


图4

图4   曲面$r(s,t)$的虚部图


4 由1 -型(3 -型)迷向螺线生成的迷向增长曲面的结构表达式

本节研究由$1$ -型$(3$ -型)迷向螺线生成的迷向增长曲面的结构表达式. 首先回顾一条迷向曲线是$1$ -型$(3$ -型)迷向螺线的充要条件.

${\bf定理4.1}$[13] 一条迷向曲线是$1$ -型$(3$ -型)迷向螺线当且仅当它的伪曲率是复常数.

$a(s)$是一条$1$ -型$(3$ -型)迷向螺线, 其伪曲率$\kappa(s)=d^2$, 其中$d$是非零复常数. 由命题2.2, 其结构函数满足

$\frac{1}{2}\left(\frac{f_{ss}}{f_{s}}\right)^{2}-\left(\frac{f_{ss}}{f_{s}}\right)_{s}=d^{2},$

通过变量代换, $a(s)$的结构函数$f=f(s)$满足

$ -\frac{\sqrt{2}}{2}\frac{f_{ss}}{f_{s}}=\frac{A_{1}e^{\sqrt{2}{\rm d}s}-A_{2}}{A_{1}e^{\sqrt{2}{\rm d}s}+A_{2}},$

这里$A_{1}$, $A_{2}$是不同时为零的复常数.

解上述微分方程, 并经过适当的平移变换, 有下列三种情况.

情况 1 当$A_{1}$为零, $A_{2}$不为零时, 结构函数$f(s)$$ f(s)=A_{3}e^{\sqrt{2}s}; $

情况 2 当$A_{1}$不为零, $A_{2}$为零时, 结构函数$f(s)$$ f(s)=A_{4}e^{-\sqrt{2}s}; $

情况 3 当$A_{1}$不为零, $A_{2}$不为零时, 结构函数$f(s)$

$ f(s)=\frac{A_{5}(A_{6}+e^{\sqrt{2}{\rm d}s})_2F_{1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{A_{6}})}{\sqrt{2}A_{6}e^{\sqrt{2}s}(1+A_{6}e^{-\sqrt{2}{\rm d}s})^{\frac{2}{d}}}, $

这里$A_{3}$, $A_{4}$, $A_{5}$, $A_{6}$ 是非零复常数, $_2F_{1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{A_{6}})$ 是超几何函数.

根据以上3种情况, $1$ -型$(3$ -型)迷向螺线可以进一步分为如下三类.

${\bf定义4.1}$$a(s)$是一条伪曲率为$\kappa(s)=d^2$的1 -型(3 -型)迷向螺线.

$\bullet$ 如果$a(s)$的结构函数$f(s)=ce^{\sqrt{2}s}$, 则称它为1-1 -型(3-1 -型)迷向螺线;

$\bullet$ 如果$a(s)$的结构函数$f(s)=ce^{-\sqrt{2}s}$, 则称它为1-2 -型(3-2 -型)迷向螺线;

$\bullet$ 如果$a(s)$的结构函数

$ f(s)=\frac{c_{1}(c_{2}+e^{\sqrt{2}{\rm d}s})_2F_{1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{c_{2}})}{\sqrt{2}c_{2}e^{\sqrt{2}s}(1+c_{2}e^{-\sqrt{2}{\rm d}s})^{\frac{2}{d}}}, $

则称它为1-3 -型(3-3 -型)迷向螺线. 这里$c$, $d$, $c_{1}$, $c_{2}$是非零复常数, $_2F_ {1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{A_{6}})$ 是超几何函数.

根据定理3.1和定义4.1, 可以得到下面的结论.

${\bf定理4.2}$$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$是由1-1 -型(3-1 -型)迷向螺线生成的迷向增长曲面, 则它可以表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{4c}\big(c^2e^{\sqrt{2}s}+e^{-\sqrt{2}s}+\sqrt{2}(c^2e^{\sqrt{2}s}- e^{-\sqrt{2}s})(\lambda\rho_1+\lambda\rho_3)\big)\!-\!\frac{1}{2c}(c^2e^{\sqrt{2}s}+e^{-\sqrt{2}s})\lambda\rho_2,\\[3mm] r_2(s,t)=\frac{i}{\sqrt{2}}(s+\lambda\rho_1-\lambda\rho_3),\\[3mm] r_3(s,t)=\frac{1}{4c}\big(c^2e^{\sqrt{2}s}-e^{-\sqrt{2}s}+\sqrt{2}(c^2e^{\sqrt{2}s} +e^{-\sqrt{2}s})(\lambda\rho_1+\lambda\rho_3)\big)\!+\!\frac{i}{2c}(c^2e^{\sqrt{2}s}-e^{-\sqrt{2}s})\lambda\rho_2, \end{array} \right. \end{eqnarray*}$

这里$\lambda=\lambda(s)$, $\rho_{i}=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例4.1}$$a(s)$是一条1-1 -型(3-1 -型)迷向螺线, 在定理$4.2$中, 令$c=1$, $\lambda(s)=s$, 同时

$ \left\{ \begin{array}{ll} \rho_1(s,t)=t^2,\\ \rho_2(s,t)=s\sin t,\\ \rho_3(s,t)=s^2te^t, \end{array} \right. $

则迷向增长曲面$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$可以表示为(如图 5, 图 6)

$ \left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{2}\big(\cosh\sqrt{2}s+\sqrt{2}(st^2+s^3te^t)\sinh\sqrt{2}s\big)-s^2\sin t\cosh\sqrt{2}s, \\[3mm] r_2(s,t)=\frac{i}{\sqrt{2}}(s+st^2-s^3te^t),\\[3mm] r_3(s,t)=\frac{1}{2}\big(\sinh\sqrt{2}s+\sqrt{2}(st^2+s^3te^t)\cosh\sqrt{2}s\big)+is^2\sin t\sinh\sqrt{2}s. \end{array} \right. $

图 5

图 5   曲面$r(s,t)$的实部图


图6

图6   曲面$r(s,t)$的虚部图


${\bf定理4.3}$$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$是由1-2 -型(3-2 -型)迷向螺线生成的迷向增长曲面, 则它可以表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{4c}\big(e^{\sqrt{2}s}+c^2e^{-\sqrt{2}s}+\sqrt{2}(e^{\sqrt{2}s} -c^2e^{-\sqrt{2}s})(\lambda\rho_1+\lambda\rho_3)\big)\!-\!\frac{1}{2c}(e^{\sqrt{2}s}+c^2e^{-\sqrt{2}s})\lambda\rho_2,\\[3mm] r_2(s,t)=-\frac{i}{\sqrt{2}}(s+\lambda\rho_1-\lambda\rho_3),\\[3mm] r_3(s,t)=-\frac{1}{4c}\big(e^{\sqrt{2}s}-c^2e^{-\sqrt{2}s}+\sqrt{2}(e^{\sqrt{2}s} +c^2e^{-\sqrt{2}s})(\lambda\rho_1+\lambda\rho_3)\big)\!-\!\frac{i}{2c}(e^{\sqrt{2}s}-c^2e^{-\sqrt{2}s})\lambda\rho_2, \end{array} \right. \end{eqnarray*}$

这里$\lambda=\lambda(s)$, $\rho_{i}=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例4.2}$$a(s)$是一条1-2 -型(3-2 -型)迷向螺线, 在定理$4.3$中, 令$c=1$, $\lambda(s)=s^{\sqrt{2}}$, 同时

$\left\{ \begin{array}{ll} \rho_1(s,t)=t,\\ \rho_2(s,t)=te^t,\\ \rho_3(s,t)=s^{\sqrt{2}}\sin t, \end{array} \right. $

则迷向增长曲面$r(s,t)=\{r_1(s,t),r_2(s,t),r_3(s,t)\}$可以表示为(如图 7, 图 8)

$\left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{2}\big(\cosh\sqrt{2}s+\sqrt{2}(s^{\sqrt{2}}t+s^{2\sqrt{2}}\sin t)\sinh\sqrt{2}s\big)-s^{\sqrt{2}}te^{t}\cosh\sqrt{2}s, \\[3mm] r_2(s,t)=-\frac{i}{\sqrt{2}}(s+s^{\sqrt{2}}t-s^{2\sqrt{2}}\sin t),\\[3mm] r_3(s,t)=-\frac{1}{2}\big(\sinh\sqrt{2}s+\sqrt{2}(s^{\sqrt{2}}t+s^{2\sqrt{2}}\sin t)\cosh\sqrt{2}s\big)-is^{\sqrt{2}}te^{t}\sinh\sqrt{2}s. \end{array} \right.$

图 7

图 7   曲面$r(s,t)$的实部图


图8

图8   曲面$r(s,t)$的虚部图


${\bf定理4.4}$$r(s,t)$是由1-3 -型(3-3 -型)迷向螺线生成的迷向增长曲面, 则它可以表示成定理$3.1$的形式, 其中

$f(s)=\frac{c_{1}(c_{2}+e^{\sqrt{2}{\rm d}s})_2F_{1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{c_{2}})}{\sqrt{2}c_{2}e^{\sqrt{2}s}(1+c_{2}e^{-\sqrt{2}{\rm d}s})^{\frac{2}{d}}},$

这里$d$, $c_{1}$, $c_{2}$是非零复常数, $_2F_ {1}(1,1-\frac{1}{d},1+\frac{1}{d},-\frac{e^{\sqrt{2}{\rm d}s}}{A_{6}})$是超几何函数.

${\bf例4.3}$$a(s)$是一条1-3 -型(3-3 -型)迷向螺线, 在定理$4.4$中, 令$d=c_1=c_2=1$, $\lambda(s)=1$, 同时

$\left\{ \begin{array}{ll} \rho_1(s,t)=t^2-\tan t,\\ \rho_2(s,t)=e^ {\sqrt{2}s}t,\\ \rho_3(s,t)=st, \end{array} \right. $

则迷向增长曲面$r(s,t)=\{r_1(s,t),r_2(s,t),r_3(s,t)\}$可以表示为(如图 9, 图 10)

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=\frac{\sqrt{2}t}{4}(e^{2\sqrt{2}s}-2)-\frac{i}{8}\big(e^{\sqrt{2}s}(2\tan t-2t(s+t)-\sqrt{2})+8(st-s-t^2+\tan t) \\[2mm] +2e^{-\sqrt{2}s}(\sqrt{2}-2t(s+t)-2\tan t), \\[2mm] r_2(s,t)=\frac{i}{2}\big(\sqrt{2}(st-s-t^2)+\sqrt{2}(e^{\sqrt{2}s}+1)\tan t- e^{\sqrt{2}s}(1+\sqrt{2}t(s+t))\big)-e^{2\sqrt{2}s}t,\\[3mm] r_3(s,t)=\frac{i\sqrt{2}t}{4}(2-3e^{2\sqrt{2}s})+\frac{1}{8}\big(3e^{\sqrt{2}s} (2t(s+t)-2\tan t+\sqrt{2})+8(s-st+t^2-\tan t)\\[2mm] +2e^{-\sqrt{2}s}(2t(s+t)-2\tan t-\sqrt{2})\big). \end{array} \right. \end{eqnarray*}$

图 9

图 9   曲面$r(s,t)$的实部图


图 10

图 10   曲面$r(s,t)$的虚部图


5 由2 -型迷向螺线生成的迷向增长曲面的结构表达式

本节研究由$2$ -型迷向螺线生成的迷向增长曲面的结构表达式. 首先回顾一条迷向曲线是$2$ -型迷向螺线的充要条件.

${\bf定理5.1}$[13] 一条迷向曲线是$2$ -型迷向螺线当且仅当它的伪曲率$\kappa(s)=as^{-2},$ 这里$a$是非零复常数.

由命题2.2, 其结构函数满足

$\frac{1} {2}\left(\frac{f_{ss}}{f_{s}}\right)^{2}-\left(\frac{f_{ss}}{f_{s}}\right)_{s}=as^{-2},$

通过变量代换, $a(s)$的结构函数$f=f(s)$满足

$f_{s}=\frac{s^{2\sqrt{1+2a}-1}}{(B_{1}s^{2\sqrt{1+2a}}+B_2)^2},$

这里$B_{1}$, $B_{2}$是不同时为零的复常数.

解上述微分方程, 并经过适当的平移变换, 有下列三种情况.

情况 1 当 $a\neq -\frac{1}{2}$, $B_1$为零时, 结构函数$f(s)$$f(s)=\frac{s^{2\sqrt{1+2a}}}{2\sqrt{1+2a}B^2_2};$

情况 2 当 $a\neq -\frac{1}{2}$, $B_1$不为零时, 结构函数$f(s)$$f(s)=-\frac{1}{2\sqrt{1+2a}B_1(B_1s^{2\sqrt{1+2a}}+B_2)}; $

情况 3 当$a= -\frac{1}{2}$时, 结构函数$f(s)$$f(s)=\frac{\ln s}{(B_1+B_2)^2}.$

根据以上3种情况, $2$ -型迷向螺线可以进一步分为如下三类.

${\bf定义5.1}$$a(s)$是一条伪曲率为$\kappa(s)=as^{-2}$$2$ -型迷向螺线.

$\bullet$ 如果$a(s)$的结构函数$f(s)=cb^{-1}s^b$, $(b=2\sqrt{1+2a})$, 则称它为2-1 -型迷向螺线;

$\bullet$ 如果$a(s)$的结构函数$f(s)=cb^{-1}s^{-b}$, $(b=2\sqrt{1+2a})$, 则称它为2-2 -型迷向螺线;

$\bullet$ 如果$a(s)$的结构函数$f(s)=c\ln s$, 则称它为2-3 -型迷向螺线.

这里$a$, $b$, $c$是非零复常数.

根据定理3.1和定义5.1, 可以得到下面的结论.

${\bf定理5.2}$$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$是由2-1 -型迷向螺线生成的迷向增长曲面, 则它可以表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=i\bigg(\frac{cs^{2+b}}{2b^3+4b^2}+\frac{s^{2-b}}{2bc-4c}\bigg)+ i\bigg(\frac{cs^{1+b}}{2b^2}-\frac{s^{1-b}}{2c}\bigg)\lambda\rho_1 \\[3mm] -\bigg(\frac{s^{-b}(b-1)}{2c}+\frac{cs^b(b+1)}{2b^2}\bigg)\lambda\rho_2 + i\bigg(\frac{cs^{b-1}(b+1)^2}{4b^2}-\frac{s^{-b-1}(b-1)^2}{4c}\bigg)\lambda\rho_3,\\[3mm] r_2(s,t)=\frac{i}{b}\bigg(\frac{s^2}{2}+s\lambda\rho_1+i\lambda\rho_2-\frac{b^2-1}{2s}\lambda\rho_3\bigg),\\[3mm] r_3(s,t)=\bigg(\frac{cs^{2+b}}{2b^3+4b^2}-\frac{s^{2-b}}{2bc-4c}\bigg)+\bigg(\frac{cs^{1+b}}{2b^2} +\frac{s^{1-b}}{2c}\bigg)\lambda\rho_1\\ -\;i\bigg(\frac{s^{-b}(b-1)}{2c}-\frac{cs^b(b+1)}{2b^2}\bigg)\lambda\rho_2 + \bigg(\frac{cs^{b-1}(b+1)^2}{4b^2}+\frac{s^{-b-1}(b-1)^2}{4c}\bigg)\lambda\rho_3, \end{array} \right. \end{eqnarray*}$

这里$b$, $c$是非零复常数, $\lambda=\lambda(s)$, $\rho_{i}=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例5.1}$$a(s)$是一条2-1 -型迷向螺线, 在定理$5.2$中, 令$b=\sqrt{2}$, $c=1$, $\lambda(s)=s^{\sqrt{2}}$, 同时

$\left\{ \begin{array}{ll} \rho_1(s,t)=s^{\sqrt{2}}t^2,\\ \rho_2(s,t)=\sin t,\\ \rho_3(s,t)=s^{3-\sqrt{2}}t, \end{array} \right. $

则迷向增长曲面$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$可以表示为(如图 11, 图 12)

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=\frac{is^{2-\sqrt{2}}}{4}\big((2\sqrt{2}-3)t-2-\sqrt{2}\big)+\frac{is^{2+\sqrt{2}}}{8} \big(2-\sqrt{2}+(3+2\sqrt{2})t\big)\\[3mm] +\frac{is^{1+\sqrt{2}}t^2}{4}(2-s^{2\sqrt{2}}) +\frac{\sin t}{4}\big(2-2\sqrt{2}-(1+\sqrt{2})s^{2\sqrt{2}}\big),\\[3mm] r_2(s,t)=\frac{\sqrt{2}i}{4}(s^2t-s^2-2s^{2\sqrt{2}+1}t^2)-\frac{\sqrt{2}}{2}s^{\sqrt{2}}\sin t,\\[3mm] r_3(s,t)=\frac{s^{2-\sqrt{2}}}{4}\big((3-2\sqrt{2})t+2+\sqrt{2}\big)+\frac{s^{2+\sqrt{2}}}{8} \big(2-\sqrt{2}+(3+2\sqrt{2})t\big)\\[3mm] +\frac{s^{1+\sqrt{2}}t^2}{4}(s^{2\sqrt{2}}+2) - \frac{i\sin t}{4}\big(2-2\sqrt{2}+(1+\sqrt{2})s^{2\sqrt{2}}\big). \end{array} \right. \end{eqnarray*}$

图 11

图 11   曲面$r(s,t)$的实部图


图 12

图 12   曲面$r(s,t)$的虚部图


${\bf定理5.3}$$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$是由2-2 -型迷向螺线生成的迷向增长曲面, 则它可以表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)= i\bigg(\frac{s^{2+b}}{2bc+4c}+\frac{cs^{2-b}}{2b^3-4b^2}\bigg) +i\bigg(\frac{s^{1+b}}{2c}-\frac{cs^{1-b}}{2b^2}\bigg)\lambda\rho_1 \\[3mm] -\bigg(\frac{cs^{-b}(b-1)}{2b^2}+\frac{s^b(b+1)}{2c}\bigg)\lambda\rho_2 + i\bigg(\frac{s^{b-1}(b+1)^2}{4c}-\frac{cs^{-b-1}(b-1)^2}{4b^2}\bigg)\lambda\rho_3,\\[3mm] r_2(s,t)=-\frac{i}{b}\bigg(\frac{s^2}{2}+s\lambda\rho_1+i\lambda\rho_2-\frac{b^2-1}{2s}\lambda\rho_3\bigg),\\[3mm] r_3(s,t)=\bigg(\frac{cs^{2-b}}{2b^3-4b^2}-\frac{s^{2+b}}{2bc+4c}\bigg) -\bigg(\frac{cs^{1-b}}{2b^2}+\frac{s^{1+b}}{2c}\bigg)\lambda\rho_1 \\[3mm] -\;i\bigg(\frac{s^b(b+1)}{2c}-\frac{cs^{-b}(b-1)}{2b^2}\bigg)\lambda\rho_2 - \bigg(\frac{cs^{-b-1}(b-1)^2}{4b^2}+\frac{s^{b-1}(b+1)^2}{4c}\bigg)\lambda\rho_3, \end{array} \right. \end{eqnarray*}$

这里$b$, $c$是非零复常数, $\lambda=\lambda(s)$, $\rho_{i}=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例5.2}$$a(s)$是一条2-2 -型迷向螺线, 在定理$5.3$中, 令$b=\sqrt{2}$, $c=-1$, $\lambda(s)=s^{\sqrt{2}}$, 同时

$\left\{ \begin{array}{ll} \rho_1(s,t)=t^2+t,\\ \rho_2(s,t)=\tan t,\\ \rho_3(s,t)=s^{\sqrt{2}}\sin t, \end{array} \right. $

则迷向增长曲面$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$可以表示为(如图 13, 图 14)

$\left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{8}\big(s^{2-\sqrt{2}}((4-2\sqrt{2})s^{2\sqrt{2}}-2-\sqrt{2})-s^{\sqrt{2}-1}\sin t(3-2\sqrt{2}-(6+4\sqrt{2})s^{2\sqrt{2}})\big)\\[3mm] + \frac{is}{4}(2s^{2\sqrt{2}}-1)(t^2+t)+\frac{\tan t}{4}\big(\sqrt{2}-1+(2+2\sqrt{2})s^{2\sqrt{2}}\big),\\[3mm] r_2(s,t)=\frac{\sqrt{2}i}{4}(s^2+2s^{\sqrt{2}+1}(t^2+t)-s^{2\sqrt{2}-1}\sin t)+\frac{\sqrt{2}}{2}s^{\sqrt{2}}\tan t,\\[3mm] r_3(s,t)=\frac{1}{8}\big(s^{2-\sqrt{2}}(2+\sqrt{2}+(4-2\sqrt{2})s^{2\sqrt{2}})+s^{\sqrt{2}-1}\sin t(3-2\sqrt{2}+(6+4\sqrt{2})s^{2\sqrt{2}})\big)\\[3mm] + \frac{s}{4}(2s^{2\sqrt{2}}+1)(t^2+t)+\frac{i\tan t}{4}\big(\sqrt{2}-1-(2+2\sqrt{2})s^{2\sqrt{2}}\big). \end{array} \right. $

图 13

图 13   曲面$r(s,t)$的实部图


图 14

图 14   曲面$r(s,t)$的虚部图


${\bf定理5.4}$$r(s,t)=\{r_{1}(s,t),r_{2}(s,t),r_{3}(s,t)\}$是由2-3 -型迷向螺线生成的迷向增长曲面, 则它可以表示为

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=i\frac{(2c^2\ln s(\ln s-1)+c^2-2)s^2}{8c}+i\frac{(c^2\ln^2 s-1)s}{2c}\lambda\rho_1 \\[3mm] -\frac{c^2\ln s(\ln s+2)-1}{2c}\lambda\rho_2+ i\frac{c^2\ln s(\ln s+4)+4c^2-1}{4cs}\lambda\rho_3,\\[3mm] r_2(s,t)=i\frac{(2\ln s-1)s^2}{4}+is\ln s\lambda\rho_1-(\ln s+1)\lambda\rho_2+i\frac{\ln s+2}{2s}\lambda\rho_3,\\[3mm] r_3(s,t)=\frac{(2c^2\ln s(\ln s-1)+c^2+2)s^2}{8c}+\frac{(c^2\ln^2 s+1)s}{2c}\lambda\rho_1 \\[3mm] +\;i\frac{c^2\ln s(\ln s+2)+1}{2c}\lambda\rho_2+ \frac{c^2\ln s(\ln s+4)+4c^2+1}{4cs}\lambda\rho_3, \end{array} \right. \end{eqnarray*}$

这里$c$是非零复常数, $\lambda=\lambda(s)$, $\rho_{i}=\rho_i(s,t)$, $(i=1,2,3)$分别是它的生长因子和生长速度向量的分量.

${\bf例5.3}$$a(s)$是一条2-3 -型迷向螺线, 在定理$5.4$中, 令$c=1$, $\lambda(s)=1$, 同时

$ \left\{ \begin{array}{ll} \rho_1(s,t)=t^2+s\tan t,\\ \rho_2(s,t)=t\sin s,\\ \rho_3(s,t)=s\sin t, \end{array} \right. $

则迷向增长曲面$r(s,t)={r_ {1}(s,t),r_{2}(s,t),r_{3}(s,t)}$可以表示为(如图 15, 图 16)

$\begin{eqnarray*} \left\{ \begin{array}{ll} r_1(s,t)=\frac{i}{8}\big((1+2\ln s-2\ln^2s)s^2-4(\ln^2 s-1)(s^2\tan t+st^2)-2(\ln^2s+4\ln s+3)\sin t\big)\\[3mm] - \frac{1}{2}(\ln^2s+\ln s-2)t\sin s, \\[3mm] r_2(s,t)=\frac{i}{4}\big(s^2-2s^2\ln s(1+2\tan t)-(2\ln s+4)\sin t-4t^2s\ln s\big)-(\ln s+1)t\sin s,\\[3mm] r_3(s,t)=\frac{1}{8}\big((2\ln^2s-2\ln s+3)s^2+4(\ln^2 s+1)(s^2\tan t+st^2)+2(\ln^2s+9\ln s+25)\sin t\big)\\[3mm] - \frac{i}{2}(\ln s+1)^2t\sin s. \end{array} \right. \end{eqnarray*}$

图 15

图 15   曲面$r(s,t)$的实部图


图 16

图 16   曲面$r(s,t)$的虚部图


6 总结与展望

本文在三维复空间中, 利用迷向曲线的E. Cartan活动标架定义了迷向增长曲面的一般结构, 并根据生成迷向曲线的结构函数研究了此类增长曲面的类Weirstrass表达式. 考虑螺线在曲面增长中的重要地位和作用, 讨论了由三类迷向螺线生成的迷向增长曲面的一般结构表达式并给出相应的实例. 本文的研究属于复空间中迷向增长曲面的初始性工作, 所得结论可以为在复空间中讨论相关问题提供很好的研究思路和办法, 如复空间中迷向曲线流, 可积系统或孤立子方程等.

参考文献

Pollack J, Hubickyj O, Bodenheimer P, Lissauer J, Podolak M, Greenzweig Y.

Formation of the giant planets by concurrent accretion of solids and gas

Icarus, 1996, 124(1): 62-85

DOI:10.1006/icar.1996.0190      URL     [本文引用: 1]

Fournier M, Bailleres H, Chanson B.

Tree biomechanics: growth, cumulative prestresses, and reorientations

Biomimetics, 1994, 2: 229-251

[本文引用: 1]

Hodge N, Papadopoulos P.

Continuum modeling and numerical simulation of cell motility

J Math Biol, 2012, 64(7): 1253-1279

DOI:10.1007/s00285-011-0446-0      PMID:21710139      [本文引用: 1]

This work proposes a continuum-mechanical model of cell motility which accounts for the dynamics of motility-relevant protein species. For the special case of fish epidermal keratocytes, the stress and cell-substrate traction responses are postulated to depend on selected protein densities in accordance with the structural features of the cells. A one-dimensional version of the model is implemented using Arbitrary Lagrangian-Eulerian finite elements in conjunction with Lagrange multipliers for the treatment of kinematic constraints related to surface growth. Representative numerical tests demonstrate the capacity of the proposed model to simulate stationary and steady crawling states.

Tsui Y C, Clyne T W.

An analytical model for predicting residual stresses in progressively deposited coatings. Part 1: planar geometry

Thin Solid Films, 1997, 306(1): 23-33

DOI:10.1016/S0040-6090(97)00199-5      URL     [本文引用: 1]

Moseley H.

On the geometrical forms of turbinated and discoid shells

Phil Trans R Soc Lond, 1838, 128: 351-370

[本文引用: 1]

Thompson D. On Growth and Form. London: Cambridge University Press, 1942

[本文引用: 1]

Illert C.

Formulation and solution of the classical problem: II. Tubular three dimensional surfaces

Nuovo Cimento, 1989, 11: 761-780

DOI:10.1007/BF02451562      URL     [本文引用: 1]

Cowin S C.

Bone stress adaptation models

J Biomech Eng, 1993, 115: 528-533

DOI:10.1115/1.2895535      URL     [本文引用: 1]

The basic concepts employed in formulating models of the process of stress adaptation in living bone tissue are reviewed. A purpose of this review is to define and separate issues in the formulation of bone remodeling theories. After discussing the rationale and objective of these models, the concepts and techniques involved in the modeling process are reviewed one by one. It is concluded that some techniques will be more successful than others in achieving the goals of computational bone remodeling. In particular, rationale is given for the preference of surface bone remodeling approaches over internal bone remodeling approaches, and for interactive multi-scale level, rather than mono-scale level, computational strategies.

Huiskes R, Hollister S J.

From structure to process, from organ to cell: recent developments of FE-analysis in orthopedic biomechanics

J Biomech Eng, 1993, 115: 520-527

DOI:10.1115/1.2895534      URL     [本文引用: 1]

The introduction of finite element analysis (FEA) into orthopaedic biomechanics allowed continuum structural analysis of bone and bone-implant composites of complicated shapes (Huiskes and Chao, J. Biomechanics, Vol. 16, 1983, pp. 385–409). However, besides having complicated shapes, musculoskeletal tissues are hierarchical composites with multiple structural levels that adapt to their mechanical environment. Mechanical adaptation influences the success of many orthopaedic treatments, especiallly total joint replacements. Recent advances in FEA applications have begun to address questions concerning the optimality of bone structure, the processes of bone remodeling, the mechanics of soft hydrated tissues, and the mechanics of tissues down to the microstructural and cell levels. Advances in each of these areas, which have brought FEA from a continuum stress analysis tool to a tool which plays an ever-increasing role in the scientific understanding of tissue structure, adaptation, and the optimal design of orthopaedic implants, are reviewed.

Illert C.

Formulation and solution of the classical problem: I. Seashell geometry

Nuovo Cimento, 1987, 9: 791-814

[本文引用: 1]

Yilmaz S, Ünlütürk Y.

Contributions to differential geometry of isotropic curves in the complex space ${\Bbb C}^{3}$-II

J Math Anal Appl, 2016, 440: 561-577

DOI:10.1016/j.jmaa.2016.02.072      URL     [本文引用: 1]

Qian J H, Yin P, Fu X S, Wang H Z.

Representations of rectifying isotropic curves and their centrodes in complex 3-space

Mathematics, 2021, 9: 1451

DOI:10.3390/math9121451      URL     [本文引用: 1]

In this work, the rectifying isotropic curves are investigated in three-dimensional complex space C3. The conclusion that an isotropic curve is a rectifying curve if and only if its pseudo curvature is a linear function of its pseudo arc-length is achieved. Meanwhile, the rectifying isotropic curves are expressed by the Bessel functions explicitly. Last but not least, the centrodes of rectifying isotropic curves are explored in detail.

Qian J H, Kim Y H.

Some isotropic curves and representation in complex space ${\Bbb C}^3$

Bull Korean Math Soc, 2015, 52(3): 963-975

DOI:10.4134/BKMS.2015.52.3.963      URL     [本文引用: 5]

/