数学物理学报, 2022, 42(4): 1209-1226 doi:

论文

一类具有时滞的反应扩散登革热传染病模型的行波解

王凯,, 赵洪涌,

南京航空航天大学理学院数学系 南京 211106

Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays

Wang Kai,, Zhao Hongyong,

Department of Mathematics, College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing 211106

通讯作者: 赵洪涌, E-mail: hyzho1967@126.com

收稿日期: 2021-01-27  

基金资助: 国家自然科学基金.  11971013
国家自然科学基金.  12101309
江苏省研究生科研与实践创新计划项目基金.  KYCX20_0169
中国博士后科学基金.  2021M691577

Received: 2021-01-27  

Fund supported: the NSFC.  11971013
the NSFC.  12101309
Postgraduate Research & Practice Innovation Program of Jiangsu Province.  KYCX20_0169
the China Postdoctoral Science Foundation.  2021M691577

作者简介 About authors

王凯,E-mail:kwang@nuaa.edu.cn , E-mail:kwang@nuaa.edu.cn

Abstract

In this paper, we investigate the existence and nonexistence of traveling wave solution (TWS) for a reaction-diffusion dengue epidemic model with time delays. Firstly, by introducing an auxiliary system and combining with Schauder's fixed-point theorem, it is proved that when the basic reproduction number ${\cal R}_0>1$, $c>c_\ast$, the system admits a positive bounded monotone TWS. Secondly, when ${\cal R}_0>1$, $0<c<c_\ast$, by means of two-sided Laplace transform, the nonexistence of TWS is obtained. When ${\cal R}_0\leq1$, there is no TWS for any wave speed $c>0$ with the aid of comparison principle and contradictory arguments. Lastly, the effects of incubation period and individual diffusion on the threshold speed $c_\ast$ are studied theoretically and numerically. The conclusion shows that prolonging the length of incubation period or decreasing the individual diffusion will reduce the speed of disease transmission.

Keywords: Traveling wave solution ; Dengue ; Delay ; Basic reproduction number ; Threshold speed

PDF (961KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王凯, 赵洪涌. 一类具有时滞的反应扩散登革热传染病模型的行波解. 数学物理学报[J], 2022, 42(4): 1209-1226 doi:

Wang Kai, Zhao Hongyong. Traveling Wave of a Reaction-Diffusion Dengue Epidemic Model with Time Delays. Acta Mathematica Scientia[J], 2022, 42(4): 1209-1226 doi:

1 引言

登革热是一种由五种不同血清型病毒(DENV 1-5) 引起的经蚊子传播的虫媒疾病, 其主要传播媒介为埃及伊蚊和白纹伊蚊[14]. 登革热及各类虫媒疾病的严重性促使众多研究者借助数学模型来研究疾病的传播与控制[59]. 众所周知, 包括登革热在内的多数传染病均具有潜伏期, 而潜伏期内的个体具有随机移动性. 因此, 考虑个体扩散和潜伏期对疾病传播的影响是必要的[10]. 特别地, 虽然易感者和染病者具有不同扩散性, 但目前的研究工作更偏向于考虑相同扩散系数[9]. 受上述工作启发, 为研究不同扩散和潜伏期对疾病传播的影响, 本文研究如下具有离散时滞的反应扩散登革热模型

$ \begin{equation} \left\{\begin{array}{ll} &\partial_tS_{h}(x, t)=d_1\Delta S_{h}(x, t)-k_1S_{h}(x, t)I_{v}(x, t-\tau_1), \\ &\partial_tI_{h}(x, t)=d_2\Delta I_{h}(x, t)+k_1S_{h}(x, t)I_{v}(x, t-\tau_1) -(\mu_h+\alpha_h)I_{h}(x, t), \\ &\partial_tR_{h}(x, t)=d_1\Delta R_{h}(x, t)+\alpha_hI_{h}(x, t), \\ &\partial_tS_{v}(x, t)=d_3\Delta S_{v}(x, t)-k_2S_{v}(x, t)I_{h}(x, t-\tau_2), \\ &\partial_tI_{v}(x, t)=d_4\Delta I_{v}(x, t)+k_2S_{v}(x, t)I_{h}(x, t-\tau_2) -\mu_vI_{v}(x, t), \end{array} \right. \end{equation} $

其中$ \Delta $表示Laplace算子, $ (x, t)\in {{\Bbb R}} \times {{\Bbb R}} ^+ $. $ S_{h}(x, t) $, $ I_{h}(x, t) $$ R_{h}(x, t) $表示$ t $时刻$ x $位置易感、染病和恢复人群的密度;$ S_{v}(x, t) $$ I_{v}(x, t) $表示$ t $时刻$ x $位置易感和染病蚊子的密度. $ \tau_1 $$ \tau_2 $分别表示登革病毒的外部和内部潜伏期. 模型(1.1) 中的所有系数均为正常数, 生物解释见表 1. 记$ \gamma_{2}:=\mu_h+\alpha_h $, $ \gamma_{4}:=\mu_{v} $.

表 1   模型(1.1)中参数的生物意义

参数含义
$d_i$人和蚊子的扩散系数($i=1, 2, 3, 4$)
$\mu_h$染病者的因病死亡率
$\mu_v$染病蚊子的因病死亡率
$\alpha_h$染病者的恢复率
$k_{1}(k_{2})$病毒由染病蚊子(人)到易感人(蚊子)的传播率

新窗口打开| 下载CSV


众所周知, 行波在流行病学研究中扮演重要角色, 其重要性使许多学者致力于行波研究(参见文献[1120]). 然而, 对于时滞蚊媒疾病模型的行波问题研究较少, 原因之一在于方程维数较高处理起来较为复杂; 其次, 模型对应的特征方程为超越方程, 使得现有方法不能直接用来讨论最小正特征根的存在性. 基于上述分析, 本文旨在研究模型(1.1) 行波解的存在性和不存在性. 由于(1.1)式中$ R_h $相对于其他方程解耦, 因此只需研究如下系统

$ \begin{equation} \left\{\begin{array}{ll} &\partial_tS_{h}(x, t)=d_1\Delta S_{h}(x, t)-k_1S_{h}(x, t)I_{v}(x, t-\tau_1), \\ &\partial_tI_{h}(x, t)=d_2\Delta I_{h}(x, t)+k_1S_{h}(x, t)I_{v}(x, t-\tau_1) -\gamma_2I_{h}(x, t), \\ &\partial_tS_{v}(x, t)=d_3\Delta S_{v}(x, t)-k_2S_{v}(x, t)I_{h}(x, t-\tau_2), \\ &\partial_tI_{v}(x, t)=d_4\Delta I_{v}(x, t)+k_2S_{v}(x, t)I_{h}(x, t-\tau_2) -\gamma_4I_{v}(x, t). \end{array} \right. \end{equation} $

$ S_{h}(x, 0)=S_{h}^0 $$ S_{v}(x, 0)=S_{v}^0 $分别为疾病开始时人和蚊子的密度, 其中$ S_{h}^0>0 $$ S_{v}^0>0 $为常数. 因此, 系统(1.2) 存在一无病平衡点$ E_0=(S_h^0, 0, S_v^0, 0) $.

本文安排如下: 第二节, 给出本文主要结果; 第三节, 利用不动点定理证明辅助系统行波解的存在性; 第四节, 通过Ascoli-Arzelà引理证明系统(1.2) 行波解的存在性;第五节, 借助双边Laplace变换和反证法研究行波的不存在性; 第六节, 探讨最小波速关于模型参数的连续依赖性.

2 主要结果

若不考虑潜伏期和扩散率, 则系统(1.2)变为如下常微分系统

$ \begin{equation} \left\{\begin{array}{ll} &{\rm d}S_{h}(t)/{\rm d}t=-k_1S_{h}(t)I_{v}(t), \\ &{\rm d}I_{h}(t)/{\rm d}t=k_1S_{h}(t)I_{v}(t) -\gamma_2I_{h}(t), \\ &{\rm d}S_{v}(t)/{\rm d}t=-k_2S_{v}(t)I_{h}(t), \\ &{\rm d}I_{v}(t)/{\rm d}t=k_2S_{v}(t)I_{h}(t) -\gamma_4I_{v}(t).\\ \end{array} \right. \end{equation} $

根据文献[23]知(2.1)式的基本再生数为$ {\cal R}_0=(\tilde{k}/\tilde{\gamma})^{1/2} $, 其中$ \tilde{\gamma}=\gamma_2\gamma_4 $, $ \tilde{k}=\tilde{k}_1\tilde{k}_2 $, $ \tilde{k}_1=k_1S_{h}^0 $, $ \tilde{k}_2=k_2S_{v}^0 $.$ (S_{h}, I_{h}, S_{v}, I_{v}) $是(1.2)式的行波解, 若$ (S_{h}(\cdot, t), I_{h}(\cdot, t), S_{v}(\cdot, t), I_{v}(\cdot, t))= (U_1(z), U_2(z), U_3(z), U_4(z)):=U(z) $, 其中$ z=\cdot+ct $, $ (\cdot, t)\in {{\Bbb R}} \times {{\Bbb R}} ^+ $, $ c>0 $表示波速, $ U(z) $满足如下系统

$ \begin{equation} \left\{\begin{array}{ll} &cU'_1(z)=d_1U''_1(z)-k_1U_1(z)U_4(z-c\tau_1), \\ &cU'_2(z)=d_2U''_2(z)+k_1U_1(z)U_4(z-c\tau_1)-\gamma_2 U_2(z), \\ &cU'_3(z)=d_3U''_3(z)-k_2U_3(z)U_2(z-c\tau_2), \\ &cU'_4(z)=d_4U''_4(z)+k_2U_3(z)U_2(z-c\tau_2)-\gamma_4U_4(z), \end{array} \right. \end{equation} $

及边界条件

$ \begin{equation} (U_1(-\infty), U_2(-\infty), U_3(-\infty), U_4(-\infty)) =(S_{h}^{0}, 0, S_{v}^{0}, 0), \end{equation} $

$ \begin{equation} (U_1(+\infty), U_2(+\infty), U_3(+\infty), U_4(+\infty)) =(S_{h}^{\infty}, 0, S_{v}^{\infty}, 0), \end{equation} $

$ \begin{equation} U_1(z), U_3(z)\ \mbox{关于} z\in{{\Bbb R}} 单\mbox{调递减}, \ S_{h}^{0}>S_{h}^{\infty}\geq0, S_{v}^{0}>S_{v}^{\infty}\geq0. \end{equation} $

定理2.1  设$ {\cal R}_{0}>1 $, 则存在$ c_{\ast}>0 $, 使得对任意$ c\geq c_{\ast} $, 系统(1.2) 存在波速为$ c $的有界正行波$ U(z) $, 满足(2.3)–(2.5)式, 其中$ 0<U_2(z)\leq S_{h}^{0}-S_{h}^{\infty} $, $ 0<U_4(z)\leq S_{v}^{0}-S_{v}^{\infty} $

$ \begin{equation} \lim\limits_{z\rightarrow -\infty}\kappa_2^{-1}e^{-\zeta_1z}U_2(z)=1, \lim\limits_{z\rightarrow -\infty}\kappa_4^{-1}e^{-\zeta_1z}U_4(z)=1. \end{equation} $

另外

$ \begin{equation} \int_{-\infty}^{+\infty}U_2(z){\rm d}z=\int_{-\infty}^{+\infty}U_1(z)U_4(z-c\tau_1){\rm d}z =\frac{c}{\gamma_2}(S_{h}^{0}-S_{h}^{\infty}), \end{equation} $

$ \begin{equation} \int_{-\infty}^{+\infty}U_4(z){\rm d}z=\int_{-\infty}^{+\infty}U_3(z)U_2(z-c\tau_2){\rm d}z =\frac{c}{\gamma_4}(S_{v}^{0}-S_{v}^{\infty}), \end{equation} $

$ {\cal R}_0^{\infty}:=(k_1k_2S_{h}^\infty S_{v}^\infty/\tilde{\gamma})^{1/2}<1 $, 其中$ c_\ast $, $ \zeta_1 $, $ \kappa_2 $, $ \kappa_4 $均正常数, 由下面引理3.1确定.

定理2.2  若$ {\cal R}_{0}>1 $, $ 0<c<c_{\ast} $, 则系统(1.2) 不存在满足(2.3) 和(2.4)式的正行波解.

定理2.3  若$ {\cal R}_{0}\leq1 $, 则对任意$ c>0 $, 系统(1.2) 不存在满足(2.3) 和(2.4) 式的正行波解.

注2.1  根据定理2.1–2.3可知$ c_\ast $为系统(1.2) 的最小波速.

3 辅助系统

3.1 特征方程

将(1.2) 式在$ E_0 $处线性化得

$ \begin{equation} \left\{\begin{array}{ll} &c\psi'_2(z)=d_2\psi''_2(z)+\tilde{k}_1\psi_4(z-c\tau_1)-\gamma_2\psi_2(z), \\ &c\psi'_4(z)=d_4\psi''_4(z)+\tilde{k}_2\psi_2(z-c\tau_2)-\gamma_4\psi_4(z). \end{array} \right. \end{equation} $

$ (\psi_2(z), \psi_4(z))^T= (\kappa_2, \kappa_4)^Te^{\lambda z} $, 代入(3.1) 式得

$ \begin{equation} \left\{\begin{array}{ll} &c\kappa_2\zeta=d_2\kappa_2\zeta^2+\tilde{k}_1\kappa_4e^{-c\zeta\tau_1}-\gamma_2\kappa_2, \\ &c\kappa_4\zeta=d_4\kappa_4\zeta^2+\tilde{k}_2\kappa_2e^{-c\zeta\tau_2}-\gamma_4\kappa_4. \end{array} \right. \end{equation} $

系统(3.2) 可改写为$ \Sigma(c, \zeta)\Theta=0 $, 其中

因此, 系统(2.2) 对应的特征方程为

$ \begin{equation} H(c, \zeta):=Q_2(c, \zeta)Q_4(c, \zeta) -\tilde{k}e^{-c\zeta(\tau_1+\tau_2)}=0. \end{equation} $

$ Q(c, \zeta):=Q_{2}(c, \zeta)+Q_{4}(c, \zeta)= (d_2+d_4)\zeta^2-2c\zeta-(\gamma_2+\gamma_4) $, 且

$ \zeta_1^{\pm} $, $ \zeta_2^{\pm} $$ \zeta_3^{\pm} $分别是$ Q_2 $, $ Q_4 $$ Q $的根. 令$ \zeta_m^{+}:=\min\{\zeta_i^{+}, i=1, 2, 3\} $. 显然$ \zeta_m^{+}=\min\{\zeta_1^{+}, \zeta_2^{+}\} $. 利用文献[16, 2425]中的方法, 易证如下结论(如图 1所示).

图 1

图 1   $H(c, \zeta)$, $Q_2(c, \zeta)$, $Q_4(c, \zeta)$以及$Q^{\ast}(c, \zeta)$根的示意图, 其中$Q^{\ast}(c, \zeta)=Q_2(c, \zeta)Q_4(c, \zeta)$, $J(c, \zeta)=\tilde{k}e^{-c(\tau_1+\tau_2)\zeta}$


引理3.1  设$ {\cal R}_0>1 $, 则存在正常数$ c_{\ast} $$ \zeta^{\ast} $使得

$ \begin{equation} {\left. {\frac{{\partial {H(c, \zeta)}}}{{\partial {\zeta }}}} \right|_{{(c_{\ast}, \zeta^{\ast})}}} = 0, \quad H(c_{\ast}, \zeta^{\ast})=0. \end{equation} $

进一步, 有

$ ({\rm{i}}) $$ c\in(0, c_{\ast}) $, 则$ H(c, \zeta)<0 $, $ \zeta\in[0, \zeta_m^+) $;

$ ({\rm{ii}}) $$ c\in(c_{\ast}, \infty) $, 则(3.3) 存在正根$ \zeta_1:=\zeta_{m1}(c) $$ \zeta_2:=\zeta_{m2}(c) $, 满足$ 0<\zeta_1<\zeta^{\ast}<\zeta_2<\zeta_m^+ $, 使得$ \zeta'_{m1}(c)<0 $, $ \zeta'_{m2}(c)>0 $, $ Q_j(c, \zeta_i)<0 $$ (i=1, 2, j=2, 4) $

$ \begin{equation} H(c, \zeta)=\left\{\begin{array}{ll} &<0, \zeta\in[0, \zeta_1) \cup(\zeta_2, \zeta_2+\vartheta), \\ &>0, \zeta\in(\zeta_1, \zeta_2), \end{array}\quad \right. \end{equation} $

其中$ ' $表示关于$ c $的导数, $ \vartheta>0 $充分小. 令$ \kappa_2=\tilde{k}_1e^{-c\zeta_1\tau_1}>0 $, $ \kappa_4=-Q_2(c, \zeta_1)>0 $, 则$ \Sigma(c, \zeta_1)\Theta=0 $.

3.2 上下解

为研究系统(2.2) 正解的存在性, 引入辅助系统

$ \begin{equation} \left\{\begin{array}{ll} &c\Psi'_1(z)=d_1\Psi''_1(z)+P_1(\Psi)(z), \\ &c\Psi'_2(z)=d_2\Psi''_2(z)+P_2(\Psi)(z), \\ &c\Psi'_3(z)=d_3\Psi''_3(z)+P_3(\Psi)(z), \\ &c\Psi'_4(z)=d_4\Psi''_4(z)+P_4(\Psi)(z), \end{array} \right. \end{equation} $

其中

$ \begin{equation} \left\{\begin{array}{ll} &P_1(\Psi)(z)=-k_1\Psi_1(z)\Psi_4(z-c\tau_1), \\ &P_2(\Psi)(z)=k_1\Psi_1(z)\Psi_4(z-c\tau_1) -\gamma_2\Psi_2(z)-\epsilon\Psi_2^2(z), \\ &P_3(\Psi)(z)=-k_2\Psi_3(z)\Psi_2(z-c\tau_2), \\ &P_4(\Psi)(z)=k_2\Psi_3(z)\Psi_2(z-c\tau_2) -\gamma_4\Psi_4(z)-\epsilon\Psi_4^2(z), \end{array} \right. \end{equation} $

这里$ \Psi:=(\Psi_1, \Psi_2, \Psi_3, \Psi_4) $, $ z\in{{\Bbb R}} $, $ \epsilon\in(0, 1] $充分小.

$ {\cal R}_0>1 $, $ c>c_\ast $. 为应用不动点定理先构造合适上下解(定义见文献[26])

其中$ z\in{{\Bbb R}} $, $ {\cal K}^\ast $, $ \chi_i $ ($ i=1, 2, 3, 4 $)$ \epsilon_j $ ($ j=1, 2, 3 $) 将在后文给出.

不难证明如下引理.

引理3.2  函数$ \overline{\Psi}_1(z)=S_{h}^0 $$ \overline{\Psi}_3(z)=S_{v}^0 $满足

$ \begin{equation} c\overline{\Psi}'_1\geq d_1\overline{\Psi}''_1+P_1(\overline{\Psi}_1, \underline{\Psi}_2, \overline{\Psi}_3, \underline{\Psi}_4), c\overline{\Psi}'_3\geq d_3\overline{\Psi}''_3+P_3(\overline{\Psi}_1, \underline{\Psi}_2, \overline{\Psi}_3, \underline{\Psi}_4), z\in{{\Bbb R}} . \end{equation} $

注3.1  引理3.2表明$ \overline{\Psi}_1 $$ \overline{\Psi}_3 $为系统(3.6) 的上解.

引理3.3  设

$ \begin{equation} {\cal K}^\ast>\max\left\{1, \frac{\kappa_4\tilde{k}_1-\gamma_2\kappa_2} {\epsilon\kappa_2^2}, \frac{\kappa_2\tilde{k}_2-\gamma_4\kappa_4} {\epsilon\kappa_4^2}\right\}. \end{equation} $

$ \overline{\Psi}_j(z) $满足

$ \begin{equation} c\overline{\Psi}'_j\geq d_j\overline{\Psi}''_j+P_j(\overline{\Psi}_1, \overline{\Psi}_2, \overline{\Psi}_3, \overline{\Psi}_4), \forall z\neq\hat{z}:=\frac{\ln {\cal K}^\ast}{\zeta_1}, j=2, 4. \end{equation} $

  当$ z<\hat{z} $时, 则$ \overline{\Psi}_2(z)=\kappa_2e^{\zeta_1z} $$ \overline{\Psi}_4(z)=\kappa_4e^ {\zeta_1z} $. 因此, 有

$ z>\hat{z} $时, $ \overline{\Psi}_2(z)=\kappa_2{\cal K}^\ast $$ \overline{\Psi}_4(z)=\kappa_4{\cal K}^\ast $, 则根据(3.9)式得

同理$ c\overline{\Psi}'_4-d_4\overline{\Psi}''_2-P_4(\overline{\Psi}_1, \overline{\Psi}_2, \overline{\Psi}_3, \overline{\Psi}_4) \geq0, z>\hat{z} $. 综上知(3.10) 式成立. 引理证毕.

注3.2  引理3.3表明$ \overline{\Psi}_2 $$ \overline{\Psi}_4 $为系统(3.6) 的上解.

引理3.4  设

$ \begin{equation} 0<\epsilon_1<\frac{1}{2}\min\left\{\zeta_1, \frac{c} {d_1}\right\}, \chi_1>\max\left\{1, \frac{\kappa_4k_1 e^{-c\tau_1\zeta_1}}{(c-d_1\epsilon_1)\epsilon_1}\right\}, \end{equation} $

$ \begin{equation} 0<\epsilon_3<\frac{1}{2}\min\left\{\zeta_1, \frac{c} {d_3}\right\}, \chi_3>\max\left\{1, \frac{\kappa_2k_2 e^{-c\tau_2\zeta_1}}{(c-d_3\epsilon_3)\epsilon_3}\right\}, \end{equation} $

$ \underline{\Psi}_1(z) $$ \underline{\Psi}_3(z) $满足

$ \begin{equation} c\underline{\Psi}'_1\leq d_1\underline{\Psi}''_1+P_1(\underline{\Psi}_1, \overline{\Psi}_2, \underline{\Psi}_3, \overline{\Psi}_4), \forall z\neq\underline{z}_{\Psi_1}:=-\frac{\ln \chi_1}{\epsilon_1} \end{equation} $

$ \begin{equation} c\underline{\Psi}'_3\leq d_3\underline{\Psi}''_3+P_3(\underline{\Psi}_1, \overline{\Psi}_2, \underline{\Psi}_3, \overline{\Psi}_4), \forall z\neq\underline{z}_{\Psi_3}:=-\frac{\ln \chi_3}{\epsilon_3}. \end{equation} $

  当$ z<\underline{z}_{\Psi_1} $时, 有$ \underline{\Psi}_1(z) =S_{h}^0(1-\chi_1e^{\epsilon_1z}) $. 由(3.9)式知$ {\cal K}^\ast>1 $, 则$ z<-\ln\chi_1/\epsilon_1<0<\ln{\cal K}^\ast/\zeta_1 =\hat{z} $, 进而$ \overline{\Psi}_4(z)= \kappa_4e^{\zeta_1z} $. 由(3.11) 式得

$ z>\underline{z}_{\Psi_1} $时, $ \underline{\Psi}_1(z)=0 $, 从而$ c\underline{\Psi}'_1- d_1\underline{\Psi}''_1-P_1(\underline{\Psi}_1, \overline{\Psi}_2, \underline{\Psi}_3, \overline{\Psi}_4)=0 $. 所以, (3.13) 式成立. 同理可证(3.14) 式. 引理得证.

注3.3  引理3.4表明$ \underline{\Psi}_1 $$ \underline{\Psi}_3 $为系统(3.6) 的下解.

引理3.5  设$ \epsilon_2<\min\{\zeta_1, \epsilon_1, \epsilon_3\} $, 则存在充分大的正常数$ \chi_2 $$ \chi_4 $使$ \underline{\Psi}_2(z) $$ \underline{\Psi}_4(z) $满足

$ \begin{equation} c\underline{\Psi}'_2\leq d_2\underline{\Psi}''_2+P_2(\underline{\Psi}_1, \underline{\Psi}_2, \underline{\Psi}_3, \underline{\Psi}_4), \forall z\neq\underline{z}_{\Psi_2}:=-\frac{\ln \chi_2}{\epsilon_2} \end{equation} $

$ \begin{equation} c\underline{\Psi}'_4\leq d_4\underline{\Psi}''_4+P_4(\underline{\Psi}_1, \underline{\Psi}_2, \underline{\Psi}_3, \underline{\Psi}_4), \forall z\neq\underline{z}_{\Psi_4}:=-\frac{\ln \chi_4}{\epsilon_2}. \end{equation} $

  引理3.5的证明类似于文献[16, 引理2.5], 不再赘述.

注3.4  因$ P_j(\underline{\Psi}_1, \underline{\Psi}_2, \underline{\Psi}_3, \underline{\Psi}_4)\leq P_j(\overline{\Psi}_1, \underline{\Psi}_2, \overline{\Psi}_3, \underline{\Psi}_4) $ ($ j=2, 4 $), 则由引理3.5知

因此, $ \underline{\Psi}_2 $$ \underline{\Psi}_4 $为系统(3.6) 的下解.

3.3 有界正解的存在性

$ f_i(\Psi)(z):=r_i\Psi_i(z)+P_i(\Psi)(z), i=1, 2, 3, 4 $, 其中$ P_i $由(3.7) 式给出, $ r_i $满足

$ \begin{equation} r_1>k_1\kappa_4{\cal K}^\ast, r_2>\gamma_2+2\epsilon\kappa_2{\cal K}^\ast, r_3>k_2\kappa_2{\cal K}^\ast, r_4>\gamma_4+2\epsilon\kappa_4{\cal K}^\ast. \end{equation} $

因此(3.6)式转化为

$ \begin{equation} \left\{\begin{array}{ll} &d_1\Psi''_1(z)-c\Psi'_1(z)-r_1\Psi_1(z)+f_1(\Psi)(z)=0, \\ &d_2\Psi''_2(z)-c\Psi'_2(z)-r_2\Psi_2(z)+f_2(\Psi)(z)=0, \\ &d_3\Psi''_3(z)-c\Psi'_3(z)-r_3\Psi_3(z)+f_3(\Psi)(z)=0, \\ &d_4\Psi''_4(z)-c\Psi'_4(z)-r_4\Psi_4(z)+f_4(\Psi)(z)=0.\\ \end{array} \right. \end{equation} $

定义

$ \zeta_{i1}=\frac{c-\sqrt{c^{2}+4d_{i}r_{i}}}{2d_{i}}, \zeta_{i2}=\frac{c+\sqrt{c^{2}+4d_{i}r_{i}}}{2d_{i}}, \Lambda_{i}=d_{i}(\zeta_{i2}-\zeta_{i1}), i=1, \ldots, 4 $, $ {{\Bbb R}} _+=[0, +\infty) $$ r_i $满足(3.17) 式使得$ -\zeta_{i1}>2\zeta_{1} $. 显然$ \zeta_{i1} $$ \zeta_{i2} $$ d_i\zeta^{2}-c\zeta-r_i=0 $的根.

定义算子$ {\cal F}: \Gamma\rightarrow C({{\Bbb R}}, {{\Bbb R}} _+^4) $

其中

易知, 算子$ {\cal F} $有定义且$ d_{i}{\cal F}''_{i}(\Psi)(z)-c{\cal F}'_{i}(\Psi)(z) -r_i{\cal F}_{i}(\Psi)(z)+f_i(\Psi)(z)=0 $, $ \Psi\in\Gamma $. 换言之, $ {\cal F} $的不动点即为系统(3.18) 的解. 易证下面结果.

引理3.6  集合$ \Gamma $$ C({{\Bbb R}}, {{\Bbb R}} _+^4) $中的有界闭凸集.

引理3.7  算子$ {\cal F} $$ \Gamma $$ \Gamma $, 即$ {\cal F}(\Gamma)\subset\Gamma $.

定义Banach空间

赋予范数

其中$ \rho>0 $为常数, 满足$ 2\zeta_1<\rho<\min\{-\zeta_{11}, -\zeta_{21}, -\zeta_{31}, -\zeta_{41}\} $.

引理3.8  映射$ {\cal F}=({\cal F}_1, {\cal F}_2, {\cal F}_3, {\cal F}_4):\Gamma\rightarrow C({{\Bbb R}}, {{\Bbb R}} _+^4) $$ B_{\rho}({{\Bbb R}}, {{\Bbb R}} _+^4) $中关于$ |\cdot|_{\rho} $连续.

  取$ \phi=(\phi_1, \phi_2, \phi_3, \phi_4) \in\Gamma $$ \varphi=(\varphi_1, \varphi_2, \varphi_3, \varphi_4) \in\Gamma $满足$ \phi\neq\varphi $. 先证$ {\cal F}_1(\phi)(z) $关于$ |\cdot|_{\rho} $的连续性. 计算知:存在$ C_1>0 $使得

因此, 有

对于$ z\geq0 $.$ \rho<-\zeta_{11}<\zeta_{12} $, 则

对于$ z<0 $. 同理可得

所以, 算子$ {\cal F}_1:\Gamma\rightarrow C({{\Bbb R}}, {{\Bbb R}} ) $$ B_{\rho}({{\Bbb R}}, {{\Bbb R}} ) $中关于$ |\cdot|_{\rho} $连续. 类似地, 可证$ {\cal F}_j $的连续性, $ j=2, 3, 4 $. 引理证毕.

引理3.9  映射$ {\cal F}=({\cal F}_1, {\cal F}_2, {\cal F}_3, {\cal F}_4):\Gamma\rightarrow \Gamma $$ B_{\rho}({{\Bbb R}} , {{\Bbb R}} _+^4) $中关于$ |\cdot|_{\rho} $是紧的.

  对$ \forall \Psi(\cdot)=(\Psi_1(\cdot), \Psi_2(\cdot), \Psi_3(\cdot), \Psi_4(\cdot))\in\Gamma $, 有

$ \Psi(\cdot)\in\Gamma $, 则存在$ C_2>0 $使得$ |f_1(\Psi)(z)|\leq C_2 $, $ z\in{{\Bbb R}} $. 因此, 有

从而$ \left|{\rm d}{\cal F}_{1}(\Psi)(z)/{\rm d}z\right| $有界. 类似可得$ \left|{\rm d}{\cal F}_{j}(\Psi)(z)/{\rm d}z\right| $的有界性, $ j=2, 3, 4 $, 于是$ {\cal F}(\Gamma) $在任意紧区间上关于$ |\cdot|_{\rho} $等度连续且一致有界.

固定整数$ n\in{\Bbb N}^\ast $, 定义算子$ {\cal F}^n $, 有

由Ascoli-Arzelà引理知, $ {\cal F}^n(\Psi)(z) $关于$ \Psi(\cdot)\in\Gamma $等度连续且一致有界. 因此, $ {\cal F}^n:\Gamma\rightarrow \Gamma $$ C({{\Bbb R}}, {{\Bbb R}} _+^4) $上关于上确界范数是紧的. 于是, $ {\cal F}^n $$ B_{\rho}({{\Bbb R}}, {{\Bbb R}} _+^4) $中关于$ |\cdot|_{\rho} $紧. 又因

同理, $ |{\cal F}_j^n(\Psi) $$ (\cdot)-{\cal F}_j (\Psi)(\cdot)|_{\rho}\rightarrow0, n\rightarrow +\infty, j=2, 3, 4 $. 进而, 当$ n\rightarrow +\infty $时, $ |{\cal F}^n(\Psi)(\cdot) $$ -{\cal F} (\Psi)(\cdot)|_{\rho}\rightarrow0 $. 运用紧算子逼近定理(见文献[27, 命题2.12])知, $ {\cal F}^n $$ \Gamma $中关于$ |\cdot|_\rho $收敛到$ {\cal F} $, $ n\rightarrow +\infty $. 这表明算子$ {\cal F} $$ B_{\rho}({{\Bbb R}}, {{\Bbb R}} ^4) $中关于$ |\cdot|_{\rho} $是紧的. 引理得证.

命题3.1  设$ {\cal R}_0>1 $, 则对任意$ c>c_\ast $, 系统(3.6) 存在一有界正解$ \Psi(z) $满足(2.3)式和$ \Psi(+\infty) $$ =(\Psi_1^{\infty}, 0, \Psi_3^{\infty}, 0) $, 其中$ \Psi_1'(z)<0 $, $ \Psi_3'(z)<0 $, $ \Psi_1(z)<S_{h}^0 $, $ \Psi_3(z)<S_{v}^0 $, $ \Psi_2(z)\leq S_h^0-\Psi_{1}^{\infty} $, $ \Psi_4(z)\leq S_v^0-\Psi_{3}^{\infty} $, $ z\in{{\Bbb R}} $, 这里$ \Psi_1^{\infty} $, $ \Psi_3^{\infty}\geq0 $, 满足$ \Psi_1^{\infty}<S_{h}^{0} $$ \Psi_3^{\infty}<S_{v}^{0} $. 进一步, 有$ \lim\limits_{z\rightarrow -\infty}\kappa_2^{-1} e^{-\zeta_1z}\Psi_2(z)=1, \lim\limits_{z\rightarrow -\infty}\kappa_4^{-1}e^{-\zeta_1z}\Psi_4(z)=1 $, 和

$ \begin{equation} \int_{-\infty}^{+\infty}\Psi_2(z){\rm d}z<\frac{c}{\gamma_2}(S_{h}^{0}-\Psi_{1}^{\infty}), \int_{-\infty}^{+\infty}\Psi_4(z){\rm d}z<\frac{c}{\gamma_4}(S_{v}^{0}-\Psi_{3}^{\infty}). \end{equation} $

  结合引理3.6–3.9, 利用Schauder不动点定理知, 系统(3.6) 存在非负有界解$ \Psi(\cdot)\in\Gamma $, 显然它是$ {\cal F} $的不动点. 因$ \Psi\in\Gamma $, 所以有$ \Psi(-\infty)=(S_{h}^0, 0, S_{v}^0, 0) $. 又因

$ \kappa_2^{-1}e^{-\zeta_1z}\Psi_2(z)\rightarrow1 $, $ \kappa_4^{-1}e^{-\zeta_1z}\Psi_4(z)\rightarrow1 $, $ z\rightarrow -\infty $. 根据反证法和最大值原理[28]可知: $ 0<\Psi_1(z)<S_{h}^0 $, $ 0<\Psi_3(z)<S_{v}^0 $, $ \Psi_j(z)>0 $, $ z\in{{\Bbb R}} $, $ j=2, 4 $.

(ⅰ) 为证$ \Psi_1(z) $$ \Psi_3(z) $关于$ z $单调递减. 因$ \Psi(z) $$ {\cal F} $的不动点, 由洛必达法则[29]$ \Psi'_i(-\infty)=0 $, $ i=1, 2, 3, 4 $. 在系统(3.6)中, 令$ z\rightarrow -\infty $, 并结合$ \Psi(-\infty)=(S_{h}^0, 0, S_{v}^0, 0) $$ \Psi''_i(-\infty)=0 $. 对(3.6) 的第一个方程两端同乘$ e^{-cz/d_1} $

$ \Psi_1(z) $有界, 则对上式两端在$ z $$ +\infty $上积分得

因此, $ \Psi_1(z) $关于$ z $单调递减. 又因$ 0<\Psi_1(z)\leq S_h^0 $, 则由单调有界原理知, 存在$ \Psi_{1}^{\infty}\geq0 $满足$ \Psi_1^{\infty}<S_h^0 $, 使得$ \Psi_1(z)\rightarrow \Psi_1^{\infty} $, $ z\rightarrow +\infty $. 同理, 可证$ \Psi_3(z) $关于$ z $单调递减且存在常数$ \Psi_3^{\infty}\geq0 $满足$ \Psi_3^{\infty}<S_v^0 $, 使得$ \Psi_3(z)\rightarrow \Psi_3^{\infty} $, $ z\rightarrow +\infty $.

(ⅱ) 为证$ \Psi_2(+\infty)=0 $$ \Psi_4(+\infty)=0 $. 对(3.6)式的第一个方程在$ -\infty $$ z $上积分得

$ \begin{equation} d_1\Psi'_1(z)=c[\Psi_1(z)-S_{h}^{0}]+k_1\int_{-\infty}^{z}\Psi_1(\xi) \Psi_4(\xi-c\tau_1){\rm d}\xi. \end{equation} $

$ \Psi'_1 $$ \Psi_1 $有界, 则$ \int_{-\infty}^{+\infty}\Psi_1(\xi) \Psi_4(\xi-c\tau_1){\rm d}\xi<+\infty $. 接着, 对系统(3.6) 的第二个方程在$ -\infty $$ z $上积分得

$ \begin{equation} c\Psi_2(z)=d_2\Psi'_2(z)+k_1\int_{-\infty}^{z}\Psi_1(\xi)\Psi_4(\xi-c\tau_1){\rm d}\xi -\gamma_2\int_{-\infty}^{z}\Psi_2(\xi){\rm d}\xi-\epsilon\int_{-\infty}^{z}\Psi_2^2(\xi){\rm d}\xi. \end{equation} $

根据$ \Psi_2 $$ \Psi'_2 $的有界性以及$ \int_{-\infty}^{+\infty}\Psi_1(\xi)\Psi_4(\xi-c\tau_1){\rm d}\xi<+\infty $, 可知$ \int_{-\infty}^{+\infty}\Psi_2(\xi){\rm d}\xi<+\infty $, 从而$ \lim\limits_{z\rightarrow +\infty}\Psi_2(z)=0 $. 同理, 可证$ \lim\limits_{z\rightarrow +\infty}\Psi_4(z)=0 $. 因此, $ \Psi(+\infty)=(\Psi_1^{\infty}, 0, \Psi_3^{\infty}, 0) $.

(ⅲ) 为证(3.19)式. 因$ \Psi_2={\cal F}_2(\Psi) $, 则$ \Psi'_2(+\infty)=0 $. 结合(3.20)–(3.21)式知

$ \epsilon>0 $知, $ \int_{-\infty}^{+\infty}\Psi_2(\xi){\rm d}\xi< c(S_h^0-\Psi_{1}^{\infty})/\gamma_2 $. 同理, $ \int_{-\infty}^{+\infty}\Psi_4(\xi){\rm d}\xi< c(S_v^0-\Psi_{3}^{\infty})/\gamma_4 $. 因此, (3.19) 式成立.

(ⅳ) 最后证$ \Psi_2(\cdot) $$ \Psi_4(\cdot) $关于$ \epsilon $的一致有界性. 定义泛函

显然$ c{\cal P}'(z)-d_2{\cal P}''(z)=\gamma_2\Psi_2(z)+\epsilon\Psi_2^2(z) $, $ {\cal P}(-\infty)=0 $, $ {\cal P}(+\infty)\leq S_{h}^{0} -\Psi_{1}^{\infty} $$ {\cal P}'(\pm\infty) $$ =0 $.$ {\cal H}(z):=\Psi_2(z)+{\cal P}(z) $, 则$ {\cal H}'(+\infty)=0 $, $ c{\cal H}'(z)-d_2{\cal H}''(z)=k_1\Psi_1(z)\Psi_4(z-c\tau_1) $. 因此, 类似上面过程得

$ {\cal H}(z) $关于$ z $单调递增. 又因$ {\cal H}(+\infty)\leq S_{h}^{0}-\Psi_{1}^{\infty} $, $ {\cal H}(z)\geq0 $, 则$ \Psi_2(z)\leq S_{h}^{0}-\Psi_{1}^{\infty} $, $ z\in{{\Bbb R}} $. 同理, $ \Psi_4(z)\leq S_{v}^{0}-\Psi_{3}^{\infty} $, $ z\in{{\Bbb R}} $. 命题得证.

4 行波解的存在性

本节完成定理2.1的证明.

定理2.1的证明  设$ \Psi:=(\Psi_1, \Psi_2, \Psi_3, \Psi_4)\in\Gamma $为由命题3.1确定的系统(3.6) 的有界正解, 则

$ \begin{equation} 0<\Psi_1<S_{h}^0, 0<\Psi_3<S_{v}^0, 0<\Psi_2\leq S_h^0-S_h^{\infty}, 0<\Psi_4\leq S_v^0-S_v^{\infty}. \end{equation} $

取序列$ \{\epsilon_n\} $, 满足$ 0<\epsilon_{j+1}<\epsilon_j<1 $, $ \epsilon_n\rightarrow0 $, $ n\rightarrow +\infty $. 于是, 根据命题3.1, 对每个$ \epsilon=\epsilon_n $, 系统(3.6) 均存在有界正解$ \Psi_n:=(\Psi_{1, n}, \Psi_{2, n}, \Psi_{3, n}, \Psi_{4, n})\in\Gamma $, 满足(4.1) 且

$ \Psi_n(\cdot) $$ {\cal F} $的不动点, 则$ \Psi'_n(\cdot) $关于$ n $一致有界. 从而由(3.6) 知, $ \Psi''_n(\cdot) $$ \Psi'''_n(\cdot) $关于$ n $一致有界. 因此, 根据Ascoli-Arzelà引理, 存在$ U:=(U_1, U_2, U_3, U_4) $和子序列$ \{\epsilon_{n_{p}}\} $满足$ \epsilon_{n_{p}}\rightarrow0 $ ($ p\rightarrow +\infty $) 使得$ \Psi_{n_{p}}(z)\rightarrow U(z), \Psi'_{n_{p}}(z)\rightarrow U'(z), \Psi''_{n_{p}}(z)\rightarrow U''(z) $$ {{\Bbb R}} $的任意有界闭区间上一致成立且逐点收敛. 因此, 有

$ U(z) $是系统(2.2) 的解并满足(2.3)式. 类似于命题3.1的证明知:$ U_1(z) $$ U_3(z) $关于$ z $单调递减, $ U_1(+\infty)=S_{h}^{\infty}<S_{h}^{0} $$ U_3(+\infty)=S_{v}^{\infty}<S_{v}^{0} $. 进一步可证:$ \lim\limits_{z\rightarrow -\infty}\kappa_2 ^{-1}e^{-\zeta_1z}U_2 $$ (z)=1 $, $ \lim\limits_{z\rightarrow -\infty}\kappa_4^{-1} e^{-\zeta_1z}U_4(z)=1 $, 从而(2.6) 式得证. 再根据命题3.1的证明得

因此, $ U(\cdot) $满足(2.4), (2.5), (2.7) 和(2.8)式, $ 0<U_2(z)\leq S_{h}^{0}-S_{h}^{\infty} $, $ 0<U_4(z)\leq S_{v}^{0}-S_{v}^{\infty} $.

下证$ {\cal R}_0^{\infty}<1 $. 假设$ {\cal R}_0^{\infty}\geq1 $.$ V^{-1}F $非负不可约, 则存在正向量$ {\bf l}=(l_1, l_2)^{T} $使得

从而$ k_1S_{h}^\infty l_2\gamma_2^{-1}-l_1\geq0 $, $ k_2S_{v}^\infty l_1\gamma_4^{-1}-l_2\geq0 $, 即

$ \begin{equation} \frac{k_1S_{h}^\infty}{\gamma_2}\geq \frac{l_1}{l_2}, {\quad} \frac{k_2S_{v}^\infty}{\gamma_4}\geq \frac{l_2}{l_1}. \end{equation} $

$ U_j(\pm\infty)=0 $$ U'_j(\pm\infty)=0 $ ($ j=2, 4 $) 知, 对(2.2) 式的第二和第四个方程在$ {{\Bbb R}} $上积分得

$ \begin{equation} \left\{\begin{array}{ll} { } k_1\int_{-\infty}^{+\infty}U_1(z) U_4(z-c\tau_1){\rm d}z-\gamma_2\int_{-\infty}^{+\infty}U_2(z){\rm d}z=0, \\ { } k_2\int_{-\infty}^{+\infty}U_3(z) U_2(z-c\tau_2){\rm d}z-\gamma_4\int_{-\infty}^{+\infty}U_4(z){\rm d}z=0. \end{array} \right. \end{equation} $

$ U_1(\cdot) $$ {{\Bbb R}} $上单调递减, 则

$ \begin{equation} \int_{-\infty}^{+\infty} U_1(z)U_4(z-c\tau_1){\rm d}z >S_{h}^\infty\int_{-\infty}^{+\infty} U_4(z){\rm d}z. \end{equation} $

同理$ \int_{-\infty}^{+\infty}U_3(z) U_2(z-c\tau_2){\rm d}z>S_{v}^\infty\int_{-\infty}^{+\infty}U_2(z){\rm d}z $. 于是, 由(4.3)式得

$ \begin{equation} \int_{-\infty}^{+\infty}U_2(z){\rm d}z-\frac{k_1S_{h}^\infty}{\gamma_2} \int_{-\infty}^{+\infty}U_4(z){\rm d}z>0, \int_{-\infty}^{+\infty}U_4(z){\rm d}z-\frac{k_2S_{v}^\infty}{\gamma_4} \int_{-\infty}^{+\infty}U_2(z){\rm d}z>0. \end{equation} $

将(4.2) 式代入(4.5) 式得

矛盾. 因此, $ {\cal R}_0^{\infty}<1 $. 定理2.1证毕.

5 行波解的不存在性

5.1 情形Ⅰ: $ {\cal R}_0>1 $, $ 0<c<c_\ast $

本小节证明$ {\cal R}_0>1 $, $ 0<c<c_\ast $时行波的不存在性, 如下引理是必要的.

引理5.1  设$ {\cal R}_{0}>1 $$ 0<c<c^\ast $.$ U(z) $是系统(2.2) 满足(2.3) 和(2.4) 的有界正解, 则存在常数$ \omega^{\ast}>0 $使得

  由$ U_1(-\infty)=S_{h}^{0} $, $ U_3(-\infty)=S_{v}^{0} $, $ {\cal R}_{0}>1 $知, 存在一点$ z_0^\ast<0 $使得

其中$ \tilde{\gamma}=\gamma_2\gamma_4 $, $ \tilde{k}_1=k_1S_{h}^{0} $$ \tilde{k}_2=k_2S_{v}^{0} $. 由系统(2.2) 的第二和第四个方程知, 对任意的$ z\leq z_0^\ast $, 有

$ \begin{eqnarray} cU'_2(z)&=&d_2U''_2(z)+k_1U_1(z)U_4(z-c\tau_1)-\gamma_2U_2(z){}\\ &\geq& d_2U''_2(z)+\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2} [U_4(z-c\tau_1)-U_4(z)] +\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2}U_4(z)-\gamma_2U_2(z), \end{eqnarray} $

$ \begin{eqnarray} cU'_4(z)&=&d_4U''_4(z)+k_2U_3(z) U_2(z-c\tau_2)-\gamma_4U_4(z){}\\ &\geq& d_4U''_4(z)+ \frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1} [U_2(z-c\tau_2)-U_2(z)] +\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1}U_2(z)-\gamma_4U_4(z). \end{eqnarray} $

定义

对(5.1) 和(5.2)式在$ -\infty $$ z $ ($ \leq z_0^\ast $) 上积分得

$ \begin{equation} \frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2}N_1(z)\leq cU_2(z)- d_2U'_2(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2}[N_1(z-c\tau_1)-N_1(z)] +\gamma_2N_2(z), \end{equation} $

$ \begin{equation} \frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1}N_2(z)\leq cU_4(z)- d_4U'_4(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1}[N_2(z-c\tau_2)-N_2(z)] +\gamma_4N_1(z). \end{equation} $

将(5.4)式代入(5.3) 式得

因此

$ \begin{eqnarray} \frac{(\tilde{k}_1\tilde{k}_2-\tilde{\gamma})^2} {2\tilde{k}_2(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} N_1(z)&\leq&cU_2(z)- d_2U'_2(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2}[N_1(z-c\tau_1)-N_1(z)]{}\\ &&+\frac{2\tilde{k}_1\gamma_2}{\tilde{k}_1\tilde{k}_2+\tilde{\gamma}} \{cU_4(z)- d_4U'_4(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1}[N_2(z-c\tau_2)-N_2(z)]\}.{\qquad} \end{eqnarray} $

同理可得

$ \begin{eqnarray} \frac{(\tilde{k}_1\tilde{k}_2-\tilde{\gamma})^2} {2\tilde{k}_2(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} N_2(z)&\leq&cU_4(z)- d_4U'_4(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_1}[N_2(z-c\tau_2)-N_2(z)]{}\\ &&+\frac{2\tilde{k}_2\gamma_4}{\tilde{k}_1\tilde{k}_2+\tilde{\gamma}} \{cU_2(z)- d_2U'_2(z)-\frac{(\tilde{k}_1\tilde{k}_2+\tilde{\gamma})} {2\tilde{k}_2}[N_1(z-c\tau_1)-N_1(z)]\}.{\qquad} \end{eqnarray} $

$ N(z)=N_1(z)+N_2(z) $. 因此, 结合(5.5) 和(5.6) 式知存在$ A>0 $使得

又因$ N(z) $关于$ z $单调递增, 所以对任意$ a>0 $, 有

所以, 存在充分大的$ a^\ast>0 $$ \theta^\ast\in(0, 1) $使得

$ h(z)=N(z)e^{-\omega_0z} $, 其中$ 0<\omega_0=-(a^\ast)^{-1} \ln\theta^{\ast}<\zeta_1 $. 因此, 有

$ \lim\limits_{z\rightarrow +\infty}h(z)=0 $知, 存在$ h^\ast>0 $使得$ h(z)\leq h^\ast $, $ z\in{{\Bbb R}} $. 进而有$ N(z)\leq h^\ast e^{\omega_0z} $, $ z\in{{\Bbb R}} $. 进一步有$ \int_{-\infty}^{z}N(\xi){\rm d}\xi\leq h^\ast e^{\omega_0z}\omega_0^{-1} $, $ z\in{{\Bbb R}} $. 所以, 根据上述讨论得

对(2.2) 式的第一个方程从$ -\infty $$ z $积分得

$ 0<\omega_0<\zeta_1 $, 则存在$ C_3>0 $使得

$ \begin{equation} k_1\int_{-\infty}^zU_1(\xi)U_4(\xi-c\tau_1){\rm d}\xi \leq C_3 e^{\omega_{0}z}, {\quad} z\in{{\Bbb R}} . \end{equation} $

$ B_1(z)=S_{h}^{0}-U_1(z) $, 则$ B_1(z)\geq0 $, $ z\in{{\Bbb R}} $

利用常数变易法得

因此, 存在$ \omega_{0}^{\ast} $满足$ \omega_{0}^{\ast}=\min\{\omega_{0}, c/d_1\} $使得$ B_1(z)\rightarrow O(e^{\omega_{0}^{\ast}z}) $, $ z\rightarrow -\infty $.$ 0\leq B_1(z)\leq S_{h}^{0} $, 则$ \sup\limits_{x\in{{\Bbb R}} }\{B_1(z)e^ {-\omega_{0}^{\ast}z}\}<+\infty $, 即$ \sup\limits_{z\in{{\Bbb R}} }\{[S_{h}^{0}-U_1(z)] e^{-\omega_{0}^{\ast}z}\}<+\infty $. 同理$ \sup\limits_{z\in{{\Bbb R}} }\{[S_{v}^{0}-U_3(z)] e^{-\omega_{0}^{\ast\ast}z}\}<+\infty $, 其中$ \omega_{0}^{\ast\ast} =\min\{\omega_{0}, c/d_3\} $.$ \omega^{\ast} =\min\{\omega_{0}, \omega_{0}^{\ast}, \omega_{0}^{\ast\ast}\} $, 得

引理得证.

下面给出定理2.2的证明.

定理2.2的证明  反证. 对$ 0<c<c_{\ast} $, 假设系统(1.2) 存在一有界正解

对任意$ \kappa>0 $和非负函数$ V(z) $, 定义双边Laplace变换

其中

根据文献[24]知, $ {\cal P}[V(\cdot)](\zeta) $$ {\cal P}^{-}[V(\cdot)](\zeta) $关于$ \zeta $有相同的收敛性. 因$ {\cal P}^{-}[V(\cdot)](\zeta) $$ \zeta>0 $的单调增函数, 则存在$ \zeta^{\ast\ast}>0 $使$ {\cal P}[V(\cdot)] $$ [0, \zeta^{\ast\ast}) $上有定义, 其中$ \zeta^{\ast\ast}<+\infty $, $ \lim\limits_{\zeta \rightarrow \zeta^{\ast\ast-}} $$ {\cal P}[V(\cdot)](\zeta)=+\infty $$ \zeta^{\ast\ast}=+\infty $.

$ {\cal P}_j(\zeta)={\cal P}[U_j(\cdot)](\zeta) $, $ \zeta\in [0, \zeta_j^{\ast\ast}), j=2, 4 $. 由引理5.1知, $ \zeta_j^{\ast\ast}\leq\omega^{\ast}<\zeta_1 $, $ j=2, 4 $. 直接计算得

同理得$ \int_{-\infty}^{+\infty}e^{-\zeta z} U_2(z-c\tau_2){\rm d}z={\cal P}_2(\zeta)e^{-c\tau_2\zeta} $. 因此, 由系统(2.2) 的第二和第四个方程得

对上面两方程作Laplace变换得

$ \begin{equation} \left\{\begin{array}{ll} Q_{2}(c, \zeta){\cal P}_2(\zeta)+k_1S_{h}^{0} e^{-c\tau_1\zeta}{\cal P}_4(\zeta)=\ell_4(\zeta), \\ Q_{4}(c, \zeta){\cal P}_4(\zeta)+k_2S_{v}^{0} e^{-c\tau_2\zeta}{\cal P}_2(\zeta)=\ell_2(\zeta), \\ \end{array} \right. \end{equation} $

其中

$ \begin{equation} \ell_2(\zeta)=k_2\int_{-\infty}^{+\infty}e^{-\zeta z}[S_{v}^{0}- U_3(z)]U_2(z-c\tau_2){\rm d}z, \end{equation} $

$ \begin{equation} \ell_4(\zeta)=k_1\int_{-\infty}^{+\infty}e^{-\zeta z}[S_{h}^{0}- U_1(z)]U_4(z-c\tau_1){\rm d}z. \end{equation} $

这里$ \zeta>0 $满足$ \zeta<\min\{\omega_0+\omega_0^{\ast}, \omega_0+\omega_0^{\ast\ast}\} $.

不难知$ \zeta_j^{\ast\ast}<+\infty $, $ j=2, 4 $, 从而$ \zeta_0^{\ast\ast}:=\zeta_2^{\ast\ast} =\zeta_4^{\ast\ast}<\zeta_m^+ $. 由(5.9) 和(5.10) 式知$ \ell_2(\zeta_0^{\ast\ast})<+\infty $$ \ell_4(\zeta_0^{\ast\ast})<+\infty $. 由(5.8)式得

$ \begin{equation} Q_{2}(c, \zeta){\cal P}_2(\zeta)= \ell_4(\zeta)-k_1S_{h}^{0} e^{-c\tau_1\zeta}{\cal P}_4(\zeta), \end{equation} $

$ \begin{equation} Q_{4}(c, \zeta){\cal P}_4(\zeta)= \ell_2(\zeta)-k_2S_{v}^{0} e^{-c\tau_2\zeta}{\cal P}_2(\zeta). \end{equation} $

将(5.11) 式和(5.12) 式相乘得

这显然与引理3.1(ⅰ) 矛盾. 因而, 结论成立. 定理2.2得证.

5.2 情形Ⅱ: $ {\cal R}_0\leq1 $, $ c>0 $

本小节证明当$ {\cal R}_0\leq1 $时行波解的不存在性.

定理2.3的证明  反证, 假设系统存在一有界正解$ U(z) $, 满足(2.3) 和(2.4)式.

(ⅰ) 首先考虑$ {\cal R}_0<1 $.$ U(z) $是(2.2) 式的不动点, 所以有

$ \begin{equation} U_{2}(z)=\frac{k_1}{\tilde{\Lambda}_{2}}\left[\int_{-\infty}^{z} e^{\tilde{\zeta}_{21}(z-\xi)}U_1(\xi)U_4(\xi-c\tau_1){\rm d}\xi+ \int_{z}^{+\infty} e^{\tilde{\zeta}_{22}(z-\xi)}U_1(\xi)U_4(\xi-c\tau_1){\rm d}\xi\right], \end{equation} $

$ \begin{equation} U_{4}(z)=\frac{k_2}{\tilde{\Lambda}_{4}}\left[\int_{-\infty}^{z} e^{\tilde{\zeta}_{41}(z-\xi)}U_3(\xi)U_2(\xi-c\tau_2){\rm d}\xi+ \int_{z}^{+\infty} e^{\tilde{\zeta}_{42}(z-\xi)}U_3(\xi)U_2(\xi-c\tau_2){\rm d}\xi\right], \end{equation} $

其中$ \tilde{\zeta}_{j1}=\frac{c-\sqrt{c^{2}+4d_{j}\gamma_{j}}}{2d_{j}}, \tilde{\zeta}_{j2}=\frac{c+\sqrt{c^{2}+4d_{j}\gamma_{j}}}{2d_{j}}, \tilde{\Lambda}_{j}=d_{j}(\tilde{\zeta}_{j2}-\tilde{\zeta}_{j1}), j=2, 4 $. 直接计算得

$ \begin{eqnarray} U_2(z) &=&\frac{k_1}{\tilde{\Lambda}_{2}}\int_{0}^{+\infty} e^{\tilde{\zeta}_{21}\xi}U_1(z-\xi) U_4(z-\xi+c\tau_1){\rm d}\xi{}\\ &&+\frac{k_1}{\tilde{\Lambda}_{2}}\int_{-\infty}^{0} e^{\tilde{\zeta}_{22}\xi}U_1(z-\xi) U_4(z-\xi+c\tau_1){\rm d}\xi. \end{eqnarray} $

同理

$ \begin{eqnarray} U_4(z) &=&\frac{k_2}{\tilde{\Lambda}_{4}}\int_{0}^{+\infty} e^{\tilde{\zeta}_{41}\xi}U_3(z-\xi) U_2(z-\xi+c\tau_2){\rm d}\xi{}\\ &&+\frac{k_2}{\tilde{\Lambda}_{4}}\int_{-\infty}^{0} e^{\tilde{\zeta}_{42}\xi}U_3(z-\xi) U_2(z-\xi+c\tau_2){\rm d}\xi. \end{eqnarray} $

对(5.15) 式两端积分得

$ \begin{equation} \int_{-\infty}^{+\infty}U_2(z){\rm d}z =\frac{k_1}{\gamma_{2}}\int_{-\infty}^{+\infty} U_1(z)U_4(z-c\tau_1){\rm d}z\leq\frac{k_1 S_{h}^0}{\gamma_{2}}\int_{-\infty}^{+\infty}U_4(z){\rm d}z. \end{equation} $

同理, 对(5.16) 式有

$ \begin{equation} \int_{-\infty}^{+\infty}U_4(z){\rm d}z =\frac{k_2}{\gamma_{4}}\int_{-\infty}^{+\infty} U_3(z)U_2(z-c\tau_2){\rm d}z\leq\frac{k_2 S_{v}^0}{\gamma_{4}}\int_{-\infty}^{+\infty}U_2(z){\rm d}z. \end{equation} $

将(5.18) 式代入(5.17) 式得

矛盾, 即假设不成立, 从而当$ {\cal R}_0<1 $, $ c>0 $时, 系统不存在有界正行波解.

(ⅱ) 再考虑$ {\cal R}_0=1 $.$ U_{j, \sup}:=\sup\limits_{z\in{{\Bbb R}} }\{U_j(z)\} $, $ j=2, 4 $. 因此, 存在关于特征值$ {\cal R}_0 $的正特征向量$ {\bf W}=(w_1, w_2)^{T} $使得$ {\cal M}{\bf W}={\bf W} $, 其中$ {\cal M}:=V^{-1}F $ (见第2节). 简单计算得

$ \begin{equation} \gamma_2=\frac{k_1S_{h}^0w_2}{w_1}, {\quad} \gamma_4=\frac{k_2S_{v}^0w_1}{w_2}. \end{equation} $

取序列$ \{z_{n}\}\subset{{\Bbb R}} $, $ n\in{\Bbb N}^\ast $使得$ \lim\limits_{n\rightarrow +\infty}U_2(z_{n})=U_{2, \sup }=\sup\limits_{z\in{{\Bbb R}} }\{U_2(z)\}:=\bar{P} $.

为了推出矛盾, 下证$ \bar{P}=0 $. 假设$ \bar{P}>0 $. 考虑如下函数序列$ U_{n}(\cdot):=(U_{1, n}(\cdot), U_{2, n}(\cdot), $$ U_{3, n}(\cdot), U_{4, n}(\cdot))= (U_{1}(\cdot+z_{n}), U_{2}(\cdot+z_{n}), U_{3}(\cdot+z_{n}), U_{4}(\cdot+z_{n})) $满足(2.3)式, $ n\in{\Bbb N}^\ast $. 根据$ U_{n}(z) $的有界性和椭圆估计知, 存在子序列$ U_{n_j}(z) $$ (U_1^{\ast}(z), U_2^{\ast}(z), $$ U_3^{\ast}(z), U_4^{\ast}(z)) $使得在$ C_{{\rm loc}}^2({{\Bbb R}} ) $中, 有

$ (U_1^{\ast}(z), U_2^{\ast}(z), U_3^{\ast}(z), U_4^{\ast}(z)) $满足

$ \begin{equation} \left\{\begin{array}{ll} d_1U_{1}^{\ast''}(z)-cU_{1}^{\ast'}(z)-k_1U_{1}^{\ast}(z) U_{4}^{\ast}(z-c\tau_1)=0, \\ d_2U_{2}^{\ast''}(z)-cU_{2}^{\ast'}(z)+k_1U_{1}^{\ast}(z) U_{4}^{\ast}(z-c\tau_1)-\gamma_2U_{2}^{\ast}(z)=0, \\ d_3U_{3}^{\ast''}(z)-cU_{3}^{\ast'}(z)-k_2U_{3}^{\ast}(z) U_{2}^{\ast}(z-c\tau_2)=0, \\ d_4U_{4}^{\ast''}(z)-cU_{4}^{\ast'}(z)+k_2U_{3}^{\ast}(z) U_{2}^{\ast}(z-c\tau_2)-\gamma_4U_{4}^{\ast}(z)=0, \end{array} \right. \end{equation} $

其中$ U_{2}^{\ast}(0)=\bar{P} $, $ U_{2}^{\ast}(z)\leq\bar{P} $, $ 0\leq U_{1}^{\ast}(z)\leq S_{h}^0 $, $ 0\leq U_{3}^{\ast}(z)\leq S_{v}^0 $. 类似于上述分析, 对(5.20) 式的第四个方程利用比较原理并结合(5.19) 式得$ k_2S_{v}^0\bar{P}\geq\gamma_{4}U_{4, \sup} =k_2S_{v}^0w_1w_2^{-1}U_{4, \sup } $. 于是$ U_{4, \sup}\leq\bar{P}w_2/w_1 $. 因此, 得

$ U_{2}^{\ast''}(0)\leq0 $$ U_{1}^{\ast}(0)\geq S_{h}^0 $. 由最大值原理知$ U_{1}^{\ast}(z)\equiv S_{h}^0 $, $ z\in{{\Bbb R}} $. 将其代入(5.20) 式的第一个方程得$ U_{4}^{\ast}(z)\equiv 0 $, $ z\in{{\Bbb R}} $. 从而由(5.20)式的第四个方程得$ U_{2}^{\ast}(z)\equiv 0 $$ U_{3}^{\ast}(z)\equiv0 $, $ z\in{{\Bbb R}} $.$ U_{3}^{\ast}(z)\equiv0 $, 则与$ U_{3}^{\ast}(-\infty)=S_{v}^0 $矛盾. 因此$ U_{2}^{\ast}(z)\equiv 0 $, 于是$ \bar{P}\equiv0 $, 显然与假设$ \bar{P}>0 $矛盾. 从而定理2.3得证.

6 最小波速$ c_\ast $对参数的连续依赖性

本节探讨登革热病毒潜伏期及染病人和蚊子的扩散率对临界波速$ c_\ast $的影响.

根据引理3.1知, 存在$ c_\ast, \zeta^\ast>0 $使得$ H(c_\ast, \zeta^\ast)=0 $, 其中

(A) 先探究$ c_\ast=c_\ast(\tau_1, \tau_2) $关于$ \tau_i $的连续依赖性. 不难得

$ Q_j(c_\ast, \zeta^\ast)<0, j=2, 4 $, 则$ \partial c_\ast(\tau_1, \tau_2)/\partial\tau_i<0 $, 即$ c_\ast $$ \tau_i $的减函数. 根据文献[4, 8, 28], 取$ d_2=0.1 $, $ d_4=0.3 $, $ \mu_h=0.001 $, $ \alpha_h=0.1667 $, $ \mu_v=0.0001 $, $ k_1=0.00682 $, $ k_2=0.0015 $, 则$ c_\ast $$ \tau_i $的关系见图 2(a). 由图 2(a)可知: 当$ \tau_i $充分小时, 曲线急剧下降, 这表明适当延长病毒内部和外部潜伏期可在一定程度上降低疾病传播速度, 从而降低传播风险. 然而, 当$ \tau_i $持续增大时, $ c_\ast $增加速度减慢, 这似乎又表明仅仅通过化学或物理手段延长病毒潜伏期并不能有效控制登革热.

图 2

图 2   最小波速$ c_\ast $关于参数的依赖性. (a) $ c_\ast=c_\ast(\tau_1, \tau_2) $; (b) $ c_\ast=c_\ast(d_2, d_4) $


(B) 再探讨$ c_\ast $关于$ d_j $的连续依赖性, $ j=2, 4 $. 类似于(A) 得$ \partial c_\ast(d_2, d_4)/\partial d_j $$ >0 $. 因此, $ c_\ast $关于$ d_j $单调递增. 取$ k_1=0.00682 $, $ k_2=0.0015 $, $ \gamma_2=0.1677 $, $ \gamma_4=0.0001 $. 图 2(b)表明$ c_\ast $是关于$ d_j $的增函数. 从生物学角度, 染病人群和蚊子的地理位置移动在一定程度上会加快疾病传播. 同时, 由图 2(b)可知, $ d_4 $$ c_\ast $的影响大于$ d_2 $$ c_\ast $的影响, 即染病蚊子的扩散对疾病传播有较大影响, 因此需更加注重对蚊虫的控制, 减少蚊虫扩散.

7 总结

由于登革病毒在人和蚊子体内具有潜伏期, 并且人群和蚊子在空间中的随机移动需要耗费时间. 受此启发, 为了考虑不同扩散性和潜伏期对疾病传播的影响, 本文研究了一类具有离散时滞的反应扩散登革热模型行波的存在性和不存在性, 证明了(ⅰ) 当$ {\cal R}_0>1 $, $ c>c_\ast $时, 系统(1.2) 存在满足条件(2.3)–(2.8) 式的正行波解;(ⅱ) 当$ {\cal R}_0>1 $, $ 0<c<c_\ast $$ {\cal R}_0\leq1 $, $ c>0 $时, 系统(1.2) 不存在满足上述条件的行波解. 同时, 分析了扩散系数和潜伏期对最小波速$ c_\ast $的影响. 具体地, 延长病毒内部或外部潜伏期可降低疾病传播速度, 但仅通过延长潜伏期不能有效控制登革热, 如图 2(a)所示; 染病人群和蚊子的地理移动会增加疾病传播速度, 如图 2(b)所示. 因而, 应减少患病人群移动并侧重于蚊虫控制, 将有利于疾病控制.

参考文献

Bhatt S , Gething P W , Brady O J , et al.

The global distribution and burden of dengue

Nature, 2013, 496: 504- 507

DOI:10.1038/nature12060      [本文引用: 1]

Brady O J , Gething P W , Bhatt S , et al.

Refining the global spatial limits of dengue virus transmission by evidence-based consensus

PLoS Neglected Tropical Disease, 2012, 6: e1760

DOI:10.1371/journal.pntd.0001760     

Zhang L , Wang S M .

A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects

Nonlinear Anal RWA, 2020, 51: 102988

DOI:10.1016/j.nonrwa.2019.102988     

Becker N, Petric D, Zgomba M, et al. Mosquitoes and Their Control (Second Edition). New York: Springer-Verlag, 2010

[本文引用: 2]

Esteva L , Vargas C .

Analysis of a dengue disease transmission model

Math Biosci, 1998, 150: 131- 151

DOI:10.1016/S0025-5564(98)10003-2      [本文引用: 1]

Lou Y , Zhao X-Q .

A reaction-diffusion malaria model with incubation period in the vector population

J Math Boil, 2011, 62: 543- 568

DOI:10.1007/s00285-010-0346-8     

Wang J L , Chen Y M .

Threshold dynamics of a vector-borne disease model with spatial structure and vector-bias

Appl Math Lett, 2020, 100: 106052

DOI:10.1016/j.aml.2019.106052     

Wang W , Zhao X-Q .

A nonlocal and time-delayed reaction-diffusion model of dengue transmission

SIAM J Appl Math, 2011, 71: 147- 168

DOI:10.1137/090775890      [本文引用: 1]

Wu R , Zhao X-Q .

A reaction-diffusion model of vector-borne disease with periodic delays

J Nonlinear Sci, 2019, 29: 29- 64

DOI:10.1007/s00332-018-9475-9      [本文引用: 2]

Ruan S. Spatial-Temporal Dynamics in Nonlocal Epidemiological Models, in: Mathematics for Life Science and Medicine. Berlin: Springer, 2007: 97–122

[本文引用: 1]

Berestycki H , Hamel F .

Front propagation in periodic excitable media

Commun Pure Appl Math, 2002, 55: 949- 1032

DOI:10.1002/cpa.3022      [本文引用: 1]

Ducrot A , Magal P , Ruan S .

Travelling wave solutions in mltigroup age-structured epidemic models

Arch Rational Mech Anal, 2010, 195: 311- 331

DOI:10.1007/s00205-008-0203-8     

Huang W Z .

A geometric approach in the study of traveling waves for some classes of non-monotone reaction-diffusion systems

J Differential Equations, 2017, 260: 2190- 2224

邓栋, 李燕.

一类带治疗项的非局部扩散SIR传染病模型的行波解

数学物理学报, 2020, 40A (1): 72- 102

DOI:10.3969/j.issn.1003-3998.2020.01.008     

Deng D , Li Y .

Traveling waves in a nonlocal dispersal SIR epidemic model with treatment

Acta Math Sci, 2020, 40A (1): 72- 102

DOI:10.3969/j.issn.1003-3998.2020.01.008     

Wang Z-C , Li W-T , Ruan S .

Travelling wave fronts in reaction- diffusion systems with spatio-temporal delays

J Differential Equations, 2006, 222: 185- 232

DOI:10.1016/j.jde.2005.08.010     

Zhang T .

Minimal wave speed for a class of non-cooperative reaction-diffusion systems of three equations

J Differential Equations, 2017, 262: 4724- 4770

DOI:10.1016/j.jde.2016.12.017      [本文引用: 2]

Zhang T , Wang W , Wang K .

Minimal wave speed for a class of non-cooperative diffusion-reaction system

J Differential Equations, 2016, 260: 2763- 2791

DOI:10.1016/j.jde.2015.10.017     

Zhao L , Wang Z-C , Ruan S .

Traveling wave solutions in a two-group epidemic model with latent period

Nonlinearity, 2017, 30: 1287- 1325

DOI:10.1088/1361-6544/aa59ae     

邹霞, 吴事良.

一类具有非线性发生率与时滞的非局部SIR模型的行波解

数学物理学报, 2018, 38A (3): 496- 513

DOI:10.3969/j.issn.1003-3998.2018.03.008     

Zou X , Wu S L .

Traveling waves in a nonlocal dispersal SIR epidemic model with delay and nonlinear incidence

Acta Math Sci, 2018, 38A (3): 496- 513

DOI:10.3969/j.issn.1003-3998.2018.03.008     

Zhao L , Zhang L , Huo H .

Traveling wave solutions of a diffusive SEIR epidemic model with nonlinear incidence rate

Taiwanese J Math, 2019, 23: 951- 980

[本文引用: 1]

Wang W , Zhao X-Q .

Basic reproduction numbers for reaction-diffusion epidemic models

SIAM J Appl Dyn Syst, 2012, 11: 1652- 1673

DOI:10.1137/120872942     

Zhao X-Q .

Basic reproduction ratios for periodic compartmental models with time delay

J Dyn Differ Equ, 2017, 29: 67- 82

DOI:10.1007/s10884-015-9425-2     

van den Driessche P , Watmough J .

Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission

Math Biosci, 2002, 180: 29- 48

DOI:10.1016/S0025-5564(02)00108-6      [本文引用: 1]

Hsu C-H , Yang T-S .

Existence, uniqueness, monotonicity and asymptotic behaviour of travelling waves for epidemic models

Nonlinearity, 2013, 26: 121- 139

DOI:10.1088/0951-7715/26/1/121      [本文引用: 2]

Tian B , Yuan R .

Traveling waves for a diffusive SEIR epidemic model with non-local reaction

Appl Math Model, 2017, 50: 432- 449

DOI:10.1016/j.apm.2017.05.040      [本文引用: 1]

Ma S W .

Traveling wavefronts for delayed reaction-diffusion systems via a fixed point theorem

J Differential Equations, 2001, 171: 294- 314

DOI:10.1006/jdeq.2000.3846      [本文引用: 1]

Zeidler E. Nonlinear Functional Analysis and its Applications I. New York: Springer, 1986

[本文引用: 1]

Denu D , Ngoma S , Salako R B .

Existence of traveling wave solutions of a deterministic vector-host epidemic model with direct transmission

J Math Anal Appl, 2020, 487: 123995

DOI:10.1016/j.jmaa.2020.123995      [本文引用: 2]

Wang Z-C , Wu J-H .

Travelling waves of a diffusive Kermack-McKendrick epidemic model with non-local delayed transmission

Proc R Soc Lond Ser A Math Phys Eng Sci, 2010, 466: 237- 261

[本文引用: 1]

/