数学物理学报, 2022, 42(1): 86-102 doi:

论文

带有时滞项的超三次弱阻尼波方程一致吸引子的存在性

朱凯旋,1, 谢永钦,2, 梅鑫钰,3, 邓习军,1

1 湖南文理学院数理学院&洞庭湖生态经济区建设与发展湖南省协同创新中心 湖南常德 415000

2 长沙理工大学数学与统计学院 长沙 410114

3 深圳大学数学与统计学院 广东深圳 518060

Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays

Zhu Kaixuan,1, Xie Yongqin,2, Mei Xinyu,3, Deng Xijun,1

1 College of Mathematics and Physics Science, Hunan University of Arts and Science & Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone, Hunan Changde 415000

2 School of Mathematics and Statistics, Changsha University of Science and Technology, Changsha 410114

3 School of Mathematics and Statistics, Shenzhen University, Guangdong Shenzhen 518060

通讯作者: 朱凯旋, E-mail: zhukx12@163.com

收稿日期: 2020-07-27  

基金资助: 湖南省自然科学基金.  2018JJ2272
湖南省教育厅科学研究基金.  20C1263
湖南文理学院科技创新团队项目(数值计算和随机过程及应用)

Received: 2020-07-27  

Fund supported: the NFS of Hunan Province.  2018JJ2272
the Scientific Research Fund of Hunan Provincial Education Department.  20C1263
the Hunan University of Arts and Science(STIT): Numerical Calculation and Stochastic Process with Their Applications

作者简介 About authors

谢永钦,E-mail:xieyq@csust.edu.cn , E-mail:xieyq@csust.edu.cn

梅鑫钰,E-mail:meixy@szu.edu.cn , E-mail:meixy@szu.edu.cn

邓习军,E-mail:xijundeng@126.com , E-mail:xijundeng@126.com

Abstract

In this paper, we consider the weakly damped wave equations with delays and sup-cubic nonlinearity. We prove the existence of the uniform attractors in $C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)}$ by constructing the energy functional and combining with the idea of contractive functions..

Keywords: Weakly damped wave equations ; Delays ; Uniform attractors

PDF (429KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

朱凯旋, 谢永钦, 梅鑫钰, 邓习军. 带有时滞项的超三次弱阻尼波方程一致吸引子的存在性. 数学物理学报[J], 2022, 42(1): 86-102 doi:

Zhu Kaixuan, Xie Yongqin, Mei Xinyu, Deng Xijun. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays. Acta Mathematica Scientia[J], 2022, 42(1): 86-102 doi:

1 引言

近年来, 时滞微分方程由于其在数学、物理、化学、生物和通讯系统等领域的广泛应用而备受人们的广泛关注并成为各领域研究的热点问题, 参见文献[1-2]. 在数学领域, 人们主要关注并研究时滞微分方程解的适定性和长时间行为, 并涌现出一些研究成果, 参见文献[3-26].

基于上述情况, 本文研究下述带有时滞项的弱阻尼波方程解的长时间行为

$ \begin{equation} \left\{\begin{array}{ll} \partial_{tt} u+\gamma\partial_{t}u-\Delta u =f(u)+F(u_{t})+g(t), \quad&(x, t)\in \Omega\times(\tau, \infty), \\ u(x, \, t)=0, &(x, t)\in \partial\Omega\times(\tau, \infty), \\ u(x, \, t)=\phi(x, t-\tau), &x\in\Omega, t\in[\tau-h, \tau], \\ \partial_{t}u(x, \, t)=\partial_{t}\phi(x, t-\tau), &x\in\Omega, t\in[\tau-h, \tau], \end{array}\right. \end{equation} $

其中$ \Omega\subset{{\Bbb R}} ^{3} $是有界光滑区域, 系数$ \gamma>0 $, $ F $是作用在带有某种遗传特征的解上的算子, 非自治外力项$ g(\cdot)\in L^{2}_{\rm loc}({{\Bbb R}} ; L^{2}(\Omega)) $, $ \phi $是区间$ [\tau-h, \tau] $上的初值, $ h(>0) $是时滞影响的长度. 对任意的$ t\geq\tau $, $ \tau\in{{\Bbb R}} $, $ u_{t} $表示定义在$ [-h, 0] $上的函数$ u_{t}(\theta)=u(t+\theta) $, $ \theta\in[-h, 0] $.

对于非线性项$ f $, 我们假设$ f\in C^{1}({{\Bbb R}} , {{\Bbb R}} ) $并满足$ f(0)=0 $和下述增长条件

$ \begin{equation} |f'(u)|\leq C(1+|u|^{p-1}), {\quad} p\in[1, 5), \quad\forall u\in{{\Bbb R}} . \end{equation} $

则由条件(1.2)可知, 存在常数$ C>0 $使得

$ \begin{eqnarray} |{\cal F}(u)|\leq C(1+|u|^{p+1}), \quad\forall u\in{{\Bbb R}} . \end{eqnarray} $

类似于文献[27], 我们对$ f $$ {\cal F} $做如下假设:

$ \begin{equation} \limsup\limits_{|u|\rightarrow \infty}\frac{{\cal F}(u)}{u^{2}}\leq0, \end{equation} $

$ \begin{equation} \limsup\limits_{|u|\rightarrow \infty}\frac{f(u)u-\mu{\cal F}(u)}{u^{2}}\leq0, \end{equation} $

其中常数$ \mu>0 $.

$ C_{X} $表示Banach空间$ C([-h, 0]; X) $并赋予上确界模, 则对任意的$ u\in C_{X} $, 它的模表示为$ { }\|u\|_{C_{X}}=\max\limits_{t\in [-h, 0]}\|u(t)\|_{X} $.$ (X, \|\cdot\|_{X}) $, $ (Y, \|\cdot\|_{Y}) $是两个满足连续嵌入$ X\subset Y $的Banach空间, 用$ C_{X, Y} $表示Banach空间$ C_{X}\cap C^{1}([-h, 0];Y) $并定义其模$ \|\cdot\|_{C_{X, Y}} $

对于算子$ F $, 类似于文献[3, 9, 28], 假设$ F: C_{L^{2}(\Omega)}\rightarrow L^{2}(\Omega) $

(Ⅰ) $ F(0)=0 $;

(Ⅱ) $ \forall\xi, \eta\in C_{L^{2}} $, $ \exists L_{F}>0 $使得

(Ⅲ) $ \exists m_{0}\geq0 $$ C_{F}>0 $, 使得对$ \forall u, v\in C([\tau-h, t]; L^{2}(\Omega)) $$ m\in [0, m_{0}] $, 有

对于不含时滞项的弱阻尼波方程, 其解的长时间行为已被许多学者进行研究, 参见文献[29-32]. 当非线性项$ f $满足临界指数(3次)增长时, Arrieta等[29]和Babin等[30]利用分解技巧证明了$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $中全局吸引子的存在性; Ball[31]利用能量方法, 在不需要对方程做分解的情况下证明了$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $中全局吸引子的存在性. 当非线性项$ f $满足5次增长时, 基于Strichartz估计在有界域上的延拓(参见文献[33-35]), Kalantarov等[32]建立了Shatah-Struwe解的全局适定性并证明了$ H_{0}^{1}(\Omega)\times L^{2}(\Omega) $中全局吸引子的存在性.

对于带有时滞项的弱阻尼波方程, 其解的长时间行为也被一些学者进行研究, 参见文献[3, 18, 21, 26]. Caraballo等[3]和Wang[18]主要研究线性情形并分别证明了$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中一致向前吸引子和$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $, $ C_{H_{0}^{1}(\Omega)\cap H^{2}(\Omega)}\times C_{H_{0}^{1}(\Omega)} $中拉回吸引子的存在性. 当非线性项满足临界(3次)增长时, Zhu等[21]建立了弱解的全局适定性并利用收缩函数的思想(参见文献[37-42])证明了$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中拉回吸引子的存在性. 当非线性项的增长次数大于3而小于5时, Zhu等[36]建立了Shatah-Struwe解的全局适定性并证明了$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中拉回吸引子的存在性.

本文考虑带有时滞项的弱阻尼波方程在$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中一致吸引子的存在性, 其中非线性项的增长次数大于3而小于5, 非自治外力项只满足平移有界. 我们通过构造能量泛函并结合收缩函数的思想验证Shatah-Struwe解过程$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中的一致渐近紧性, 从而得到$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中一致吸引子的存在性.

2 预备知识

本节首先简要给出非自治动力系统(一致吸引子)的一些相关概念, 参见文献[43-44].

给定$ g_{0}\in L_{b}^{2}({{\Bbb R}} ; V) $, 考虑到空间$ L_{b}^{2}({{\Bbb R}} ; V) $关于时间平移群$ T(s) $, $ s\in{{\Bbb R}} $的不变性, 我们定义$ g_{0} $的符号空间$ {\cal H}(g_{0}) $如下.

定义2.1  设$ g_{0}\in L_{b}^{2}({{\Bbb R}} ; V) $, 定义$ g_{0} $的符号空间$ {\cal H}(g_{0}) $为轨道$ {\cal O}(g_{0}) $$ L_{{\rm loc}, w}^{2}({{\Bbb R}} ; V) $中的闭包, 即

其中轨道$ {\cal O}(g_{0}):=\{T(s)g_{0}\mid s\in{{\Bbb R}} \}\subset L_{b}^{2}({{\Bbb R}} ; V) $.

考虑自反Banach空间$ W $上的Cauchy问题

$ \begin{equation} \partial_{t}u=A(u)+g_{0}(t), \quad u|_{t=\tau}=u_{\tau}, \end{equation} $

其中$ A(u) $是非线性(无界)算子, 外力项$ g_{0}\in L_{b}^{2}({{\Bbb R}} ; V) $. 假设问题(2.1)在$ W $中是全局适定的, 则我们可得到一族由$ {\cal H}(g_{0}) $参数化的过程$ U_{g}(t, \tau):W\rightarrow W, \, g\in{\cal H}(g_{0}) $, 并且$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $满足平移等式

为了研究一致吸引子的存在性及其结构, Chepyzhov等[43]构造出扩展相空间$ \Phi:=W\times{\cal H}(g_{0}) $上的斜积流

从而$ \{{\Bbb S}(t)\}_{t\geq0} $也构成扩展相空间$ \Phi $上的一个(扩展)算子半群.

定义2.2  如果一个集合$ {\Bbb A}\subset\Phi $满足下述条件:

$ (1) $$ {\Bbb A} $是由嵌入$ \Phi\subset W_{w}\times L_{{\rm loc}, w}^{2}({{\Bbb R}} , V) $$ (\Phi\subset W\times L_{{\rm loc}, w}^{2}({{\Bbb R}} , V)) $诱导的弱(强)拓扑意义下$ \Phi $的一个紧集. 接下来, 我们记这个拓扑为$ \Phi_{w} $$ (\Phi_{s}) $;

$ (2) $$ {\Bbb A} $满足严格不变性: $ {\Bbb S}(t){\Bbb A}={\Bbb A} $;

$ (3) $$ {\Bbb A} $在弱(强)拓扑$ \Phi_{w} $$ (\Phi_{s}) $意义下吸引有界集$ \Phi $的像, 即在弱(强)拓扑$ \Phi_{w} $$ (\Phi_{s}) $意义下对$ \Phi $中的每个有界集$ {\Bbb B} $和集合$ {\Bbb A} $的每个邻域$ {\Bbb O(\Bbb A)} $, 存在时间$ T=T({\Bbb B, \Bbb O}) $使得

则称$ {\Bbb A} $$ {\Bbb S}(t) $的弱(强)全局吸引子.

$ {\Bbb A} $$ W $上的投影称为过程族$ U_{g}(t, \tau):W\rightarrow W $, $ t\geq\tau $, $ g\in{\cal H}(g_{0}) $的弱(强)一致吸引子, 即

定义2.3  如果对任意给定的$ t>\tau $, 由$ W $中的弱收敛$ u_{\tau}^{n}\rightarrow u_{\tau} $$ {\cal H}(g_{0}) $中的弱收敛$ g_{n}\rightarrow g $可得到$ W $中的弱收敛$ U_{g_{n}}(t, \tau)u_{\tau}^{n}\rightarrow U_{g}(t, \tau)u_{\tau} $, 则称过程族$ U_{g}(t, \tau):W\rightarrow W $, $ g\in{\cal H}(g_{0}) $$ (W\times{\cal H}(g_{0}), W) $ -弱连续.

定理2.1  设过程族$ U_{g}(t, \tau):W\rightarrow W $, $ g\in{\cal H}(g_{0}) $一致耗散并且弱连续, 则半群$ {\Bbb S}(t):\Phi\rightarrow \Phi $存在弱一致全局吸引子$ {\Bbb A} $和相应的弱一致吸引子

$ \begin{eqnarray} {\cal A}_{w}:=\Pi_{1}{\Bbb A}=\bigcup\limits_{g\in{\cal H}(g_{0})}{\cal K}_{g}|_{t=0}, \end{eqnarray} $

其中$ {\cal K}_{g}\in L^{\infty}({{\Bbb R}} , V) $是由所有有界解轨道$ u(t) $组成的集合.

若过程族$ U_{g}(t, \tau):W\rightarrow W $, $ g\in{\cal H}(g_{0}) $一致渐近紧, 则弱一致吸引子$ {\cal A}_{w} $也是强一致吸引子$ {\cal A}_{s} $.

定义2.4  设$ V $是自反的Banach空间, $ 1<q<\infty $. 若对任给的$ \varepsilon>0 $, 存在子空间$ V_{\varepsilon}\subset V $$ (\dim V_{\varepsilon}<\infty) $和函数$ g_{\varepsilon}\in L^{q}_{b}({{\Bbb R}} ; V_{\varepsilon}) $使得$ \|g-g_{\varepsilon}\|_{L^{q}_{b}({{\Bbb R}} ; V)}\leq\varepsilon $, 则称函数$ g\in L^{q}_{b}({{\Bbb R}} ; V) $具有空间正则性. 类似地, 若对任给的$ \varepsilon>0 $和任意的$ k>0 $, 存在函数$ g_{\varepsilon}\in H^{k}_{b}({{\Bbb R}} ; V) $, 使得$ \|g-g_{\varepsilon}\|_{L^{q}_{b}({{\Bbb R}} ; V)}\leq\varepsilon $, 则称函数$ g\in L^{q}_{b}({{\Bbb R}} ; V) $具有时间正则性.

为了方便起见, 记$ \xi_{u}:=(u, \partial_{t}u) $, $ {\cal E}:=H_{0}^{1}(\Omega)\times L^{2}(\Omega) $, $ {\cal E}^{-1}:=L^{2}(\Omega)\times H^{-1}(\Omega) $, 则

下面给出弱(能量)解和Shatah-Struwe解的相关定义和结果[32, 45, 46].

定义2.5  若$ \xi_{u}(t):=(u(t), \partial_{t}u(t))\in L^{\infty}(\tau, T;{\cal E}) $在分布意义下满足方程(1.1), 即

其中初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in L^{\infty}(\tau, T;{\cal E}) $, 函数$ \nu $属于

则称函数$ u(t) $是方程(1.1)的弱(能量)解. 这里$ (\cdot, \cdot) $表示$ L^{2}(\Omega) $中的内积.

定义2.6  若方程(1.1)的弱解$ u(t) $, $ t\in[\tau, T] $满足下述正则性:

$ u(t) $, $ t\in[\tau, T] $是方程(1.1)的Shatah-Struwe解.

下面我们给出下述线性波方程的Strichartz估计[33-35]

$ \begin{equation} \left\{\begin{array}{ll} \partial_{tt}\upsilon+\gamma\partial_{t}\upsilon-\Delta\upsilon=G(t), {\quad} &(x, t)\in \Omega\times(\tau, \infty), \\ \upsilon(x, \, t)=0, &(x, t)\in \partial\Omega\times(\tau, \infty), \\ \xi_{\upsilon}(t)|_{t=\tau}=\xi_{\tau}, &x\in\Omega, \end{array}\right. \end{equation} $

其中$ \Omega $$ {{\Bbb R}} ^{3} $中的有界域, 初值$ \xi_{\upsilon}(\tau)=\xi_{\tau}:=(\upsilon_{\tau}, \upsilon'_{\tau})\in{\cal E} $.

引理2.1  设$ \xi_{\tau}\in{\cal E} $, $ G\in L^{1}(\tau, T;L^{2}(\Omega)) $, $ \upsilon(t) $是方程(2.3)的解且$ \xi_{\upsilon}\in C(\tau, T;{\cal E}) $, 则有下述估计

$ \begin{eqnarray} \|\xi_{\upsilon}(t)\|_{{\cal E}}\leq C\left(\|\xi_{\tau}\|_{{\cal E}}e^{-\beta(t-\tau)} +\int_{\tau}^{t}e^{-\beta(t-s)}\|G(s)\|_{2}{\rm d}s\right), \end{eqnarray} $

其中的正常数$ \beta $, $ C $依赖于常数$ \gamma>0 $, 但是不依赖于$ t $, $ \tau $, $ \xi_{\tau} $$ G $.

注2.1  根据能量估计(2.4)和插值不等式

$ \begin{eqnarray} \|\upsilon\|_{L^{5}(\tau, T;L^{10}(\Omega))}\leq C\|\upsilon\|_{L^{4}(\tau, T;L^{12}(\Omega))}^{\frac{4}{5}} \|\upsilon\|^{\frac{1}{5}}_{L^{\infty}(\tau, T;H_{0}^{1}(\Omega))}, \end{eqnarray} $

可得到解$ \upsilon $$ L^{5}(\tau, T;L^{10}(\Omega)) $ -模的有界性.

下述定义和定理将用来证明一致吸引子的存在性[32-36].

定义2.7  设$ (X, \|\cdot\|_{X}) $是Banach空间, $ B $$ X $的有界子集, $ \psi(\cdot, \cdot;\cdot, \cdot) $是定义在$ (X\times X)\times({\cal H}(g_{0})\times{\cal H}(g_{0})) $上的函数. 若对任给的序列$ \{x_{n}\}_{n=1}^{\infty}\subset B $和任意的$ \{g_{n}\}_{n=1}^{\infty}\subset{\cal H}(g_{0}) $, 存在子列$ \{x_{n_{k}}\}_{k=1}^{\infty}\subset\{x_{n}\}_{n=1}^{\infty} $$ \{g_{n_{k}}\}_{k=1}^{\infty}\subset\{g_{n}\}_{n=1}^{\infty} $使得

则称$ \psi(\cdot, \cdot;\cdot, \cdot) $$ B\times B $上的收缩函数.

$ B\times B $上的收缩函数组成的集合记为$ Contr(B, {\cal H}(g_{0})) $.

引理2.2  设$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $是Banach空间$ X $中的过程族且存在有界一致吸收集$ B_{0}\subset X $. 若对任给的$ \varepsilon>0 $, 存在$ T_{1}=T_{1}(B_{0}, \varepsilon)=t-\tau $$ \psi_{T_{1}, \tau}(\cdot, \cdot)\in Contr(B_{0}, {\cal H}(g_{0})) $使得

$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ X $中一致渐近紧.

3 一致吸引子的存在性

本节我们将证明方程(1.1)在$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中弱一致吸引子和强一致吸引子的存在性. 我们首先给出方程(1.1)解的存在性和唯一性, 这可以由Faedo-Galerkin逼近得到[36].

3.1 解的存在性和唯一性

引理3.1  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{\rm loc}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则对任意的$ \tau\in {{\Bbb R}} $, 存在$ T_{0}=T_{0}(\|\xi_{\tau}\|_{C_{{\cal E}}})\geq \tau $使得方程(1.1)在$ [\tau, T_{0}] $上存在一个Shatah-Struwe解$ u(t) $且满足下述估计

其中$ Q_{1}(\cdot) $$ [0, +\infty) $上不依赖于$ T_{0} $$ u(t) $的单调函数.

引理3.2  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{\rm loc}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则方程(1.1)在$ [\tau, T_{0}] $上的Shatah-Struwe解$ u(t) $具有唯一性. 而且, 对于两个初值不同的解$ u^{1}(t) $$ u^{2}(t) $有下述李普希茨连续

其中$ w(t)=u^{1}(t)-u^{2}(t) $, 常数

下述定理给出方程(1.1) Shatah-Struwe解$ u(t) $的全局存在性.

引理3.3  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则方程(1.1)存在一个全局Shatah-Struwe解$ u(t) $, 而且有下述估计

其中$ Q_{2}(\cdot) $$ [0, +\infty) $上不依赖于$ t $$ u(t) $的单调函数.

因而, 我们定义$ C_{{\cal E}} $中的过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $

$ \begin{eqnarray} U_{g}(t, \tau)(\phi, \partial_{t}\phi)=(u_{t}, u'_{t}), \quad\forall t\geq\tau, \end{eqnarray} $

而且$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{{\cal E}} $中满足李普希茨连续.

接下来, 用$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $表示由(3.1)式定义的过程族.

3.2 弱一致吸引子的存在性

本节我们将证明方程(1.1)在$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中弱一致吸引子的存在性. 下述引理表明过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中的一致耗散性.

引理3.4  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则方程(1.1)的解$ \xi_{u}(t)=(u(t), \partial_{t}u(t)) $满足下述估计

$ \begin{eqnarray} \|u_{t}\|_{C_{H_{0}^{1}(\Omega)}}^{2}+\|u'_{t}\|_{C_{L^{2}(\Omega)}}^{2} &\leq&\varrho_{0}^{2}e^{-\alpha(t-h-\tau)}+C_{1}e^{-\alpha(t-h-\tau)}+\frac{C_{4}}{\alpha} \\ & &+2C'_{\delta}|\Omega|+\frac{C_{3}e^{\alpha h}}{1-e^{-\alpha}} \sup\limits_{t\in{{\Bbb R}} }\int_{t}^{t+1}\|g(s)\|_{2}^{2}{\rm d}s, \quad\forall t-h\geq\tau, \end{eqnarray} $

其中$ C_{1}=\frac{2}{\beta}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C^{2}_{F}\|\phi\|_{2}^{2} $, $ C_{2}=\frac{2}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C'^{2}_{F} $, $ C_{3}=2(\frac{1}{\gamma}+\frac{\epsilon}{\delta}) $, $ C_{4}=\frac{4}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C'^{2}_{F}C'_{\delta}|\Omega| +2\epsilon C_{\delta}|\Omega| $, $ \alpha=\beta-C_{2}>0 $, $ \beta=\min\{\frac{(2\lambda_{1}-3\delta)\epsilon}{\lambda_{1}+(\gamma+1)\epsilon}, \frac{\gamma-2\epsilon}{1+\epsilon}, \epsilon\mu\} $, $ \varrho_{0}>0 $是一个与$ c_{1} $$ \|\xi_{\tau}\|^{2}_{C_{{\cal E}}} $相关的常数.

  让方程(1.1)与$ u $$ \Omega $上做$ L^{2} $-内积, 可得

利用Hölder不等式和Young不等式可得

$ \begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\left(\gamma\|u\|_{2}^{2}+2(\partial_{t}u, u)\right) +\|\nabla u\|_{2}^{2}-\|\partial_{t}u\|_{2}^{2} \\ &\leq&(f(u), u)+\frac{1}{\delta}\|F(u_{t})\|_{2}^{2} +\frac{1}{\delta}\|g(t)\|_{2}^{2}+\frac{\delta}{2}\|u\|_{2}^{2}, \end{eqnarray} $

这里的常数$ \delta $满足: $ 0<\delta\ll1 $.

再在(3.3)式两边同乘以2$ \epsilon(>0) $, 可得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\gamma\epsilon\|u\|_{2}^{2}+2\epsilon(\partial_{t}u, u)\right) +(2-\frac{\delta}{\lambda_{1}})\epsilon\|\nabla u\|_{2}^{2}-2\epsilon\|\partial_{t}u\|_{2}^{2} \\ &\leq& 2\epsilon(f(u), u)+\frac{2\epsilon}{\delta}\|F(u_{t})\|_{2}^{2} +\frac{2\epsilon}{\delta}\|g(t)\|_{2}^{2}. \end{eqnarray} $

另一方面, 让方程(1.1)与$ \partial_{t}u $$ \Omega $上做$ L^{2} $ -内积, 可得

从而

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}(\|\nabla u\|^{2}_{2}+\|\partial_{t}u\|^{2}_{2}-2({\cal F}(u), 1)) +\gamma\|\partial_{t}u\|^{2}_{2}\leq \frac{2}{\gamma}\|F(u_{t})\|_{2}^{2}+\frac{2}{\gamma}\|g(t)\|_{2}^{2}. \end{eqnarray} $

结合(3.4)和(3.5)式, 可得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\|\nabla u\|^{2}_{2}+\|\partial_{t}u\|^{2}_{2}-2({\cal F}(u), 1) +\gamma\epsilon\|u\|^{2}_{2}+2\epsilon(\partial_{t}u, u)\right) \\ &&+(2-\frac{\delta}{\lambda_{1}})\epsilon \|\nabla u\|_{2}^{2}+(\gamma-2\epsilon)\|\partial_{t}u\|_{2}^{2} \\ &\leq&2\epsilon(f(u), u)+2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|F(u_{t})\|_{2}^{2} +2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|g(t)\|_{2}^{2}. \end{eqnarray} $

由(1.5)式可知存在$ \delta>0 $ (与(3.3)式中相同)和$ C_{\delta}>0 $使得

$ \begin{eqnarray} f(u)u-\mu{\cal F}(u)\leq\delta u^{2}+C_{\delta}, \quad\forall u\in{{\Bbb R}} . \end{eqnarray} $

再结合(3.6)式和(3.7)式, 可得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\|\nabla u\|^{2}_{2}+\|\partial_{t}u\|^{2}_{2}-2({\cal F}(u), 1) +\gamma\epsilon\|u\|^{2}_{2}+2\epsilon(\partial_{t}u, u)\right) +(2-\frac{3\delta}{\lambda_{1}})\epsilon\|\nabla u\|_{2}^{2} \\ &&+(\gamma-2\epsilon)\|\partial_{t}u\|_{2}^{2}-2\epsilon\mu({\cal F}(u), 1) \\ &\leq&2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|F(u_{t})\|_{2}^{2} +2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|g(t)\|_{2}^{2} +2\epsilon C_{\delta}|\Omega|. \end{eqnarray} $

$ \xi_{u}(t)=(u(t), \partial_{t}u(t)) $

由(1.4)式可知存在$ \delta>0 $ (与(3.3)式中相同)和$ C'_{\delta}>0 $使得

从而存在常数$ c_{1}>0 $使得

$ \begin{eqnarray} c_{1}(\|\nabla u\|^{2}_{2}+\|\partial_{t}u\|^{2}_{2})-2C'_{\delta}|\Omega|\leq E(\xi_{u}(t)) \end{eqnarray} $

以及

$ \begin{eqnarray} E(\xi_{u}(t))\leq\left(1+\frac{(\gamma+1)\epsilon}{\lambda_{1}}\right) \|\nabla u\|^{2}_{2}+(1+\epsilon)\|\partial_{t}u\|^{2}_{2}-2({\cal F}(u), 1). \end{eqnarray} $

由(3.8)式得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}E(\xi_{u}(t)) +(2-\frac{3\delta}{\lambda_{1}})\epsilon\|\nabla u\|_{2}^{2} +(\gamma-2\epsilon)\|\partial_{t}u\|_{2}^{2}-2\epsilon\mu({\cal F}(u), 1) \\ &\leq&2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|F(u_{t})\|_{2}^{2} +2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|g(t)\|_{2}^{2} +2\epsilon C_{\delta}|\Omega|. \end{eqnarray} $

$ \gamma-2\epsilon>0 $并设$ \beta=\min\{\frac{(2\lambda_{1}-3\delta)\epsilon}{\lambda_{1}+(\gamma+1)\epsilon}, \frac{\gamma-2\epsilon}{1+\epsilon}, \epsilon\mu\} $, 由(3.10)式和(3.11)式可得

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}E(\xi_{u}(t))+\beta E(\xi_{u}(t)) \leq2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|F(u_{t})\|_{2}^{2} +2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|g(t)\|_{2}^{2}+2\epsilon C_{\delta}|\Omega|. \end{eqnarray} $

在(3.12)式两边乘以$ e^{\beta t} $, 可得

$ \begin{eqnarray} \frac{\rm d}{{\rm d}t}(E(\xi_{u}(t))e^{\beta t}) \leq2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|F(u_{t})\|_{2}^{2}e^{\beta t} +2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\|g(t)\|_{2}^{2}e^{\beta t}+2\epsilon C_{\delta}|\Omega|e^{\beta t}. \end{eqnarray} $

对(3.13)式关于时间$ t $$ [\tau, t] $上积分, 可得

由假设(Ⅲ)可得

再由Poincaré不等式和(3.9)式可得

$ \begin{eqnarray} &&E(\xi_{u}(t))e^{\beta t} \\ &\leq& E(\xi_{u}(\tau))e^{\beta\tau} +\frac{2}{\beta}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C^{2}_{F}\|\phi\|_{2}^{2}e^{\beta\tau} +\frac{2}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C^{2}_{F} \int_{\tau}^{t}\|\nabla u(s)\|_{2}^{2}e^{\beta s}{\rm d}s \\ &&+2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\int_{\tau}^{t}\|g(s)\|_{2}^{2}e^{\beta s}{\rm d}s +2\epsilon C_{\delta}|\Omega|\int_{\tau}^{t}e^{\beta s}{\rm d}s \\ &\leq& E(\xi_{u}(\tau))e^{\beta\tau} +\frac{2}{\beta}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C^{2}_{F}\|\phi\|_{2}^{2}e^{\beta\tau} +\frac{2}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C'^{2}_{F} \int_{\tau}^{t}(E(\xi_{u}(s))+2C'_{\delta}|\Omega|)e^{\beta s}{\rm d}s \\ &&+2(\frac{1}{\gamma}+\frac{\epsilon}{\delta})\int_{\tau}^{t}\|g(s)\|_{2}^{2}e^{\beta s}{\rm d}s +2\epsilon C_{\delta}|\Omega|\int_{\tau}^{t}e^{\beta s}{\rm d}s, \quad\forall t\geq\tau. \end{eqnarray} $

为了简单起见, 记$ C_{1}=\frac{2}{\beta}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C^{2}_{F}\|\phi\|_{2}^{2} $, $ C_{2}=\frac{2}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C'^{2}_{F} $, $ C_{3}=2(\frac{1}{\gamma}+\frac{\epsilon}{\delta}) $, $ C_{4}=\frac{4}{\lambda_{1}}(\frac{1}{\gamma}+\frac{\epsilon}{\delta})C'^{2}_{F}C'_{\delta}|\Omega| +2\epsilon C_{\delta}|\Omega| $. 再对(3.14)式应用Gronwall引理, 可得

从而

再由(3.9)式并设$ \alpha=\beta-C_{2}>0 $, 然后用$ t+\theta $代替$ t $, 可得

$ \begin{eqnarray} \|\xi_{u_{t}}\|^{2}_{C_{V, H}}&=&\|u_{t}\|^{2}_{C_{V}}+\|u'_{t}\|^{2}_{C_{H}} \\ &\leq&\varrho_{0}^{2}e^{-\alpha(t-h-\tau)}+C_{1}e^{-\alpha(t-h-\tau)} +\frac{C_{4}}{\alpha}+2C'_{\delta}|\Omega| \\ &&+C_{3}e^{-\alpha(t-h)}\int_{\tau}^{t}e^{\alpha s}\|g(s)\|_{2}^{2}{\rm d}s, \quad\forall t-h\geq\tau, \end{eqnarray} $

其中$ \varrho_{0}>0 $是依赖于$ c_{1} $$ \|\xi_{\tau}\|^{2}_{C_{{\cal E}}} $的常数.

而且

$ \begin{eqnarray} &&e^{-\alpha t}\int_{\tau}^{t}e^{\alpha s}\|g(s)\|_{2}^{2}{\rm d}s \\ &=&e^{-\alpha t}\left(\int_{t-1}^{t}e^{\alpha s}\|g(s)\|_{2}^{2}{\rm d}s +\int_{t-2}^{t-1}e^{\alpha s}\|g(s)\|_{2}^{2}{\rm d}s+\cdot\cdot\cdot\right) \\ &=&e^{-\alpha t}\left(\int_{0}^{1}e^{\alpha(s+t-1)}\|g(s+t-1)\|_{2}^{2}{\rm d}s +\int_{0}^{1}e^{\alpha(s+t-2)}\|g(s+t-2)\|_{2}^{2}{\rm d}s+\cdot\cdot\cdot\right) \\ &\leq&(e^{-\alpha}+e^{-2\alpha}+\cdot\cdot\cdot) \sup\limits_{t\in{{\Bbb R}} }\int_{0}^{1}e^{\alpha s}\|g(s+t)\|_{2}^{2}{\rm d}s \leq\frac{e^{-\alpha}}{1-e^{-\alpha}} \sup\limits_{t\in{{\Bbb R}} }\int_{0}^{1}e^{\alpha s}\|g(s+t)\|_{2}^{2}{\rm d}s \\ &=&\frac{1}{1-e^{-\alpha}}\sup\limits_{t\in{{\Bbb R}} }\int_{0}^{1}\|g(s+t)\|_{2}^{2}{\rm d}s =\frac{1}{1-e^{-\alpha}}\sup\limits_{t\in{{\Bbb R}} }\int_{t}^{t+1}\|g(s)\|_{2}^{2}{\rm d}s. \end{eqnarray} $

结合(3.15)式和(3.16)式, 可得

其中$ \varrho_{0}>0 $是一个与$ c_{1} $$ \|\xi_{\tau}\|^{2}_{C_{{\cal E}}} $相关的常数.

作为引理3.4的一个直接结果, 下述的推论表明过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{{\cal E}} $中有界一致吸收集的存在性.

推论3.1  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{{\cal E}} $中存在有界一致吸收集, 即, 存在常数$ \rho_{0}>0 $使得对$ C_{{\cal E}} $中的任意有界子集$ B_{0} $, 存在$ T_{B_{0}}=T(\|B_{0}\|_{C_{{\cal E}}}) $使得

$ \begin{eqnarray} \|u_{t}\|_{C_{H_{0}^{1}(\Omega)}}^{2}+\|u'_{t}\|_{C_{L^{2}(\Omega)}}^{2}\leq\rho_{0}^{2}, \quad\forall t-h\geq T_{B_{0}}, \end{eqnarray} $

其中$ \rho_{0}^{2}=1+\frac{C_{4}}{\alpha}+2C'_{\delta}|\Omega| +\frac{C_{3}e^{\alpha h}}{1-e^{-\alpha}}\sup\limits_{t\in{{\Bbb R}} }\int_{t}^{t+1}\|g(s)\|_{2}^{2}{\rm d}s $, $ T_{B_{0}}=\tau+\frac{1}{\alpha}\ln(\varrho_{0}^{2}+C_{1}) $, $ \varrho_{0}>0 $是一个与$ c_{1} $$ \|\xi_{\tau}\|^{2}_{C_{{\cal E}}} $相关的常数.

下述定理表面过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $的弱连续性.

定理3.1  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} , L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则对任意$ t>\tau $, 过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ ({\cal E}\times{\cal H}(g_{0}), {\cal E}) $-弱连续.

  对任给的$ t>\tau $, $ \tau\in{{\Bbb R}} $, 设$ (\xi_{u_{\tau}^{n}}, g_{n}) $$ {\cal E}\times{\cal H}(g_{0}) $中弱收敛到$ (\xi_{u_{\tau}}, g) $. 对任给的$ s\in[\tau, t] $, 记$ \xi_{u^{n}}(s)=U_{g_{n}}(s, \tau)\xi_{u_{\tau}^{n}} $, $ \xi_{u}(s)=U_{g}(s, \tau)\xi_{u_{\tau}} $. 由引理3.3和引理3.4可知

再由$ \partial_{tt}u^{n}=f(u^{n})+F(u_{t}^{n})+g_{n}(t)-\gamma\partial_{t}u^{n}+\Delta u^{n} $, 可知$ \{\partial_{tt}u^{n}\}_{n=1}^{\infty} $$ L^{2}(\tau, t;H^{-1}(\Omega)) $中有界.

由Aubin-Lions引理, 通过对$ \{u^{n}\}_{n=1}^{\infty} $的子列(仍记为$ \{u^{n}\}_{n=1}^{\infty} $)所满足的方程(1.1)两边取极限, 可得$ \tilde{u} $是方程(1.1)的对应于初值$ \tilde{u}(\tau)=\phi $的Shatah-Struwe解. 由Shatah-Struwe解的唯一性可知$ \xi_{\tilde{u}}(s)=\xi_{u}(s) $, $ s\in[\tau, t] $, 进而运用反证法可得到全序列$ \{\xi_{u^{n}}\}_{n=1}^{\infty} $$ L^{2}(\tau, t;{\cal E}) $中弱收敛到$ \xi_{u} $, 全序列$ \{\xi_{u^{n}}\}_{n=1}^{\infty} $$ L^{2}(\tau, t;{\cal E}^{-1}) $中强收敛到$ \xi_{u} $.

进一步, 对任给的$ \varphi\in{\cal E} $, 全序列$ \{\xi_{u^{n}}(s)\}_{n=1}^{\infty} $$ {\cal E}^{-1} $中强收敛到$ \xi_{u}(s) $以及$ (\xi_{u^{n}}(s), \varphi)\rightarrow (\xi_{u}(s), \varphi) $, $ s\in[\tau, t] $几乎处处成立.

由引理3.2和引理3.4可知序列$ \{(\xi_{u^{n}}(s), \varphi)\}_{n=1}^{\infty} $满足一致有界且等度连续. 由Arzela–Ascoli定理可知序列$ \{(\xi_{u^{n}}(s), \varphi)\}_{n=1}^{\infty}\in C[\tau, t] $准紧, 从而有

$ \begin{eqnarray} (\xi_{u^{n}}(s), \varphi)\rightarrow (\xi_{u}(s), \varphi), \quad\forall s\in[\tau, t], \varphi\in{\cal E}. \end{eqnarray} $

结合考虑方程(1.1)和$ {\cal E} $在它的共轭空间$ H^{-1}(\Omega)\times L^{2}(\Omega) $中的稠密性, 由(3.18)式可知$ \xi_{u^{n}}(s) $$ {\cal E} $中弱收敛到$ \xi_{u}(s) $.

结合过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $的弱连续性和一致耗散性, 可得下述结果:

定理3.2  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} , L^{2}(\Omega)) $, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{{\cal E}} $中存在弱一致吸引子$ {\cal A}_{w} $. 而且, 该弱一致吸引子$ {\cal A}_{w} $满足(2.2)式.

3.3 强一致吸引子的存在性

本节我们将证明方程(1.1)在$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中强一致吸引子的存在性.

下述定理表明过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中的一致渐近紧性.

定理3.3  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $满足时间正则性, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中一致渐近紧.

  设$ \xi_{u^{i}}(t)=(u^{i}(t), \partial_{t}u^{i}(t)) $是方程(1.1)的对应于初值$ \xi_{\tau, i}=(\phi^{i}(x, t-\tau), \partial_{t}\phi^{i}(x, t-\tau))\in B_{0}\subset C_{{\cal E}} $的Shatah-Struwe解, $ B_{0} $是推论3.1中的有界吸收集, $ g_{i}\in{\cal H}(g_{0}) $$ (i=1, 2, $$ t\in[\tau-h, \tau]) $, 则$ w(t)=u^{1}(t)-u^{2}(t) $满足方程

$ \begin{eqnarray} \partial_{tt}w+\gamma\partial_{t}w-\Delta w=f(u^{1})-f(u^{2})+F(u^{1}_{t})-F(u^{2}_{t})+g_{1}(t)-g_{2}(t), \end{eqnarray} $

其中$ (x, t)\in\Omega\times(\tau, \infty) $, 初值

定义能量泛函

在(3.19)式两边同乘以$ \partial_{t}w $并在$ \Omega\times[s, t] $上积分, 再利用Hölder不等式和Young不等式, 可得

$ \begin{eqnarray} &&E_{w}(t)+\frac{\gamma}{2}\int_{s}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r \\ &\leq &E_{w}(s)+\int_{s}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\frac{1}{2\gamma}\int_{s}^{t}\|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}dr +\int_{s}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r. \end{eqnarray} $

对(3.20)式关于$ s $$ [\tau, t] $上积分, 可得

$ \begin{eqnarray} &&(t-\tau)E_{w}(t) +\frac{\gamma}{2}\int_{\tau}^{t}\int_{s}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r{\rm d}s \\ &\leq&\int_{\tau}^{t}E_{w}(s){\rm d}s+\int_{\tau}^{t}\int_{s}^{t} \int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s \\ &&+\frac{1}{2\gamma}\int_{\tau}^{t}\int_{s}^{t} \|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}{\rm d}r{\rm d}s +\int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s. \end{eqnarray} $

另一方面, 在(3.19)式两边同乘以$ w $并在$ \Omega\times[s, t] $上积分, 再利用Hölder不等式和Young不等式, 可得

$ \begin{eqnarray} &&(\partial_{t}w(t), w(t))+\frac{1}{2}\int_{s}^{t}\|\nabla w(r)\|_{2}^{2}{\rm d}r \\ &\leq&(\partial_{t}w(s), w(s))-\gamma\int_{s}^{t}\int_{\Omega}\partial_{t}w(r)w(r){\rm d}x{\rm d}r +\int_{s}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r \\ &&+\int_{s}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))w(r){\rm d}x{\rm d}r +\frac{1}{2\lambda_{1}}\int_{s}^{t}\|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}{\rm d}r \\ &&+\int_{s}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))w(r){\rm d}x{\rm d}r. \end{eqnarray} $

进一步, 在(3.22)式中让$ s=\tau $, 可得

$ \begin{eqnarray} &&(\partial_{t}w(t), w(t))+\int_{\tau}^{t}E_{w}(r){\rm d}r \\ &\leq&(\partial_{t}w(\tau), w(\tau))-\gamma\int_{\tau}^{t}\int_{\Omega}\partial_{t}w(r)w(r){\rm d}x{\rm d}r +\frac{3}{2}\int_{\tau}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r \\ &&+\int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))w(r){\rm d}x{\rm d}r +\frac{1}{2\lambda_{1}}\int_{\tau}^{t}\|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}{\rm d}r \\ &&+\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))w(r){\rm d}x{\rm d}r. \end{eqnarray} $

在(3.20)式两边同乘以$ \frac{3}{\gamma} $并让$ s=\tau $, 可得

$ \begin{eqnarray} &&\frac{3}{\gamma}E_{w}(t)+\frac{3}{2}\int_{\tau}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r \\ &\leq &\frac{3}{\gamma}E_{w}(\tau)+\frac{3}{\gamma} \int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\frac{3}{2\gamma^{2}}\int_{\tau}^{t}\|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}{\rm d}r +\frac{3}{\gamma}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r. \end{eqnarray} $

将(3.24)式代入(3.23)式, 可得

$ \begin{eqnarray} &&\int_{\tau}^{t}E_{w}(r){\rm d}r\\ &\leq&-(\partial_{t}w(t), w(t))+(\partial_{t}w(\tau), w(\tau)) -\gamma\int_{\tau}^{t}\int_{\Omega}\partial_{t}w(r) w(r){\rm d}x{\rm d}r \\ &&+\frac{3}{\gamma}E_{w}(\tau)+\frac{3}{\gamma} \int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\frac{1}{2}(\frac{3}{\gamma^{2}}+\frac{1}{\lambda_{1}})\int_{\tau}^{t}\|F(u^{1}_{r})-F(u^{2}_{r})\|_{2}^{2}{\rm d}r +\frac{3}{\gamma}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))w(r){\rm d}x{\rm d}r +\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))w(r){\rm d}x{\rm d}r. \end{eqnarray} $

再将(3.25)式代入(3.21)式, 可得

再由假设(Ⅲ), 可得

$ \begin{eqnarray} E_{w}(t)&\leq&-\frac{1}{t-\tau}(\partial_{t}w(t), w(t))+\frac{1}{t-\tau}(\partial_{t}w(\tau), w(\tau)) -\frac{\gamma}{t-\tau}\int_{\tau}^{t}\int_{\Omega}\partial_{t}w(r)w(r){\rm d}x{\rm d}r \\ &&+\frac{3}{\gamma(t-\tau)}E_{w}(\tau)+\frac{3}{\gamma(t-\tau)} \int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\frac{1}{2}C_{F}^{2}(\frac{3}{\gamma^{2}(t-\tau)}+\frac{1}{\lambda_{1}(t-\tau)}+\frac{1}{\gamma}) \int_{\tau-h}^{t}\|u^{1}(r)-u^{2}(r)\|_{2}^{2}{\rm d}r \\ &&+\frac{1}{t-\tau}\int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))w(r){\rm d}x{\rm d}r \\ &&+\frac{1}{t-\tau}\int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s \\ &&+\frac{1}{t-\tau}\int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s \\ &&+\frac{3}{\gamma(t-\tau)}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r {}\\ && +\frac{1}{t-\tau}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))w(r){\rm d}x{\rm d}r. \end{eqnarray} $

下面我们将处理(3.26)式右边的每一项.

首先, 由(1.2)式, Hölder不等式和Sobolev嵌入$ H_{0}^{1}(\Omega)\hookrightarrow L^{6}(\Omega) $, 可得

$ \begin{eqnarray} &&\frac{1}{t-\tau}\int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))w(r){\rm d}x{\rm d}r \\ &\leq&\frac{1}{t-\tau}\int_{\tau}^{t} \left(\int_{\Omega}|f(u^{1}(r))-f(u^{2}(r))|^{2}{\rm d}x\right)^{\frac{1}{2}} \left(\int_{\Omega}|w(r)|^{2}{\rm d}x\right)^{\frac{1}{2}}{\rm d}r \\ &\leq&\frac{C}{t-\tau}\left(\int_{\tau}^{t} \left|\int_{\Omega}(1+|u^{1}(r)|^{2p}+|u^{2}(r)|^{2p}){\rm d}x\right|^{\frac{5}{2p}}{\rm d}r\right)^{\frac{p}{5}} \left(\int_{\tau}^{t}\|w(r)\|_{2}^{\frac{5}{5-p}}{\rm d}r\right)^{\frac{5-p}{5}} \\ &\leq&\frac{C}{t-\tau}\Big(|\Omega|^{\frac{5}{2p}}(t-\tau) \\ &&+|\Omega|^{\frac{5-p}{2p}}\int_{\tau}^{t}(\|u^{1}(r)\|_{L^{10}(\Omega)}^{5} +\|u^{2}(r)\|_{L^{10}(\Omega)}^{5}){\rm d}r\Big)^{\frac{1}{2}} \Big(\int_{\tau}^{t}\|w(r)\|_{2}^{\frac{5}{5-p}}{\rm d}r\Big)^{\frac{5-p}{5}}. \end{eqnarray} $

再由引理3.1和(2.5)式, 可得

$ \begin{eqnarray} \left(|\Omega|^{\frac{5}{2p}}(t-\tau)+|\Omega|^{\frac{5-p}{2p}}\int_{\tau}^{t}(\|u^{1}(r)\|_{L^{10}(\Omega)}^{5} +\|u^{2}(r)\|_{L^{10}(\Omega)}^{5}){\rm d}r\right)^{\frac{1}{2}}\leq C_{t, \tau, \rho_{0}}<\infty, \end{eqnarray} $

其中$ C_{t, \tau, \rho_{0}} $$ t-\tau $$ \rho_{0} $相关, $ B_{0} $$ \rho_{0} $由推论3.1给出.

另外, 由Hölder不等式和推论3.1中的(3.17)式, 可得

$ \begin{eqnarray} -\frac{\gamma}{t-\tau}\int_{\tau}^{t}\int_{\Omega}\partial_{t}w(r)w(r){\rm d}x{\rm d}r &\leq&\frac{\gamma}{t-\tau}\left(\int_{\tau}^{t}\|\partial_{t}w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \left(\int_{\tau}^{t}\|w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \\ &\leq&C_{\rho_{0}}\frac{\gamma}{t-\tau}\left(\int_{\tau}^{t}\|w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}}, \end{eqnarray} $

以及

$ \begin{eqnarray} -\frac{1}{t-\tau}(\partial_{t}w(t), w(t))\leq\frac{1}{t-\tau}\|\partial_{t}w(t)\|_{2}\|w(t)\|_{2} \leq C_{\rho_{0}}\frac{1}{t-\tau}\|w(t)\|_{2}. \end{eqnarray} $

最后

$ \begin{eqnarray} &&\frac{1}{t-\tau}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))w(r){\rm d}x{\rm d}r \\ &\leq&\frac{1}{t-\tau}\left(\int_{\tau}^{t}\|g_{1}(r)-g_{2}(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \left(\int_{\tau}^{t}\|w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \\ &\leq&\frac{\sqrt{2}}{t-\tau}\left(\int_{\tau}^{t}\|g_{1}(r)\|_{2}^{2}{\rm d}r +\int_{\tau}^{t}\|g_{2}(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \left(\int_{\tau}^{t}\|w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}}. \end{eqnarray} $

综合(3.26)–(3.31)式, 设$ T_{1}=t-\tau $

$ \begin{eqnarray} &&\psi_{T_{1}, \tau}((\phi^{1}, \partial_{t}\phi^{1}), (\phi^{2}, \partial_{t}\phi^{2});g_{1}, g_{2}) =C_{\rho_{0}}\frac{1}{t-\tau}\|w(t)\|_{2} \\ &&+\left(C\frac{C_{t, \tau, \rho_{0}}}{t-\tau}+C_{\rho_{0}}\frac{\gamma}{t-\tau} +C_{\|g_{1}\|_{L^{2}(\tau, t;L^{2}(\Omega))}, \|g_{2}\|_{L^{2}(\tau, t;L^{2}(\Omega))}} \frac{\sqrt{2}}{t-\tau}\right) \left(\int_{\tau}^{t}\|w(r)\|_{2}^{2}{\rm d}r\right)^{\frac{1}{2}} \\ &&+\frac{1}{2}C_{F}^{2}(\frac{3}{\gamma^{2}(t-\tau)}+\frac{1}{\lambda_{1}(t-\tau)}+\frac{1}{\gamma}) \int_{\tau-h}^{t}\|u^{1}(r)-u^{2}(r)\|_{2}^{2}{\rm d}r \\ &&+\frac{3}{\gamma(t-\tau)}\int_{\tau}^{t}\int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r \\ &&+\frac{1}{t-\tau}\int_{\tau}^{t}\int_{s}^{t} \int_{\Omega}(f(u^{1}(r))-f(u^{2}(r)))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s \\ &&+\frac{1}{t-\tau}\int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r{\rm d}s \\ &&+\frac{3}{\gamma(t-\tau)}\int_{\tau}^{t}\int_{\Omega}(g_{1}(r)-g_{2}(r))\partial_{t}w(r){\rm d}x{\rm d}r. \end{eqnarray} $

因而

选取足够大的$ t=t(\tau, B_{0}, \varepsilon)>\tau $使得

从而有

$ \begin{eqnarray} E_{w}(t)\leq\varepsilon +\psi_{T_{1}, \tau}((\phi^{1}, \partial_{t}\phi^{1}), (\phi^{2}, \partial_{t}\phi^{2});g_{1}, g_{2}), \end{eqnarray} $

其中$ (\phi^{i}, \partial_{t}\phi^{i})\in B_{0} $$ (i=1, 2) $.

下面我们只需验证由(3.32)式所定义的函数$ \psi_{T_{1}, \tau}((\phi^{1}, \partial_{t}\phi^{1}), (\phi^{2}, \partial_{t}\phi^{2});g_{1}, g_{2}) $$ B_{0}\times B_{0} $上的收缩函数.

$ (u^{n}, \partial_{t}u^{n}) $是方程(1.1)的与初值$ (\phi^{n}, \partial_{t}\phi^{n})\in B_{0} $$ g_{n}\in{\cal H}(g_{0}) $, $ n=1, 2, \cdot\cdot\cdot $相关的解. 由于$ B_{0} $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $有界, 则

其中$ M $与(3.2)式中的$ C_{i} $$ (i=1, 2, 3, 4) $$ \|\xi_{\tau}\|^{2}_{C_{{\cal E}}} $相关.

对任意的$ p\in[1, 5) $, 不失一般性, 有

$ \begin{equation} u^{n}\ \mbox{在}\ L^{\infty}(\tau, t; H_{0}^{1}(\Omega))\ \mbox{中弱} \star -\mbox{收敛到}\ u, \end{equation} $

$ \begin{equation} u^{n}\ \mbox{在}\ L^{p+1}(\tau, t; L^{p+1}(\Omega)) \ \mbox{中弱收敛到} u, \end{equation} $

$ \begin{equation} \partial_{t}u^{n}\ \mbox{在}\ L^{\infty}(\tau, t; L^{2}(\Omega))\ \mbox{中弱} \star -\mbox{收敛到}\ \partial_{t}u, \end{equation} $

$ \begin{equation} u^{n}\ \mbox{在} L^{2}(\tau, t; L^{2}(\Omega)) \mbox{和}\ L^{\frac{5}{5-p}}(\tau, t; L^{2}(\Omega)) \ \mbox{中弱收敛到} u, \end{equation} $

$ \begin{equation} u^{n}(\tau)\ \mbox{和}\ u^{n}(t)\ \mbox{在}\ L^{p+1}(\Omega) \ \mbox{中分别收敛到}\ u(\tau)\ \mbox{和} \ u(t), \end{equation} $

这里我们用到Sobolev紧嵌入$ H_{0}^{1}(\Omega)\hookrightarrow L^{p+1}(\Omega) $.

下面我们逐项处理(3.32)式中的每一项.

首先, 由(3.36)式可得

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\|u^{n}(r)-u^{m}(r)\|_{2}^{2}{\rm d}r=0, \end{equation} $

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\|u^{n}(r)-u^{m}(r)\|_{2}^{\frac{5}{5-p}}{\rm d}r=0. \end{equation} $

然后

$ \begin{eqnarray} &&\int_{\tau}^{t}\int_{\Omega}(f(u^{n}(r))-f(u^{m}(r))) (\partial_{t}u^{n}(r)-\partial_{t}u^{m}(r)){\rm d}x{\rm d}r \\ &=&\int_{\tau}^{t}\int_{\Omega}f(u^{n}(r))\partial_{t}u^{n}(r){\rm d}x{\rm d}r +\int_{\tau}^{t}\int_{\Omega}f(u^{m}(r))\partial_{t}u^{m}(r){\rm d}x{\rm d}r \\ &&-\int_{\tau}^{t}\int_{\Omega}f(u^{n}(r))\partial_{t}u^{m}(r){\rm d}x{\rm d}r -\int_{\tau}^{t}\int_{\Omega}f(u^{m}(r))\partial_{t}u^{n}(r){\rm d}x{\rm d}r \\ &=&\int_{\Omega}{\cal F}(u^{n}(t))-\int_{\Omega}{\cal F}(u^{n}(\tau)) +\int_{\Omega}{\cal F}(u^{m}(t))-\int_{\Omega}{\cal F}(u^{m}(\tau)) \\ &&-\int_{\tau}^{t}\int_{\Omega}f(u^{n}(r))\partial_{t}u^{m}(r){\rm d}x{\rm d}r -\int_{\tau}^{t}\int_{\Omega}f(u^{m}(r))\partial_{t}u^{n}(r){\rm d}x{\rm d}r. \end{eqnarray} $

由(1.2)式, Shatah-Struwe解的定义以及(2.5)式, 可得$ f(u^{m}) $$ L^{1}(\tau, t;L^{2}(\Omega) $中弱收敛到$ f(u) $. 再综合(3.35)式, (3.37)式和(3.41)式, 可得

$ \begin{eqnarray} &&\lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\int_{\Omega}(f(u^{n}(r))-f(u^{m}(r))) (\partial_{t}u^{n}(r)-\partial_{t}u^{m}(r)){\rm d}x{\rm d}r \\ &=&\int_{\Omega}{\cal F}(u(t))-\int_{\Omega}{\cal F}(u(\tau)) +\int_{\Omega}{\cal F}(u(t))-\int_{\Omega}{\cal F}(u(\tau)) \\ &&-\int_{\tau}^{t}\int_{\Omega}f(u(r))\partial_{t}u(r){\rm d}x{\rm d}r -\int_{\tau}^{t}\int_{\Omega}f(u(r))\partial_{t}u(r){\rm d}x{\rm d}r \\ & =&0. \end{eqnarray} $

类似地, 对任给的$ s\in[\tau, t] $, $ |\int_{s}^{t}\int_{\Omega}(f(u^{n}(r))-f(u^{m}(r))) (\partial_{t}u^{n}(r)-\partial_{t}u^{m}(r)){\rm d}x{\rm d}r| $有界, 再由(3.42)式和勒贝格控制收敛定理, 可得

$ \begin{eqnarray} &&\lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(f(u^{n}(r))-f(u^{m}(r))) (\partial_{t}u^{n}(r)-\partial_{t}u^{m}(r)){\rm d}x{\rm d}r{\rm d}s \\ &=&\int_{\tau}^{t}\left(\lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{s}^{t}\int_{\Omega}(f(u^{n}(r))-f(u^{m}(r))) (\partial_{t}u^{n}(r)-\partial_{t}u^{m}(r)){\rm d}x{\rm d}r\right){\rm d}s \\ &=&\int_{\tau}^{t}0{\rm d}s=0. \end{eqnarray} $

再类似于文献[46]中的命题4.1和定理4.3, 可得

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\int_{s}^{t}\int_{\Omega}(g_{n}(r)-g_{m}(r))(\partial_{t}u_{n}(r)-\partial_{t}u_{m}(r)){\rm d}x{\rm d}r{\rm d}s=0, \end{equation} $

$ \begin{equation} \lim\limits_{n\rightarrow \infty}\lim\limits_{m\rightarrow \infty} \int_{\tau}^{t}\int_{\Omega}(g_{n}(r)-g_{m}(r))(\partial_{t}u_{n}(r)-\partial_{t}u_{m}(r)){\rm d}x{\rm d}r=0. \end{equation} $

综合(3.39)–(3.45)式, 可知由(3.32)式所定义的函数$ \psi_{T_{1}, \tau}(\cdot, \cdot;\cdot, \cdot) $$ B_{0}\times B_{0} $上的收缩函数. 特别地, 在(3.33)式中用$ t+\theta $代替$ t $并根据引理 可知过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{H_{0}^{1}(\Omega)}\times C_{L^{2}(\Omega)} $中一致渐近紧.

综合定理3.2和定理3.3, 可得下述结果:

定理3.4  设$ f $满足(1.2)–(1.5)式, $ F(u_{t}) $满足假设(Ⅰ)–(Ⅲ), $ g(\cdot)\in L_{b}^{2}({{\Bbb R}} ;L^{2}(\Omega)) $满足时间正则性, 初值$ \xi_{\tau}=(\phi, \partial_{t}\phi)\in C_{{\cal E}} $, 则过程族$ U_{g}(t, \tau) $, $ g\in{\cal H}(g_{0}) $$ C_{{\cal E}} $中存在强一致吸引子$ {\cal A}_{s} $. 而且, 该强一致吸引子$ {\cal A}_{s} $满足(2.2)式并等同于定理3.2中的弱一致吸引子$ {\cal A}_{w} $.

参考文献

Hale J K , Lunel S M . Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993

[本文引用: 1]

Hale J K. Asymptotic Behavior of Dissipative Systems. Providence: American Mathematical Society, 1988

[本文引用: 1]

Caraballo T , Kloeden P E , Real J .

Pullback and forward attractors for a damped wave equation with delays

Stoch Dyn, 2004, 4: 405- 423

DOI:10.1142/S0219493704001139      [本文引用: 4]

Caraballo T , Real J .

Attractors for 2D-Navier-Stokes models with delays

J Differential Equations, 2004, 205: 271- 297

DOI:10.1016/j.jde.2004.04.012     

Caraballo T , Marín-Rubio P , Valero J .

Autonomous and non-autonomous attractors for differential equations with delays

J Differential Equations, 2005, 208: 9- 41

DOI:10.1016/j.jde.2003.09.008     

Caraballo T , Marín-Rubio P , Valero J .

Attractors for differential equations with unbounded delays

J Differential Equations, 2007, 239: 311- 342

DOI:10.1016/j.jde.2007.05.015     

Caraballo T , Real J , Márquez A M .

Three-dimensional system of globally modified Navier-Stokes equations with delay

Internat J Bifur Chaos Appl Sci Engrg, 2010, 20: 2869- 2883

DOI:10.1142/S0218127410027428     

Caraballo T , Kloeden P E , Marín-Rubio P .

Numerical and finite delay approximations of attractors for logistic differential-integral equations with infinite delay

Discrete Contin Dyn Syst, 2007, 19: 177- 196

DOI:10.3934/dcds.2007.19.177     

García-Luengo J , Marín-Rubio P .

Reaction-diffusion equations with non-autonomous force in H-1 and delays under measurability conditions on the driving delay term

J Math Anal Appl, 2014, 417: 80- 95

DOI:10.1016/j.jmaa.2014.03.026      [本文引用: 1]

García-Luengo J , Marín-Rubio P , Real J .

Pullback attractors for 2D Navier-Stokes equations with delays and their regularity

Adv Nonlinear Stud, 2013, 13: 331- 357

DOI:10.1515/ans-2013-0205     

García-Luengo J , Marín-Rubio P , Real J .

Some new regularity results of pullback attractors for 2D Navier-Stokes equations with delays

Commun Pure Appl Anal, 2015, 14: 1603- 1621

DOI:10.3934/cpaa.2015.14.1603     

García-Luengo J , Marín-Rubio P , Planas G .

Attractors for a double time-delayed 2D-Navier-Stokes model

Discrete Contin Dyn Syst, 2014, 34: 4085- 4105

DOI:10.3934/dcds.2014.34.4085     

García-Luengo J , Marín-Rubio P , Real J .

Regularity of pullback attractors and attraction in H1 in arbitrarily large finite intervals for 2D Navier-Stokes equations with infinite delay

Discrete Contin Dyn Syst, 2014, 34: 181- 201

DOI:10.3934/dcds.2014.34.181     

Kloeden P E , Marín-Rubio P .

Equi-attraction and the continuous dependence of attractors on time delays

Discrete Contin Dyn Syst Ser B, 2008, 9: 581- 593

DOI:10.3934/dcdsb.2008.9.581     

Marín-Rubio P , Márquez-Durán A M , Real J .

Pullback attractors for globally modified Navier-Stokes equations with infinite delays

Discrete Contin Dyn Syst, 2011, 31: 779- 796

DOI:10.3934/dcds.2011.31.779     

Wu F , Kloeden P E .

Mean-square random attractors of stochastic delay differential equations with random delay

Discrete Contin Dyn Syst Ser B, 2013, 18: 1715- 1734

Wang Y J , Kloeden P E .

The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain

Discrete Contin Dyn Syst, 2014, 34: 4343- 4370

DOI:10.3934/dcds.2014.34.4343     

Wang Y J .

Pullback attractors for a damped wave equation with delays

Stoch Dyn, 2015, 15: 1550003

DOI:10.1142/S0219493715500033      [本文引用: 2]

Wang J T , Zhao C D , Caraballo T .

Invariant measures for the 3D globally modified Navier-Stokes equations with unbounded variable delays

Commun Nonlinear Sci Numer Simul, 2020, 91: 105459

DOI:10.1016/j.cnsns.2020.105459     

Zhao C D , Liu G W , An R .

Global well-posedness and pullback attractors for an incompressible non-Newtonian fluid with infinite delays

Differ Equ Dyn Syst, 2017, 25: 39- 64

DOI:10.1007/s12591-014-0231-9     

Zhu K X , Xie Y Q , Zhou F .

Pullback attractors for a damped semilinear wave equation with delays

Acta Math Sin, 2018, 34: 1131- 1150

DOI:10.1007/s10114-018-7420-3      [本文引用: 2]

Kloeden P E .

Upper semi continuity of attractors of delay differential equations in the delay

Bull Austral Math Soc, 2006, 73: 299- 306

DOI:10.1017/S0004972700038880     

Lions J L. Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires. Paris: Dunod, 1969

Wang C Z , Zhang M S , Zhao C D .

Existence of the uniform trajectory attractor for a 3D incompressible non-Newtonian fluid flow

Acta Math Sci, 2018, 38B: 187- 202

Zhao C D , Zhou S F , Liao X Y .

Uniform attractors for nonautonomous incompressible non-Newtonian fluid with locally uniform integrable external forces

J Math Phys, 2006, 47: 052701

DOI:10.1063/1.2200145     

Zhao C D , Jia X L , Yang X B .

Uniform attractor for nonautonomous incompressible non-Newtonian fluid with a new class of external forces

Acta Math Sci, 2011, 31B: 1803- 1812

[本文引用: 2]

Temam R . Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997

[本文引用: 1]

Thanh D T P .

Asymptotic behavior of solutions to semilinear parabolic equations with infinite delay

Acta Math Vietnam, 2019, 44: 875- 892

DOI:10.1007/s40306-018-0289-5      [本文引用: 1]

Arrieta J , Carvalho A N , Hale J K .

A damped hyperbolic equation with critical exponent

Comm Partial Differential Equations, 1992, 17: 841- 866

DOI:10.1080/03605309208820866      [本文引用: 2]

Babin A V, Vishik M I. Attractors of Evolution Equations. Amsterdam: North-Holland, 1992

[本文引用: 1]

Ball J M .

Global attractors for damped semilinear wave equations

Discrete Contin Dyn Syst, 2004, 10: 31- 52

[本文引用: 1]

Kalantarov V , Savostianov A , Zelik S .

Attractors for damped quintic wave equations in bounded domains

Ann Henri Poincaré, 2016, 17: 2555- 2584

DOI:10.1007/s00023-016-0480-y      [本文引用: 4]

Burq N , Lebeau G , Planchon F .

Global existence for energy critical waves in 3-D domains

J Amer Math Soc, 2008, 21: 831- 845

DOI:10.1090/S0894-0347-08-00596-1      [本文引用: 2]

Blair M D , Smith H F , Sogge C D .

Strichartz estimates for the wave equation on manifolds with boundary

Ann Inst H Poincaré Anal Non Linéaire, 2009, 26: 1817- 1829

DOI:10.1016/j.anihpc.2008.12.004     

Burq N , Planchon F .

Global existence for energy critical waves in 3-D domains: Neumann boundary conditions

Amer J Math, 2009, 131: 1715- 1742

DOI:10.1353/ajm.0.0084      [本文引用: 2]

Zhu K X , Xie Y Q , Mei X Y .

Pullback attractors for a sup-cubic weakly damped wave equation with delays

Discrete Contin Dyn Syst Ser B, 2021, 26: 4433- 4458

[本文引用: 3]

Chueshov I , Lasiecka I .

Long-time dynamics of von Karman semi-flows with non-linear boundary/interior damping

J Differential Equations, 2007, 233: 42- 86

DOI:10.1016/j.jde.2006.09.019      [本文引用: 1]

Khanmamedov A K .

Global attractors for von Karman equations with nonlinear interior dissipation

J Math Anal Appl, 2006, 318: 92- 101

DOI:10.1016/j.jmaa.2005.05.031     

Kloeden P E , Lorenz T .

Pullback incremental attraction

Nonauton Dyn Syst, 2014, (1): 53- 60

Sun C Y , Cao D M , Duan J Q .

Uniform attractors for nonautonomous wave equations with nonlinear damping

SIAM J Appl Dyn Syst, 2006, 6: 293- 318

Xie Y Q , Li Q S , Zhu K X .

Attractors for nonclassical diffusion equations with arbitrary polynomial growth nonlinearity

Nonlinear Anal Real World Appl, 2016, 31: 23- 37

DOI:10.1016/j.nonrwa.2016.01.004     

Zhou F , Sun C Y , Li X .

Dynamics for the damped wave equations on time-dependent domains

Discrete Contin Dyn Syst Ser B, 2018, 23: 1645- 1674

[本文引用: 1]

Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physis. Providence: American Mathematical Society, 2002

[本文引用: 2]

Zelik S .

Strong uniform attractors for non-autonomous dissipative PDEs with non translation-compact external forces

Discrete Contin Dyn Syst B, 2015, 20: 781- 810

[本文引用: 1]

Mei X Y , Sun C Y .

Attractors for a sup-cubic weakly damped wave equation in $\mathbb{R} ^{3}$

Discrete Contin Dyn Syst Ser B, 2019, 24: 4117- 4143

[本文引用: 1]

Mei X Y , Sun C Y .

Uniform attractors for a weakly damped wave equation with sup-cubic nonlinearity

Appl Math Lett, 2019, 95: 179- 185

DOI:10.1016/j.aml.2019.04.003      [本文引用: 2]

/