Processing math: 20%

数学物理学报, 2022, 42(1): 282-305 doi:

论文

依时变化的随机环境中的分枝随机游动的局部极限定理的二阶展开

高志强,

北京师范大学数学科学学院 & 教育部数学与复杂系统实验室 北京 100875

A Second Order Correction of the Local Limit Theorem for a Branching Random Walk with a Random Environment in Time on Zd

Gao Zhiqiang,

Laboratory of Mathematics and Complex Systems(Ministry of Education) & School of Mathematical Sciences, Beijing Normal University, Beijing 100875

收稿日期: 2019-12-25  

基金资助: 国家自然科学基金.  11971063

Received: 2019-12-25  

Fund supported: the NSFC.  11971063

作者简介 About authors

高志强,E-mail:gaozq@bnu.edu.cn , E-mail:gaozq@bnu.edu.cn

Abstract

Consider a branching random walk on Zd with a random environment in time, where the branching offspring distribution and the migration law change as times goes by. Under the mild moment conditions, we derive the second order expansion for Zn(z), which counts the number of particles of generation n at zZd.

Keywords: Branching random walk ; Local limit theorem ; Asymptotic expansions

PDF (494KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

高志强. 依时变化的随机环境中的分枝随机游动的局部极限定理的二阶展开. 数学物理学报[J], 2022, 42(1): 282-305 doi:

Gao Zhiqiang. A Second Order Correction of the Local Limit Theorem for a Branching Random Walk with a Random Environment in Time on Zd. Acta Mathematica Scientia[J], 2022, 42(1): 282-305 doi:

1 引言

分枝随机游动是概率论中的一个经典模型. 该模型描述了在空间中分枝过程粒子的分布发展的过程, 从而推广了经典的Galton-Watson过程. 尽管此模型已有相当长的历史, 它现在仍是概率论及应用中的重要研究对象. 它在各种应用学科如生物、计算机科学和人口动力学中是一个普适模型. 同时, 该模型揭示了随机动力系统的根本性质, 因此被用在许多重要的随机模型中, 如乘积瀑布、无穷粒子系统、随机分形等. 关于分枝随机游动的经典理论, 可以查阅参考文献[1, 2].

自Harris[3, Chapter Ⅲ, §16]提出了分枝随机游动的中心极限定理以来, 有许多关于此课题的工作, 参见文献[4-16].

此文的目标是对于一类依时变化的随机环境中的分枝随机游动, 推导其粒子分布的二阶渐近展开表达式. Révész[2]开启了对Zd中简单分枝随机游动中的局部极限定理的收敛速度的研究. Chen[17]在假定二阶矩的条件下, 推出了局部极限定理的精确收敛速度, 这其实相当于其一阶渐近展开. Gao在文献[18]中弱化了文献[17] 中的条件并修正了其结论, 并进一步在文献[19]中得到了局部极限定理的二阶渐近展开. 该文的主要目标是将文献[19] 中的结果推广至依时变化的随机环境中的分枝随机游动的情形. 随机环境的出现使得模型更切合实际, 但同时导致分析非常困难复杂.

当模型中的随机游动服从R上的非格点分布时, 对应的依时随机环境中的分枝随机游动的中心极限定理的展开问题已经在文献[20, 21] 中得以研究. 这种情形下, 一些相关的其它类型的极限定理已在文献[22] 与[8]中予以研究. 此外文献[23-25] 详细探讨了与此模型相关的Biggins鞅的性质. 在已有文献中引入过各种形式的随机环境中的分枝随机游动, 参见文献[26-35].

1.1 记号和模型的描述

随机环境ξ=(ξn)是一列给定空间上的独立同分布的随机变量序列. 由ξn的取值可以确定两个分布律: N上的分布律p(ξn)={pk(ξn):kN}, 及Zd上的分布律Gξn().

Gξn(0)=rn,Gξn(ev)=Gξn(ev)=1rn2d,v=1,2,,d,
(1.1)

其中rn=r(ξn)(0,1)是依赖于ξn的数, 0=(0,0,,0)Zd, ev(1vd)Rd中的标准正交基.

不失一般性, 取ξn(Θ,F,τ0)的乘积空间(ΘN,FN,τ)中的坐标函数, 其在ΘN上的平移变换下θ: θ(ξ0,ξ1,)=(ξ1,ξ2,)下是平稳遍历的.

给定环境ξ=(ξn), 拟研究过程可以描述如下. 在时刻0, 一个初始粒子位于S=0Zd; 在时刻1, 该粒子被N=N1代的新粒子i=i(1iN)替代, 分别位于Si=Li()Zd, 其中N,L1(),L2(),是相互独立的. N服从分布p(ξ0), Li()服从分布Gξ0. 一般地, 每一个n代粒子在n+1时刻被Nun+1代的新粒子ui(1iNu)所取代, 且每个ui位置为Sui=Su+Li(u), 其中Nu,L1(u),L2(u),相互独立, Nu服从分布p(ξn), Li(u)(i=1,2,)服从分布Gξn由定义, 给定环境ξ, 随机变量NuLi(u)(1iNu)(指标u是正整数的有限序列)是彼此相互独立的.

给定环境ξΘN, 令(Γ,G,Pξ)是概率空间, 在其上定义上述过程. 概率Pξ常称为quenched分布.全概率空间可定义为乘积空间(ΘN×Γ,ϵNG,P), 其中P=E(δξPξ), δξξ处的Dirac测度, E是关于随机变量ξ的期望. 因此对于所有定义在ΘN×Γ的可测函数g, 有

ΘN×Γg(x,y)dP(x,y)=EΓg(ξ,y)dPξ(y).

全概率P通常称之为annealed分布. 而quenched概率Pξ可以看做给定ξP的条件概率. 关于P的期望记为E. 关于Pξ的期望记为Eξ.

T表示以{Nu}为组成元素的系谱树. 根据定义, 可得: (a). T; (b). uiT蕴含了uT; (c).若uT, 那么uiT当且仅当1iNu.

Tn={uT:|u|=n}

n代粒子的集合, 其中|u|表示序列u的长度, 也即u所属的代数.

1.2 主要结论

Zn()表示n粒子的计数测度: 对BZd, 有

Zn(B)=uTn1B(Su).

特别地, 通常将Zn({z})简记为Zn(z), 意指位于zZd处的第n代粒子的个数.

根据上述记号定义, {Zn(Zd)}组成了随机环境中的分枝过程[36-38]. 对n0, 令ˆNnˆLn是在Pξ下的条件分布律分别为p(ξn)Gξn的随机变量, 定义

mn=m(ξn)=EξˆNn,Πn=m0mn1,Π0=1.

已知正则化序列

Wn=1ΠnZn(Zd),n1
(1.2)

是适应于σ代数族(Fn)的鞅, 其中

F0={,Ω},Fn=σ(ξ,Nu:|u|<n),  n1.

下列σ代数族{Dn}也将会在后面用到

D0={,Ω},Dn=σ(ξ,Nu,Li(u):  i1,|u|<n)    n1.

此文将始终假设下面条件成立

Elogm0>0 且 E[1m0ˆN0(log+ˆN0)λ+1]<,
(1.3)

其中λ>0的具体限制条件将在定理中给出. 在这些条件下, 过程{Zn(Zd)}是上临界的, 意指以正概率有Zn(Zd), 并且极限W=lim满足 {\mathbb{E}}W=1 , W>0 \{Z_n\big({\mathbb{Z}}^d\big)\rightarrow \infty\} 几乎必然(简记为a.s.)成立, 参见文献[37, 39].

x=(x_1, \cdots, x_d)\in{\mathbb{R}}^d y=(y_1, \cdots, y_d)\in{\mathbb{R}}^d , 定义

\begin{eqnarray} \langle{x, y}\rangle=x_1y_1+x_2y_2+\cdots+x_dy_d, \quad \|x\|=\sqrt{x_1^2+x_2^2+\cdots+x_d^2}. \end{eqnarray}

\begin{equation} {b}_{n}=\sum\limits_{i=0}^{n-1} (1-r_i), \quad {b}_{2, n} = \sum\limits_{i=0}^{n-1} (1-r_i)^2, \quad {b}_{3, n}= \sum\limits_{i=0}^{n-1} (1-r_i)^3. \end{equation}
(1.4)

易见 {b}_{n}\leq n, {b}_{2, n}\leq n, {b}_{3, n}\leq n. 由大数定律得: 当 n\rightarrow \infty 时, 有

\begin{equation} \frac{ {b}_{n} }{ n} \mathop{\longrightarrow}\limits^{{\rm a.s. }} {\mathbb{E}} (1-r_0) , \; \; \frac{ {b}_{2, n} }{ n}\mathop{\longrightarrow}\limits^{{\rm a.s. }} {\mathbb{E}} (1-r_0)^2 , \; \; \frac{ {b}_{3, n} }{ n} \mathop{\longrightarrow}\limits^{{\rm a.s. }} {\mathbb{E}} (1-r_0)^3 . \end{equation}
(1.5)

除了已知的鞅 \{ W_n\} , 该文还将需要下面的序列

N_{1, n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} S_u, N_{2, n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} \Big( {\left\Vert {S_u} \right\Vert} ^2- {b}_n \Big ),

N_{3, n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} \Big( {\left\Vert {S_u} \right\Vert} ^2S_u- (1+2/d) {b}_nS_u \Big ),

N_{4, n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} \Big[{\left\Vert {S_u} \right\Vert}^4- (2+4/d) {b}_n{\left\Vert {S_u} \right\Vert}^2+ (1+2/d)( {b}_n^2+ {b}_{2, n}) - {b}_n\Big],

N_{2, n}^z= \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} \Big( \langle {{z}}, {{S_u}}\rangle^2- {b}_{ n} {\left\Vert {z} \right\Vert}^2/d\Big),

这些都是适应于 \{ {\cal D}_n\} 的鞅, 其极限在主要定理中用到. 这些鞅的具体性质和收敛速度由下面结论给出.

命题1.1  序列 \{ N_{q, n} \} (q=1, 2, 3, 4) \{N_{2, n}^z\} 是适应于 \{ {\cal D}_{n}\}_{n\geq0} 的鞅. 进而, 假设对某个 \lambda>4 , 条件(1.3)成立. 那么存在随机变量 {\cal V}_q (q=1, 2, 3, 4) {\cal V}_2^z , 使得

\begin{equation} N_{q, n}- {\cal V}_q=o(n^{-(\lambda-q)})\ {\rm a.s.}, \quad N_{2, n}^z - {\cal V}_2^z = o(n^{-(\lambda-2)}) \ {\rm a.s.}. \end{equation}
(1.6)

该命题将在第2节证明.

利用上面定义的记号, 该文的主要结论可叙述如下.

定理1.1  假设对 \lambda>3(d+6) , 式(0.3)成立, 及对 \iota>0 , 有 {\mathbb{E}}m_0^{-\iota}<\infty 成立. 那么对任意 z=(z_1, \cdots, z_d)\in{\mathbb{Z}}^d , 当 n 趋于无穷时, 有

\begin{eqnarray} \frac{1}{\Pi_n}Z_n(z)&=& \Big (\frac{ d}{2\pi {b}_{ n} } \Big)^{d/2}\Big \{ W + \frac{d}{ {b}_n} \Big [ F_{1}(z)-\frac{1}{8} \frac{ {b}_{2, n} }{ {b}_n} (d+2) W\Big ] {}\\ && + \frac{d^2}{ {b}_n^2} \Big[F_{2}(z) + \frac{ {b}_{2, n}}{ {b}_n} F_3(z) + Q_d( {b}_n, {b}_{2, n}, {b}_{3, n}) W\Big]+ \frac{1}{n^2}o(1)\Big\} \ {\rm a.s.} , \end{eqnarray}
(1.7)

其中

\begin{equation} F_{1}(z)= \Big(\frac{1}{8} d-\frac{1}{2}{\left\Vert {z} \right\Vert}^2 \Big)W+\langle {{z}}, {{ {\cal V}_1}}\rangle-\frac{1}{2} {\cal V}_2, \end{equation}
(1.8)

\begin{eqnarray} F_{2 }(z)&=& \frac{1}{8} {\cal V}_4 - \frac{1}{2}\langle {{z}}, {{ {\cal V}_3}}\rangle+\frac{1}{2} {\cal V}^z_2 + \Big( \frac{1}{4} {\left\Vert {z} \right\Vert}^2-\frac{d}{16}-\frac{1}{4}\Big) {\cal V}_{2} + \Big( \frac{d}{8}+\frac{1}{2} -\frac{1}{2}{\left\Vert {z} \right\Vert}^2\Big)\langle {{z}}, {{ {\cal V}_1}}\rangle \\ && +\Big[ \frac{1}{8}{\left\Vert {z} \right\Vert}^4 - \frac{1}{16} (d+4) {\left\Vert {z} \right\Vert}^2 \Big]W, \end{eqnarray}
(1.9)

\begin{equation} F_3(z)= (d+4)\Big(1+\frac{2}{d}\Big)\Big(\frac{1}{16} {\cal V}_2-\frac{1}{8}\langle {{z}}, {{ {\cal V}_1}}\rangle + \frac{1}{16}{\left\Vert {z} \right\Vert}^2 W \Big), \end{equation}
(1.10)

\begin{equation} Q_d(u, v, w) = (d+4)\Big(1+\frac{2}{d}\Big) \Big[ \frac{1}{128} ( d+6 ) \Big(\frac{v}{u}\Big)^2 - \frac{d}{64} \frac{v}{u}- \frac{1}{24} \frac{w}{u}\Big] + \frac{d}{16}+\frac{1}{128}d^2. \end{equation}
(1.11)

为便于比较, 在下面的推论中, 给出了常环境中的简单分枝随机游动的相应结果. 其中的结论(Ⅰ) 是定理1.1的直接推论, 结论(Ⅱ) 已在文献[19]中证得.

推论1.1  在一个简单随机游动中, 后代分布为 \{p_k \}_ {k\in {\mathbb{N}}} , 运动机制服从分布律 {\cal P}

\begin{eqnarray} {\cal P}(0)=r, \cdots {\cal P}(- {\bf e}_s )={\cal P}( {\bf e}_s)=(1-r)/(2d), {\quad} 1\leq s\leq d. \end{eqnarray}

假定对 \lambda>3(d+6) , 成立

\begin{eqnarray} m:= \sum\limits_{k=0}^\infty k p_k >1, \quad \sum\limits_{k=0}^\infty k (\ln k)^{1+\lambda} p_k <\infty . \end{eqnarray}

那么对任意 z=(z_1, \cdots, z_d)\in{\mathbb{Z}}^d , 当 n 趋于无穷时, 有

(Ⅰ) 当 1>r>0 , 有

\begin{eqnarray} \frac{1}{m^n} Z_n(z) = \Big(\frac{d }{ 2\pi n(1-r) }\Big)^{d/2} \Big[ W + \frac{1}{n} {{\cal H}_{r, 1}} (z)+\frac{1}{n^2} {{\cal H}_{r, 2}} (z) \Big] + \frac{1}{n^{2+d/2}}o(1)\quad {\rm a.s.}, \end{eqnarray}

(Ⅱ) 当 r=0 , 假设 n\equiv z_1+z_2+\cdots+z_d ( {\rm mod }\ 2) , 有

\begin{eqnarray} \frac{1}{m^n} Z_n(z) = 2 \Big(\frac{d }{ 2\pi n }\Big)^{d/2} \Big[ W + \frac{1}{n} {{\cal H}_{0, 1}}(z)+\frac{1}{n^2} {{\cal H}_{0, 2}}(z) \Big] + \frac{1}{n^{2+d/2}}o(1)\quad {\rm a.s.}, \end{eqnarray}

其中 {\cal V}_1, {\cal V}_2 , { {\cal V}_2^z}, { {\cal V}_3}, { {\cal V}_4} 是一些随机变量, 以及对 r\in [0, 1) , 有

{{\cal H}_{r, 1}} (z)=\frac{d}{1-r} \Big[ \Big(\frac{1}{8}r(d+2) - \frac{1}{4} -\frac{1}{2}{\left\Vert {z} \right\Vert}^2\Big)W+ \langle {{z}}, {{ {\cal V}_1}}\rangle-\frac{1}{2} { {\cal V}_2} \Big],

\begin{eqnarray} {{\cal H}_{r, 2}} (z)&= &\frac{d^2 }{ (1-r)^2}\Big[ \Big( \frac{1}{8}{\left\Vert {z} \right\Vert}^4+\mu_{r, d} {\left\Vert {z} \right\Vert}^2+\chi_{r, d}\Big)W+\Big(2\mu_{r, d}-\frac{1}{2}{\left\Vert {z} \right\Vert}^2\Big)\langle {{ {\cal V}_1}}, {{z}}\rangle \\ &&+ \Big(\frac{{\left\Vert {z} \right\Vert}^2}{4}-\mu_{r, d}\Big) { {\cal V}_2} +\frac{1}{2} { {\cal V}_2^z}-\frac{1}{2}\langle {{z}}, {{ { {\cal V}_3}}}\rangle +\frac{1}{8} { {\cal V}_4}\Big], \end{eqnarray}

\mu_{r, d}= - \frac{1}{8}\Big(1+\frac{4}{d}\Big) +r\Big(\frac{d}{16}+\frac{3}{8}+\frac{1}{2d}\Big),

\chi_{r, d}= \frac{d}{48}-\frac{1}{32}+\frac{1}{24d}+r\frac{1}{64}(d+2)(d+4)\Big( \frac{r}{2}+ \frac{r-2}{3d}\Big ).

注1.1  此推论中出现的随机变量 {\cal V}_1, {\cal V}_2 , { {\cal V}_2^z}, { {\cal V}_3}, { {\cal V}_4} 是下面序列的极限

\begin{eqnarray} {\cal V}_j ={ \lim\limits_{n\rightarrow \infty} N_{ j, n}\ {\rm a.s.}} , \quad j=1, 2, 3, 4, \quad { {\cal V}_2^z}= \lim\limits_{n\rightarrow \infty} {N_{ 2, n}^z}, \ {{\rm a.s.}}, \end{eqnarray}

其中

N_{1, n}= \frac{1}{m^n}\sum\limits_{u\in {\mathbb{T}}_n} S_u, N_{2, n}= \frac{1}{m^n}\sum\limits_{u\in {\mathbb{T}}_n} [ {\left\Vert {S_u} \right\Vert}^2 -n(1-r) ],

{N_{2, n}^z}= \frac{1}{m^n}\sum\limits_{u\in {\mathbb{T}}_n}\left(\langle {{S_u}}, {{z}}\rangle^2 - \frac{n(1-r)}{d}{\left\Vert {z} \right\Vert}^2\right),

{N_{3, n}}= \frac{1}{m^n}\sum\limits_{u\in {\mathbb{T}}_n} \left[ {\left\Vert {S_u} \right\Vert}^2 S_u -\Big(1+\frac{2}{d}\Big)n(1-r) S_u\right],

{N_{4, n}} = \frac{1}{m^n}\sum\limits_{u\in {\mathbb{T}}_n} \left[ {\left\Vert {S_u} \right\Vert}^4- \Big(2+\frac{4}{d}\Big) n (1-r) {\left\Vert {S_u} \right\Vert}^2+ \Big(1+\frac{2}{d}\Big) \Big( (1-r)^2 n^2-r n \Big)+ \frac{2}{d} n \right].

最后对定理的证明做一些说明. 论证过程采用了文献[18, 19]中的基本思想, 即通过分枝过程的可加性质将 Z_n(z) 分解为条件独立项的和. 但是证明的细节需要更细致的估计和更多的技巧性. 特别地, 此项工作特别之处在于前面定义的那些新的鞅和展开式的确切表达. 从技术层面上, 证明的计算比没有随机环境的情形复杂很多.

文章的结构安排如下: 在下节中, 证明了一个一般性地结论定理2.1, 作为其推论得到命题1.1. 在第3节中, 推导了 {\mathbb{Z}}^d 上依时变化的随机环境中的随机游动的局部极限定理的二阶渐近展开. 在这些辅助结果的基础上, 在最后一节给出了定理1.1的证明.

2 模型相关的重要鞅的收敛速度

这一节证明一个一般性的结果定理2.1, 命题1.1作为其推论来推出.

定理2.1  给定环境 \xi . {Q} \geq 0 , C>0 为给定常数. 假设 f_\xi 是一个定义在 {{\mathbb{R}}}^d\times {\mathbb{N}} 上的向量值(或实值) 函数, 满足 {\left\Vert {f_\xi(x, n)} \right\Vert}\leq C({\left\Vert {x} \right\Vert}^{ {Q}} +n^{{Q}/2})

\begin{eqnarray} {\mathbb{E}}_\xi f_\xi(x+X_{n}, n+1)= f_\xi(x, n), \forall (x, n)\in {{\mathbb{R}}}^d\times {\mathbb{N}}, \end{eqnarray}

这里每个 X_n (n\in {\mathbb{N}} ) 都是一个服从分布律 G_{\xi_{n}} 的随机向量, 即

\begin{eqnarray} {\mathbb{P}}_\xi (X_{n}={\bf 0})=r_{n}, {\mathbb{P}}_\xi (X_{n}=\pm{\bf e}_s)=\frac{1}{2d}(1- r_{n}), 1\leq s\leq d. \end{eqnarray}

那么由下式

\begin{equation} {\cal M}_{n}= \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n}f_\xi(S_u, n) \end{equation}
(2.1)

定义的序列 \{ {\cal M}_{n} \} 是关于 \{{\cal D}_n\}_{n\geq 0} 的鞅. 进而如果存在 \lambda\geq {Q} 使得(1.3)式成立, 那么 \{ {\cal M}_{n} \} 几乎必然收敛至一个随机变量 {\cal V} , 且

\begin{equation} {\cal M}_{n}- {\cal V}= o(n^{-(\lambda- {Q}) }), \quad \mbox{当 }\ n\rightarrow \infty. \end{equation}
(2.2)

注2.1  当 f_\xi \equiv 1 , {Q}=0 时, {\cal M}_{n} 变成了 W_n , 于是定理化为下面已知的结论.

定理2.2[40, 定理1.2]  设对某个 \lambda>0 , 条件(1.3)成立, 那么有

\begin{equation} W_n-W=o(n^{-\lambda}). \end{equation}
(2.3)

在Galton-Watson过程情形下, 这一结论首先是 \rm Asmussen 在1976年文献[41] 中得到的.

为证明定理2.1, 此处借鉴了文献[41]中的思想. 该方法中的关键是利用恰当的截断来证明级数 \sum\limits_{n} a_n ( {\cal M}_{n+1} - {\cal M}_{n}) 的收敛性, 从而推得 {\cal M}_{n} 的收敛速度. 证明依赖于下面引理.

引理2.1[41, 引理2]  设 \{\alpha_n, \beta_n, n\geq 1 \} 是一列实数. 如果 0<\alpha_n\nearrow \infty, 且级数 \sum\limits_{n=1}^\infty \alpha_n \beta_n 收敛, 那么

\sum\limits_{n=r}^\infty \beta_n= o\Big(\frac{1}{\alpha_r}\Big).

  先来证明 \{ {\cal M}_{n} \} 是适应于 \{ {\cal D}_n\} 的鞅.

定义条件概率和条件期望

{\mathbb{P}}_{\xi, n}(\cdot)= {\mathbb{P}}_\xi(\cdot|{\cal D}_n), \phantom{sss} {\mathbb{E}}_{\xi, n}(\cdot)= {\mathbb{E}}_\xi(\cdot|{\cal D}_n),

\begin{eqnarray} {\mathbb{E}}_{\xi, n} {\cal M}_{n+1} &= & {\mathbb{E}}_{\xi, n} \frac{1}{\Pi_{n+1}}\sum\limits_{u\in {\mathbb{T}}_n}\sum\limits_{i=1}^{N_u} f_\xi(S_{ui}, n+1) \\ &=&\frac{1}{\Pi_{n+1}} \sum\limits_{u\in {\mathbb{T}}_n} {\mathbb{E}}_{\xi, n} \bigg[ \sum\limits_{i=1}^{N_u} {\mathbb{E}}_{\xi, n} f_\xi(S_{ui}, n+1) \bigg] \\ &= &\frac{1}{\Pi_{n+1}} \sum\limits_{u\in {\mathbb{T}}_n} f_\xi(S_{u}, n) {\mathbb{E}}_{\xi, n} N_u \\ &= & \frac{1}{\Pi_{n+1}} \sum\limits_{u\in {\mathbb{T}}_n} f_\xi(S_{u}, n) m_n= \frac{1}{\Pi_{n}} \sum\limits_{u\in {\mathbb{T}}_n} f_\xi(S_{u}, n)= {\cal M}_n. \end{eqnarray}

由此可以推得 \{ {\cal M}_n\} 是一个适应于 \{ {\cal D}_n\} 的鞅.

下面来证明鞅的收敛速度.

首先引入下面记号

\lambda_Q= \lambda- {Q}, \quad X_u= f_{\xi}(S_u, n), \qquad \mbox{对}\ u\in {\mathbb{T}}_n,

{I}_n= {\cal M}_{n+1}- {\cal M}_{n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n}\Big ( \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big) ,

{I}_n' = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n}\Big ( \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big) {\bf 1}_{\{N_u(\log N_u)^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}} \}} .

如果能证明级数

\begin{equation} \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {I}_n \quad \mbox{几乎必然收敛}. \end{equation}
(2.4)

那么令 V_3= \sum\limits_{n=1}^\infty {I}_n + {\cal M}_1 , 并应用引理2.1, 即可得所欲证.

为证断言(2.4), 只需证明下列级数几乎必然收敛

\begin{equation} \sum\limits_{n=1}^\infty n^{\lambda_{Q}} ({I}_n-{I}_n' ), \quad \sum\limits_{n=1}^\infty n^{\lambda_{Q}} ({I}_n'- {\mathbb{E}}_{\xi, n}{I}_n' ), \quad \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi, n}{I}_n'. \end{equation}
(2.5)

而为证明(2.5)式, 需要以下辅助结果.

由零平均独立随机变量和的矩不等式[42]可得如下结果.

引理2.2  对 j\in {\mathbb{N}} , 随机向量 \widehat{L}_j 服从分布律 G_{\xi_{j }} . \widehat{S}_n=\sum\limits_{j=0}^{n-1}\widehat{L}_j . 那么对 r\geq 2 , 有

\begin{equation} {\mathbb{E}}_\xi {\left\Vert { \widehat{S}_n} \right\Vert}^r \leq K_r n^{\frac{r}{2}-1} \sum\limits_{j=0}^{n-1} {\mathbb{E}}_\xi {\left\Vert { \widehat{L}_j} \right\Vert} ^r \leq K_r n^{\frac{r}{2}}, \end{equation}
(2.6)

这里 K_r 是一个只依赖于 r 的绝对常数.

由此引理可得, 对于 |u|=n , 有

\begin{equation} {\mathbb{E}}_\xi {\left\Vert {X_u} \right\Vert} \leq {K_Q} n^{{Q}/2}; \quad {\mathbb{E}}_\xi {\left\Vert {X_u} \right\Vert}^2 \leq {K_Q} n^{{Q}}. \end{equation}
(2.7)

对于(2.5)式中的第一个级数, 注意到

\begin{eqnarray} {\mathbb{E}}_\xi {\left\Vert { I_n-I_n' } \right\Vert} &\leq &\frac{1}{\Pi_n} {\mathbb{E}}_\xi \sum\limits_{u\in {\mathbb{T}}_n} {\left\Vert {\frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u } \right\Vert} {\bf 1}_{\{ N_u(\log N_u)^{\nu }> \Pi_{n+1}/n^{\lambda_{Q}} \}} \\ &\leq& \frac{K_Q n^{{Q}/2}}{\Pi_n} {\mathbb{E}}_\xi \sum\limits_{u\in {\mathbb{T}}_n} (N_u/m_n +1) {\bf 1}_{\{N_u(\log N_u)^{\nu }> \Pi_{n+1}/n^{\lambda_{Q}}\}} \\ &=& K_Q n^{{Q}/2} {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }> \Pi_{n+1}/n^{\lambda_{Q}}\}}. \end{eqnarray}

由大数定律得

\begin{equation} \lim\limits_{n\rightarrow \infty} \frac{1}{n}\log\frac{\Pi_{n+1}}{n^{\lambda_{Q}}}= {\mathbb{E}} \log m_0 \mbox{ a.s. }. \end{equation}
(2.8)

由此可推出存在 \sigma_1>1 , 对 n 充分大, 有

\frac{\Pi_{n+1}}{n^{\lambda_{Q}}} \geq \sigma_1^n.

那么可得

{\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }> \Pi_{n+1}/n^{\lambda_{Q}}\}}\leq {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }>\sigma_1^{n}\}}.

易见

\begin{eqnarray} && {\mathbb{E}}\Big(\sum\limits_{n=0}^\infty n^{\lambda_{Q}+{Q}/2} {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }>\sigma_1^{n}\}}\Big) \\ &= & \sum\limits_{n=0}^\infty n^{\lambda_{Q}+{Q}/2} {\mathbb{E}} (\widehat{N}_0 /m_0+1) {\bf 1}_{\{\widehat{N}_0 (\log \widehat{N}_0 )^{\nu }>\sigma_1^{n}\}} \\ &=& {\mathbb{E}}\Big[ (\widehat{N}_0 /m_0+1) \sum\limits_{n=0}^\infty n^{\lambda_{Q}+{Q}/2} {\bf 1}_{\{\widehat{N}_0 (\log \widehat{N}_0 )^{\nu }>\sigma_1^{n}\}} \Big] \\ &= & {\mathbb{E}} (\widehat{N}_0 /m_0+1) \sum\limits_{n=0}^{n(\widehat{N}_0)} n^{\lambda_{Q}+{Q}/2}\leq {\mathbb{E}} (\widehat{N}_0 /m_0+1) {n(\widehat{N}_0)}^{\lambda_{Q}+{Q}/2+1}, \end{eqnarray}

其中

n(\widehat{N}_0)=\max\{ 0, \lceil(\log \sigma_1)^{-1} (\log\widehat{N}_0 +\nu \log\log\widehat{N}_0 ) -1\rceil\},

这里 \lceil a\rceil =\min\{ k\in {\mathbb{Z}}:k\geq a\} . 那么

\begin{eqnarray} && {\mathbb{E}}\Big(\sum\limits_{n=0}^\infty n^{\lambda_{Q}} n^{{Q}/2} {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }>\sigma_1^{n}\}}\Big) \\ &\leq & {\mathbb{E}} (\widehat{N}_0 /m_0+1) {n(\widehat{N}_0)}^{\lambda_{Q}+{Q}/2+1} \\ &\leq & K {\mathbb{E}} (\widehat{N}_0 /m_0+1) \Big( \log^+ \widehat{N}_0\Big) ^{\lambda_{Q} +{Q}/2 + 1 } \\ &\leq & K {\mathbb{E}} (\widehat{N}_0 /m_0+1) \Big( \log^+ \widehat{N}_0\Big) ^{1+\lambda } <\infty, \end{eqnarray}

其中 K 是一个充分大的常数. 从而可推出

\sum\limits_{n=0}^\infty n^{\lambda_{Q}+{Q}/2} {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }>\sigma_1^{n}\}} <\infty\qquad \mbox{a.s.},

于是

\sum\limits_{n=0}^\infty n^{\lambda_{Q}+{Q}/2} {\mathbb{E}}_\xi (\widehat{N}_n /m_n+1) {\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }> \Pi_{n+1}/n^{\lambda_{Q}}\}} <\infty\qquad \mbox{a.s.},

那么

{\mathbb{E}}_{\xi} {\left\Vert { \sum\limits_{n=1}^\infty n^{\lambda_{Q}} ({I}_{ n}-{I}_{n}')} \right\Vert} \leq \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi} {\left\Vert {{I}_{n}-{I}_{n}'} \right\Vert} <\infty,

{\mathbb{E}}_{\xi} {\left\Vert { \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi, n} {I}_{n}' } \right\Vert} = {\mathbb{E}}_{\xi} {\left\Vert { \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi, n} ({I}_{n}- {I}_{n}') } \right\Vert} \leq \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi} {\left\Vert {{I}_{n}-{I}_{n}'} \right\Vert} <\infty.

所以可得到级数 \sum\limits_{n=1}^\infty n^{\lambda_{Q}} ({I}_{ n}-{I}_{ n}') \sum\limits_{n=1}^\infty n^{\lambda_{Q}} {\mathbb{E}}_{\xi, n} {I}_{ n}' 几乎必然收敛.

接下来还需证明 \sum\limits_{n=1}^\infty n^{\lambda_{Q}} ({I}_n'- {\mathbb{E}}_{\xi, n}{I}_n' ) 几乎必然收敛. 引用事实 \sum\limits_{k=1}^{n} k^{\lambda_{Q}} ({I}_k'- {\mathbb{E}}_{\xi, k}{I}_k' ) 是适应于 \{ {\cal D}_{n+1}\} 的鞅及 L^2 有界鞅的几乎必然收敛性[43, p251, Ex 4.9], 只需要证明

\sum\limits_{n=1}^\infty n^{2\lambda_{Q}} {\mathbb{E}}_\xi({I}_n'- {\mathbb{E}}_{\xi, n}{I}_n' )^2 \quad \mbox { 几乎必然收敛}.

为此, 注意到

\begin{eqnarray} && {\mathbb{E}}_{\xi}\bigg[\Big \| \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big\| ^2 {\bf 1}_{\{N_u (\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}}\Big| {\cal F}_n\bigg] \\ &=& {\mathbb{E}}_\xi \bigg\{ {\mathbb{E}}_\xi \Big[ \Big \| \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big\| ^2 \Big|N_u\Big]{\bf 1}_{\{N_u (\log N_u)^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} \bigg\} \\ &\leq& {\mathbb{E}}_\xi \bigg\{ 2 \Big( N_u \sum\limits_{i=1}^{N_u} \frac{ {\mathbb{E}}_\xi {\left\Vert { X_{ui}} \right\Vert}^2}{{m_n^2}} + {\mathbb{E}}_\xi {\left\Vert {X_u} \right\Vert}^2\Big) {\bf 1}_{\{N_u (\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} \bigg\} \\ &\leq&_{(1.7)} K_Q n^{{Q}}\Big( {\mathbb{E}}_\xi \frac{N_u^2}{m_n^2}{\bf 1}_{\{ N_u(\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} +1 \Big ) \\ &= &K_Q n^{{Q}}\Big( {\mathbb{E}}_\xi \frac{\widehat{N}_n^2}{m_n^2}{\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} +1 \Big ). \end{eqnarray}

观察到

\begin{eqnarray} && n^{2\lambda_{Q}} {\mathbb{E}}_\xi {\left\Vert {{I}_n'- {\mathbb{E}}_{\xi, n}{I}_n'} \right\Vert} ^2 \\ &= &\frac{n^{2\lambda_{Q}}}{\Pi_n^2} {\mathbb{E}}_\xi \sum\limits_{u\in {\mathbb{T}}_n} {\mathbb{E}}_{\xi, n}\Big\|\Big ( \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big) {\bf 1}_{\{ N_u(\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} \\ && - {\mathbb{E}}_{\xi, n} \Big ( \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big) {\bf 1}_{\{ N_u(\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}}\Big\|^2 \\ &\leq& \frac{n^{2\lambda_{Q}}}{\Pi_n^2} {\mathbb{E}}_\xi \sum\limits_{u\in {\mathbb{T}}_n} {\mathbb{E}}_{\xi, n}\Big\|\Big ( \frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big) {\bf 1}_{\{ N_u(\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}} \Big\|^2 \\ &= & \frac{n^{2\lambda_{Q}}}{\Pi_n^2} {\mathbb{E}}_\xi \sum\limits_{u\in {\mathbb{T}}_n} {\mathbb{E}}_{\xi}\Big[\Big\|\frac{1}{m_n} \sum\limits_{i=1}^{N_u} X_{ui} -X_u\Big\| ^2{\bf 1}_{\{ N_u(\log N_u )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}}\Big| {\cal F}_n\Big] \\ &\leq& \frac{K_Q n^{ {Q}+2\lambda_{Q}}}{\Pi_{n} } {\mathbb{E}}_\xi \frac{\widehat{N}_n^2}{m_n^2}{\bf 1}_{\{\widehat{N}_n (\log \widehat{N}_n )^{\nu }\leq \Pi_{n+1}/n^{\lambda_{Q}}\}}+\frac{K_Qn^{ {Q}+2\lambda_{Q}}}{\Pi_{n} } \\ &=&\frac{K_Q n^{ {Q}+2\lambda_{Q}}}{\Pi_{n} } {\mathbb{E}}_\xi \frac{\widehat{N}_n^2}{m_n^2}\Big( {\bf 1}_{\{ \widehat{N}_n (\log \widehat{N}_n )^{\nu } \leq e^{1+\lambda+\nu} \}}+ {\bf 1}_{\{ e^{1+\lambda+\nu}< \widehat{N}_n (\log \widehat{N}_n )^{\nu } \leq n^{-\lambda_{Q}}\Pi_{n+1} \}} \Big) +\frac{K_Q n^{{Q}+2\lambda_{Q}}}{\Pi_{n} } \\ & \leq& \frac{K_Q n^{{Q}+2\lambda_{Q}}}{\Pi_{n} } {\mathbb{E}}_\xi \frac{\widehat{N}_n^2}{m_n^2} {\bf 1}_{\{ e^{1+\lambda+\nu}< \widehat{N}_n (\log \widehat{N}_n )^{\nu } \leq n^{-\lambda_{Q}}\Pi_{n+1} \}}+\frac{K_\xi n^{{Q}+2\lambda_{Q}}}{\Pi_{n} } \\ &\leq& \frac{K_\xi n^{{Q}+2\lambda_{Q}}}{\Pi_{n} }\frac{\Pi_{n+1}n^{-\lambda_{Q}} } {\big(\log \big( {\Pi_{n+1} }{n^{-\lambda_{Q}}} \big)\big)^{ 1+\lambda+\nu}} {\mathbb{E}}_\xi \frac{\widehat{N}_n^2}{m_n^2} \frac{\big( \log\big( 1 \vee \widehat{N}_n (\log\widehat{N}_n )^{\nu}\big)\big)^{1+\lambda+\nu} }{\widehat{N}_n (\log\widehat{N}_n )^{\nu} } +\frac{K_\xi n^{{Q}+2\lambda_{Q}}}{\Pi_{n} } \\ & \leq & K_\xi n^{{Q}+\lambda_{Q}-\lambda-1-\nu} {\mathbb{E}}_\xi \frac{\widehat{N}_n}{m_n}\big(\log^+\widehat{N}_n\big)^{1+\lambda} +\frac{K_\xi n^{{Q}+2\lambda_{Q}}}{\Pi_{n} } \\ &=& K_\xi n^{-1-\nu} {\mathbb{E}}_\xi \frac{\widehat{N}_n}{m_n}\big(\log^+\widehat{N}_n\big)^{1+\lambda} +K_\xi\frac{ n^{{Q}+2\lambda_{Q}}}{\Pi_{n} }, \end{eqnarray}

这里用到了函数 x(\log x)^{-1-\lambda-\nu} x > e^{1+\lambda+\nu} 时是递增的. 易见

\sum\limits_{n=1}^\infty \frac{ n^{{Q}+2\lambda_{Q}}}{\Pi_{n} }<\infty.

注意到

{\mathbb{E}} \sum\limits_{n=0}^\infty n^{-1-\nu} {\mathbb{E}}_\xi \frac{\widehat{N}_n}{m_n}\Big(\log^+\widehat{N}_n\Big)^{1+\lambda} = \sum\limits_{n=0}^\infty n^{-1-\nu} {\mathbb{E}} \frac{\widehat{N}_0}{m_0}\Big(\log^+\widehat{N}_0\Big)^{1+\lambda}<\infty.

于是级数

\sum\limits_{n=0}^\infty n^{-1-\nu} {\mathbb{E}}_\xi \frac{\widehat{N}_n}{m_n}\Big(\log^+\widehat{N}_n\Big)^{1+\lambda}

几乎必然收敛, 由此可推得级数

\sum\limits_{n=1}^\infty n^{2\lambda_{{Q}}} {\mathbb{E}}_\xi({I}_n'- {\mathbb{E}}_{\xi, n}{I}_n' )^2

几乎必然收敛.

综上已证(2.5)式中三个级数几乎必然收敛, 从而(1.4)式成立.

现在令 {\cal V}= \sum\limits_{n=1}^\infty {I}_n + { {\cal M}}_{1} , 即可得 {\cal M}_{n}- {\cal V}= \sum\limits_{j=n}^\infty {I}_j , 那么定理2.1即由引理2.1推得.

命题1.1的证明  先来证明 \{N_{4, n}\}_n 是适应于 \{{\cal D}_n\}_n 的鞅. 回顾

\begin{eqnarray} N_{4, n} = \frac{1}{\Pi_n} \sum\limits_{u\in {\mathbb{T}}_n} \Big[{\left\Vert {S_u} \right\Vert}^4- (2+4/d) {b}_n{\left\Vert {S_u} \right\Vert}^2+ (1+2/d)( {b}_n^2+ {b}_{2, n}) - {b}_n\Big]. \end{eqnarray}

对于 u\in {\mathbb{T}}_n , 1\leq i\leq N_u , 有

\begin{eqnarray} {\left\Vert {S_{ui}} \right\Vert}^2&=& \langle {{S_u+L_i(u)}}, {{S_u+L_i(u)}}\rangle ={\left\Vert {S_u} \right\Vert}^2+2\langle {{S_u}}, {{L_i(u)}}\rangle+{\left\Vert {L_i(u)} \right\Vert}^2, \\ {\left\Vert {S_{ui}} \right\Vert}^4&=&{\left\Vert {S_u} \right\Vert}^4+{\left\Vert {L_i(u)} \right\Vert}^4+4\langle {{S_u}}, {{L_i(u)}}\rangle^2 \\ &&+4\langle {{S_u}}, {{L_i(u)}}\rangle{\left\Vert {S_u} \right\Vert}^2+4\langle {{S_u}}, {{L_i(u)}}\rangle{\left\Vert {Li(u)} \right\Vert}^2+2{\left\Vert {S_u} \right\Vert}^2{\left\Vert {L_i(u)} \right\Vert}^2. \end{eqnarray}

于是

{\mathbb{E}}_{\xi, n} {\left\Vert {S_{ui}} \right\Vert}^2={\left\Vert {S_u} \right\Vert}^2 + (1-r_n),

{\mathbb{E}}_{\xi, n} {\left\Vert {S_{ui}} \right\Vert}^4={\left\Vert {S_u} \right\Vert}^4+ (1-r_n)+\Big(\frac{4}{d} +2\Big)(1-r_n) {\left\Vert {S_u} \right\Vert}^2.

于是对于下面定义的函数

\begin{eqnarray} f_\xi(x, n)= {\left\Vert {x} \right\Vert}^4- (2+4/d) {b}_n{\left\Vert {x} \right\Vert}^2+ (1+2/d)( {b}_n^2+ {b}_{2, n}) - {b}_n, \end{eqnarray}

可以看到

\begin{eqnarray} & & {\mathbb{E}}_{\xi, n} f_\xi (S_{ui}, n+1) \\& =& {\mathbb{E}}_{\xi, n}\Big[ {\left\Vert {S_{ui}} \right\Vert}^4- (2+4/d) {b}_{n+1}{\left\Vert {S_{ui}} \right\Vert}^2+ (1+2/d)( {b}_{n+1}^2+ {b}_{2, n+1}) - {b}_{n+1}\Big] \\ & = &{\left\Vert {S_u} \right\Vert}^4+\Big( {4}/{d} +2\Big)(1-r_n) {\left\Vert {S_u} \right\Vert}^2+ (1-r_n) - \Big( 2+{4}/{d}\Big) {b}_{n+1}\Big ({\left\Vert {S_u} \right\Vert}^2 + (1-r_n)\Big) \\ & & + (1+2/d)( {b}_{n+1}^2+ {b}_{2, n+1}) - {b}_{n+1} \\ & = &{\left\Vert {S_u} \right\Vert}^4- (2+4/d) {b}_n{\left\Vert {S_u} \right\Vert}^2+ (1+2/d)( {b}_n^2+ {b}_{2, n}) - {b}_n=f_\xi(S_u, n) \end{eqnarray}

|f_\xi(x, n)|\leq C({\left\Vert {x} \right\Vert}^4+ n^2).

因此所需断言由定理1.2中 Q=4 可得.

同理, 可以证明对 q=1, 2, 3 , \{ N_{q, n}\} 收敛至 {\cal V}_q , 收敛速度为 o(n^{-(\lambda-q) }) , 及 N_{2, n}^z 收敛至 {\cal V}_2^z , 且收敛速度为 o(n^{-(\lambda-2) }) . 为避免重复, 忽略细节.

3 步长随时间变化的随机游动的局部极限定理的二阶渐近展开

\xi 为前述环境. 考虑一列随机向量 \{ X_n\}_{n=0}^\infty . 当给定 \xi=\{\xi_n:n=0, 1, \cdots\} 时, 在 {\mathbb{P}}_\xi X_n 服从分布律 G_{\xi_n}(\cdot) , 即

{\mathbb{P}}_\xi (X_n={\bf 0})=r_n, \quad {\mathbb{P}}_\xi(X_n={\bf e}_s)= {\mathbb{P}}_\xi(X_n=-{\bf e}_s)=(1-r_n)/(2d), {\quad} 1\leq s\leq d.

S_n=X_0+X_2+\cdots+X_{n-1}.

那么 \{S_n\} 是依时变化的随机环境中的随机游动.

M_n=\sum\limits_{i=0}^{n-1} \min\{ 2r_i, \delta_d(1-r_i) \}, \quad \mbox{} \delta_d=(1-\cos(d^{-1/2}))/d.

则有下面结论.

定理3.1  对上面定义的随机游动 \{S_n\} , 对任意 n x\in {\mathbb{Z}}^d , 成立

\begin{eqnarray} {\mathbb{P}}_{\xi}(S_n =x ) &=& \Big( \frac{d }{2\pi {b}_{n} }\Big)^{d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big\{ 1+ \frac{d}{ {b}_n} \Big (\frac{1}{8}d-\frac{1}{8} (d+2)\frac{ {b}_{2, n}}{ {b}_n}\Big ) {} \\ &&+ \frac{d^2}{ {b}_n^2}\Big[ Q_d( {b}_n, {b}_{2, n} , {b}_{3, n}) -\Big (\frac{1}{4}-\frac{1}{4d} (d+2)\frac{ {b}_{2, n}}{ {b}_n}\Big ){\left\Vert {x} \right\Vert}^2{}\\ && + {\cal P}\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n}, {b}_n, {b}_{2, n}, {b}_{3, n}\Big) \Big] \Big\}+ \frac{1}{n^{2+d/2}} \alpha_n(\xi, x) , \end{eqnarray}
(3.1)

其中对每组 (u, v, w\in {{\mathbb{R}}}) , {\cal P}(t_1, \dots, t_d, u, v, w) 都表示一个关于 (t_1, \cdots, t_d) 的4次的对称多项式且无常数项; {b}_{n} , {b}_{2, n}, {b}_{3, n} Q_d(u, v, w) 分别在(1.4)和(1.11)式中定义; \alpha_n(\xi, x) 是无穷小使得

\begin{equation} \sup\limits_{x\in{{\mathbb{R}}}^d}|\alpha_n(\xi, x) | \leq n^{2+d/2}e ^{ -M_n}+ C_d \Big(\frac{n}{ {b}_n} \Big)^{4+d/2} \Big[n^{-1}+ n^{ 2+d/2}e^{-\frac{11 {b}_n}{24 \sqrt{n}d} }\Big]. \end{equation}
(3.2)

进而, 对满足式 {\left\Vert {x} \right\Vert}<n^{1/6} x\in {\mathbb{Z}}^d , 有

\begin{eqnarray} {\mathbb{P}}_\xi(S_n =x ) &=& \Big( \frac{d }{2\pi {b}_{n} }\Big)^{d/2}\Big\{ 1+ \frac{d}{ {b}_{n}} \Big[ -\frac{1}{2}{\left\Vert {x} \right\Vert}^2 +\frac{1}{8} d -\frac{1}{8} (d+2) \frac{ {b}_{2, n} }{ {b}_{n}} \Big] {} \\ && + \frac{ d^2}{ {b}_{n}^2} \Big[ \frac{1}{8}{\left\Vert {x} \right\Vert}^4- \frac{ (d+4)}{16}{\left\Vert {x} \right\Vert}^2 \Big( 1- \Big(1+\frac{2}{d}\Big)\frac{ {b}_{2, n} }{ {b}_{n}} \Big) {}\\ &&+ Q_d( {b}_n, {b}_{2, n}, {b}_{3, n}) \Big] \Big\}+ \frac{\widetilde{\alpha}_n(\xi, x) }{n^{2+d/2}} , \end{eqnarray}
(3.3)

其中 {b}_{n} , {b}_{2, n}, {b}_{3, n} Q_d(u, v, w) 分别如(1.4)和(1.11)式中所定义, 无穷小项 \widetilde{\alpha}_n(x) 满足

\begin{equation} |\widetilde{\alpha}_n(\xi, x) | \leq n^{2+d/2}e ^{ -M_n} + C_d \Big(\frac{n}{ {b}_n} \Big)^{ 5+d/2} \Big[n^{ 2+d/2}e^{-\frac{11 {b}_n}{24 \sqrt{n}d} } + n^{-1/3}+ n^{ -1} ({\left\Vert {x} \right\Vert} \vee 1 )^6 \Big]. \end{equation}
(3.4)

注3.1  此结论推广完善了文献[44, 第2章]中的结论.

定理3.1的证明  易见下列事实成立: 对 i=0, 1, 2, \cdots,

\begin{eqnarray} \psi_{{X}_i}(\lambda)={\mathbb{E}}_\xi e^{{\bf i} \langle {{\lambda }}, {{{X}_i}}\rangle }=r_i+\frac{1-r_i}{d}\sum\limits_{j=1}^{d}\cos\lambda_j, \qquad\lambda=(\lambda_1, \ldots, \lambda_d) \in[-\pi, \pi]^d, \end{eqnarray}

其中 {\bf i}=\sqrt{-1} 表示虚数单位. 由于 {\{X_n\}} 独立, 可得

\begin{eqnarray} \psi_{{S}_n}(\lambda)={\mathbb{E}}_\xi e^{{\bf i}\langle\lambda, \sum\limits_{i=0}^{n-1}{X}_i\rangle}= \prod\limits_{i=0}^{n-1}{\mathbb{E}}_\xi e^{{\bf i}\langle\lambda, {X}_i\rangle}=\prod\limits_{i=0}^{n-1}\psi_{{X}_i}(\lambda). \end{eqnarray}

那么由文献[44, 命题2.2.2], 可见

\begin{equation} {\mathbb{P}}_\xi({S}_n=x) =\frac{1}{(2\pi)^d}\int_{[-\pi, \pi]^d}e^{-{\bf i}\langle\lambda, x\rangle}\psi_{{S}_n}(\lambda){\rm d}\lambda =\frac{1}{(2\pi)^d}\int_{[-\pi, \pi]^d}e^{-{\bf i}\langle\lambda, x\rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}(\lambda){\rm d}\lambda. \end{equation}
(3.5)

易证

2r_i-1\leq\psi_{{X}_i}(\lambda)\leq1, \quad \mbox{for}\quad r_i\in(0, 1), \lambda\in[-\pi, \pi]^d

\psi_{{X}_i}(\lambda)=1 \Longleftrightarrow \lambda={\bf 0}.

\|\lambda\|<1 , 由泰勒公式得

\psi_{X_i}(\lambda)=r_i+\frac{1-r_i}{d}\sum\limits_{j=1}^d\left(1-\frac12\lambda_j^2+\frac{\cos\eta_j}{24}\lambda_j^4\right),

从而

\begin{equation} |\psi_{X_i}(\lambda) |\leq 1-\frac{11(1-r_i)}{24d}\|\lambda\|^2\leq e^{-\frac{11}{24d}(1-r_i) \|\lambda\|^2}. \end{equation}
(3.6)

而当 \lambda\in[-\pi, \pi]^d \|\lambda\|\geq1

-d\leq\sum\limits_{j=1}^d{\cos{\lambda_j}}\leq d-1+\cos (d^{-1/2})<d.

则有

\begin{eqnarray} |\psi_{X_i}(\lambda)| &\leq & \max \{|2r_i-1|, r_i+(1-\delta_d)(1-r_i)\} \\ & \leq & \exp\{- ( 1-\max\{|2r_i-1|, r_i+(1-\delta_d)(1-r_i)\} )\} \\ & =&e^{- \min\big\{2 r_i, \delta_ d(1-r_i)\big\} }. \end{eqnarray}
(3.7)

基于上述讨论, 可记

\begin{equation} {\mathbb{P}}({S}_n=x)={I}_n(x)+{J}_n(x), \end{equation}
(3.8)

其中

{J}_n(x) \triangleq \frac{1}{(2\pi)^d}\int_{\lambda \in [-\pi, \pi]^d, \|\lambda\|\geq1}e^{-{\bf i}\langle\lambda, x\rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}(\lambda){\rm d}\lambda,

{I}_n(x)\triangleq \frac{1}{(2\pi)^d}\int_{\|\lambda\|<1}e^{-{\bf i}\langle\lambda, x\rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}(\lambda){\rm d}\lambda.

利用(3.7)式和 M_n 的定义, 可见

\begin{equation} |{J}_n(x)|\leq \frac{1}{(2\pi)^d}\int_{\lambda \in [-\pi, \pi]^d, \|\lambda\|\geq1} \prod\limits_{i=0}^{n-1} |\psi_{X_i}(\lambda)| {\rm d}\lambda\leq e ^{ -M_n}. \end{equation}
(3.9)

下面估计 I_n(x) . \alpha=\sqrt{n}\lambda .

\begin{eqnarray} {I}_n(x)= \frac{1}{(2\pi\sqrt{n})^d}\int_{\|\alpha\|<\sqrt{n} }e^{-{\bf i} \frac{1}{\sqrt{n}}\langle x, \alpha \rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}\Big(\frac{\alpha}{\sqrt{n}}\Big){\rm d}\alpha. \end{eqnarray}

为估计此积分, 应用分解式

\begin{equation} (2\pi\sqrt{n})^d{I}_n={I}_{1, n}(x)+{I}_{2, n}(x), \end{equation}
(3.10)

其中

{I}_{1, n}= \int_{n^{1/4}\leq\|\alpha\|<\sqrt{n} }e^{-{\bf i} \frac{1}{\sqrt{n}}\langle x, \alpha \rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}\Big(\frac{\alpha}{\sqrt{n}}\Big){\rm d}\alpha,

{I}_{2, n}=\int_{\|\alpha\|<n^{1/4}}e^{-{\bf i} \frac{1}{\sqrt{n}}\langle x, \alpha \rangle}\prod\limits_{i=0}^{n-1}\psi_{{X}_i}\Big(\frac{\alpha}{\sqrt{n}}\Big){\rm d}\alpha.

由不等式(3.6), 有

\begin{equation} |{I}_{1, n}(x)|\leq 2^dn^{d/2} \exp\Big\{-\frac{11 {b}_n}{24\sqrt{n}d} \Big\}. \end{equation}
(3.11)

接下来估计 {I}_{2, n}(x) .

由泰勒展开, 可得

\begin{eqnarray} & & \prod\limits_{i=0}^{n-1}\psi_{{X}_i}\Big(\frac{\alpha}{\sqrt{n}}\Big) \\ & =&\prod\limits_{i=0}^{n-1}\Big(r_i+\frac{1-r_i}{d}\sum\limits_{j=1}^{d}\cos\frac{\alpha_j}{\sqrt{n}}\Big) \\ & =&\exp\Big\{\sum\limits_{i=0}^{n-1}\log\Big(1-(1-r_i)\frac{\|\alpha\|^2}{2nd}+\frac{(1-r_i)}{24n^2d}\sum\limits_{j=1}^{d}\alpha_{j}^4 - \frac{1-r_i}{6! n^3d}\sum\limits_{j=1}^d \alpha_j^6 + \frac{ (1-r_i)}{n^4}M_{1, n}(\alpha)\Big)\Big\} \\ &=&\exp\Big\{-\frac{ {b}_n}{2nd}\|\alpha\|^2+\frac{ {b}_n}{24n^2d}\sum\limits_{j=1}^{d}\alpha_{j}^4-\frac{ {b}_{2, n}}{8n^2d^2}\|\alpha\|^4- \frac{ {b}_n}{6!n^3d} \sum\limits_{j=1}^{d}\alpha_{j}^6-\frac{ {b}_{3, n}}{24n^3d^3} {\left\Vert {\alpha} \right\Vert}^6 \\ & & + \frac{ {b}_{2, n}}{48n^3d^2} \Big(\sum\limits_{j=1}^{d}\alpha_{j}^4\Big) {\left\Vert {\alpha} \right\Vert}^2 +\frac{1}{n^3}M_{2, n}(r, \alpha) \Big\} \\ & =&e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2}\Big\{1+ \frac{1}{ {b}_n} \Big( \frac{ {b}^2_n}{24n^2d}\sum\limits_{j=1}^d\alpha_{j}^4- \frac{ {b}_{2, n} {b}_n}{8n^2d^2}\|\alpha\|^4\Big) +\frac{1}{ {b}_n^2} \Big[ \frac{ {b}_{2, n} {b}_n^2}{48n^3d^2} (\sum\limits_{j=1}^{d}\alpha_{j}^4) {\left\Vert {\alpha} \right\Vert}^2 \\ &&- \frac{ {b}^3_n}{6!n^3d} \sum\limits_{j=1}^{d}\alpha_{j}^6-\frac{ {b}_n^2 {b}_{3, n}}{24n^3d^3} {\left\Vert {\alpha} \right\Vert}^6 + \frac{1}{2} \Big( \frac{ {b}_n^2}{24n^2d}\sum\limits_{j=1}^d\alpha_{j}^4- \frac{ {b}_n {b}_{2, n}}{8n^2d^2}\|\alpha\|^4\Big)^2\Big] + \frac{1}{n^3}M_{3, n}(\xi, \alpha)\Big\}, \end{eqnarray}

其中余项 M_{s, n} (\alpha)(s=1, 2, 3) {\left\Vert { \alpha} \right\Vert}^8 的有界倍控制.

利用微积分和复分析技巧, 可得

\begin{eqnarray} {(1)} &&\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2}{\rm d}\alpha = (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} + \epsilon_{1, n}(x); \\ {(2)} &&\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{2+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big( 3d-6d \frac{ {\left\Vert {x} \right\Vert}^2}{ {b}_n}+ \frac{4d^2}{ {b}_n^2}\sum\limits_{j=1}^dx_j^4 \Big) + \epsilon_{2, n}(x); \\ {(3)}& &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^4 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{2+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[(d^2+2d)\Big(1-2\frac{{\left\Vert {x} \right\Vert}^2}{ {b}_n} \Big) +\frac{d^2}{ {b}_n^2}{\left\Vert {x} \right\Vert}^4 \Big]+ \epsilon_{3, n}(x); \\ {(4)} & &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^2 \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{3+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[3d(d+4)+ {\cal P} _1\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big ]+ \epsilon_{4, n}(x); \\ {(5)}& &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^6 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{3+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[ 15d + {\cal P} _2\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big] + \epsilon_{5, n}(x); \\ {(6)}& &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^6 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{3+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[d(d+2)(d+4) + {\cal P} _3\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big] + \epsilon_{6, n}(x); \\ {(7)} &&\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \Big( \sum\limits_{j=1}^d \alpha_{j}^4 \Big)^2 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{4+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[3d(3d+32 )+ {\cal P} _4\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big] + \epsilon_{7, n}(x);\\ {(8)}& &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^4 \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{4+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2}\Big[ 3 d(d+4)(d+6) + {\cal P} _5\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big] + \epsilon_{8, n}(x); \\ {(9)}& &\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^8 {\rm d}\alpha \\ & =& (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{4+d/2} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big[d(d+2 )(d+4)(d+6)+{\cal P} _6\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n} \Big) \Big] + \epsilon_{9, n}(x); \\ {(10)} && \bigg |\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} M_{3, n}(\xi, \alpha) {\rm d}\alpha \bigg| \\ & \leq& \int_{{{\mathbb{R}}}^d} e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^8 {\rm d}\alpha = (2\pi )^{d/2} \Big(\frac{nd}{ {b}_n} \Big)^{4+d/2} d(d+2 )(d+4)(d+6)=C_d \Big(\frac{n}{ {b}_n} \Big)^{4+d/2}, \end{eqnarray}

其中 {\cal P} _v(t_1, \cdots, t_d) (v=1, 2, \cdots, 6) 表示无常数项的(3次或4次)对称多项式, 无穷小项 \epsilon_{s, n}(x) (1\leq s\leq 9) 满足

|\epsilon_{1, n}(x) |\leq C_d \Big(\frac{n}{ {b}_n} \Big)^{ d/2} e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (d-2)/4};

|\epsilon_{s, n}(x) |\leq C_d \Big(\frac{n}{ {b}_n} \Big)^{(4+d)/2}e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (2+d)/4}, \quad s=2, 3;

|\epsilon_{s, n}(x)|\leq C_d \Big(\frac{n}{ {b}_n} \Big)^{(6+d)/2}e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (4+d)/4}, \quad s=4, 5, 6;

|\epsilon_{s, n}(x) |\leq C_d \Big(\frac{n}{ {b}_n} \Big)^{(8+d)/2}e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (6+d)/4}, \quad s=7, 8, 9.

上述积分的计算比较复杂, 但方法相似. 为方便读者, 以(2)的计算为例给出细节.

(2) 的计算  首先注意到

\int_{{\left\Vert {\alpha} \right\Vert}<n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha=\int_{{{\mathbb{R}}}^d} e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha + \epsilon_{2, n}(x),

其中

\epsilon_{2, n}(x)=- \int_{{\left\Vert {\alpha} \right\Vert}>n^{1/4} } e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha

满足

|\epsilon_{2, n}(x) |\leq \int_{{\left\Vert {\alpha} \right\Vert} >n^ {1/4}} e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} {\left\Vert {\alpha} \right\Vert}^4 {\rm d}\alpha \leq C_d \Big(\frac{n}{ {b}_n} \Big)^{(4+d)/2}e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (2+d)/4}.

为计算此积分, 做变量替换 \alpha=\sqrt{ \frac{nd}{ {b}_n}}\zeta , 则

\begin{eqnarray} & &\int_{{{\mathbb{R}}}^d} e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha \\ & = &\Big( \sqrt{\frac{nd}{ {b}_n}}\Big)^{4+d}\int_{{{\mathbb{R}}}^d} \exp\Big\{ -{\bf i} \langle {{ \sqrt{ \frac{d}{ {b}_n}}x}}, {{\zeta}}\rangle -\frac{1}{2} {\left\Vert {\zeta} \right\Vert}^2\Big\} \sum\limits_{j=1}^d \zeta_j^4 {\rm d}\zeta \\ & = &\Big( \sqrt{\frac{nd}{ {b}_n}}\Big)^{4+d}\sum\limits_{j=1}^d \int_{{{\mathbb{R}}}^d} \exp\Big\{ -{\bf i} \langle {{ \sqrt{ \frac{d}{ {b}_n}}x}}, {{\zeta}}\rangle -\frac{1}{2} {\left\Vert {\zeta} \right\Vert}^2\Big\} \zeta_j^4 {\rm d}\zeta \\ & = & \Big( \sqrt{\frac{nd}{ {b}_n}}\Big)^{4+d} \sum\limits_{j=1}^d \int_{{{\mathbb{R}}}} {e}^{ -{\bf i} \sqrt{ \frac{d}{ {b}_n}} x_j\zeta_j-\frac{1}{2} \zeta_1^2 } \zeta_j^4 {\rm d}\zeta_j \prod\limits_{1\leq t\leq d, t\neq j } \int_{{{\mathbb{R}}}} e^{ -{\bf i} \sqrt{ \frac{d}{ {b}_n}} x_t\zeta_t-\frac{1}{2} \zeta_t^2} {\rm d}\zeta_t. \end{eqnarray}

由柯西积分定理, 可得

\begin{eqnarray} & &\int_{{{\mathbb{R}}}} \exp\Big\{ -{\bf i} \sqrt{ \frac{d}{ {b}_n}} x_j\zeta_j-\frac{1}{2} \zeta_j^2\Big\} \zeta_j^4 {\rm d}\zeta_j \\ & =& e^{-\frac{d}{2{b}_n} x_j^2} \int_{{{\mathbb{R}}}} e^{-\frac{ 1}{2} \eta_j^2} \Big(\eta_j- {\bf i}\sqrt{ \frac{d}{{b}_n}}x_j\Big)^4 {\rm d}\eta_j \\ & =& e^{-\frac{d}{2{b}_n} x_j^2} \Big[ \int_{{\mathbb{R}}} e^{-\frac{ 1}{2} \eta_j^2}\eta_j^4 {\rm d}\eta_j + 6 \Big( - {\bf i}\sqrt{ \frac{d}{{b}_n}}x_j\Big)^2\int_{{\mathbb{R}}} e^{-\frac{ 1}{2} \eta_j^2}\eta_j^2 {\rm d}\eta_j + \Big( - {\bf i}\sqrt{ \frac{d}{{b}_n}}x_j\Big)^4\int_{{\mathbb{R}}} e^{-\frac{ 1}{2} \eta_j^2} {\rm d}\eta_j \Big] \\ & =& (2\pi)^{1/2} e^{-\frac{d}{2{b}_n} x_j^2} \Big(3-6 \frac{d}{{b}_n} x_j^2+ \frac{d^2}{{b}_n^2} x_j^4\Big) \end{eqnarray}

\begin{eqnarray} \int_{{{\mathbb{R}}}} \exp\Big\{ -{\bf i} \sqrt{ \frac{d}{ {b}_n}} x_t\zeta_t-\frac{1}{2} \zeta_t^2\Big\} {\rm d}\zeta_t = e^{-\frac{d}{2{b}_n} x_t^2} \int_{{{\mathbb{R}}}} e^{-\frac{ 1}{2} \eta_t^2} {\rm d}\eta_t =(2\pi)^{1/2}e^{-\frac{d}{2{b}_n} x_t^2}. \end{eqnarray}

综合以上诸式, 可得

\begin{eqnarray} & &\int_{{{\mathbb{R}}}^d} e^{-{\bf i} \langle {{ x}}, {{ \frac{\alpha }{\sqrt{n}} }}\rangle } e^{-\frac{ {b}_n}{2nd}\|\alpha\|^2} \sum\limits_{j=1}^d \alpha_{j}^4 {\rm d}\alpha \\ & =&\Big( \sqrt{\frac{nd}{ {b}_n}}\Big)^{4+d} \sum\limits_{j=1}^d \Big[ (2\pi)^{1/2} e^{-\frac{d}{2{b}_n} x_j^2} \Big(3-6 \frac{d}{{b}_n} x_j^2+ \frac{d^2}{{b}_n^2} x_j^4\Big) \prod\limits_{1\leq t\leq d, t\neq j } (2\pi)^{1/2}e^{-\frac{d}{2{b}_n} x_t^2}\Big] \\ & =&(2\pi)^{d/2}\Big( \sqrt{\frac{nd}{ {b}_n}}\Big)^{4+d} e^{-\frac{d}{2{b}_n} {\left\Vert {x} \right\Vert}^2}\Big(3d -6 \frac{d}{{b}_n} {\left\Vert {x} \right\Vert} ^2+ \frac{d^2}{{b}_n^2}\sum\limits_{j=1}^d x_j^4\Big). \end{eqnarray}

从而得出(2).

利用(1.5)式和关系 {b}_n \leq n, {b}_{2, n}\leq n, {b}_{3, n}\leq n , 将(1)–(10)式代入, 可得

\begin{eqnarray} {I }_{2, n}(x) & =& (2\pi d)^{d/2} \Big( \frac{n}{ {b}_n}\Big)^{d/2}e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big\{ 1+ \frac{d}{ {b}_n} \Big (\frac{1}{8}d-\frac{1}{8} (d+2)\frac{ {b}_{2, n}}{ {b}_n}\Big ) {} \\ &&+\frac{d^2}{ {b}_n^2}\Big[ Q_d( {b}_n, {b}_{2, n} , {b}_{3, n}) -\Big (\frac{1}{4}-\frac{1}{4d} (d+2)\frac{ {b}_{2, n}}{ {b}_n}\Big ){\left\Vert {x} \right\Vert}^2{} \\ && +{\cal P}\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n}, {b}_n, {b}_{2, n}, {b}_{3, n}\Big) \Big]\Big\} + \frac{1}{n^{2}}\epsilon_n(x) , \end{eqnarray}
(3.12)

其中对任意 u, v, w\in {{\mathbb{R}}} , {\cal P}(t_1, \dots, t_d, u, v, w) 是关于 (t_1, \cdots, t_d) 的不含常数项的4次对称多项式

\begin{eqnarray} {\cal P}\Big(t_1, \cdots, t_d, u, v, w \Big) &=&\frac{d}{6}u\sum\limits_{j=1}^d t_j^2 - \frac{1}{8} v\Big(\sum\limits_{j=1}^d t_j \Big) ^2 +\Big[\frac{1}{48d}\frac{v}{u} {\cal P}_1-\frac{1}{6!} {\cal P}_2 -\frac{1}{24d^2}\frac{w}{u}{\cal P}_3 \\ &&+\frac{1}{1152} {\cal P}_4- \frac{1}{192d}\frac{v}{u} {\cal P}_5+\frac{1}{128d^2}\frac{v^2}{u^2} {\cal P}_6\Big]\Big(t_1, \cdots, t_d \Big), \end{eqnarray}

无穷小 \epsilon_n(x) 满足

\begin{eqnarray} |\epsilon_n(x)|&\leq& n^2 |\epsilon_{1, n}(x)|+ \frac{n}{24d}|\epsilon_{2, n}(x)| + \frac{n}{8d^2} |\epsilon_{3, n}(x)|+ \frac{1}{48d^2}|\epsilon_{4, n}(x)|\\ & & +\frac{1}{6!d } |\epsilon_{5, n}(x)| + \frac{1}{24d^3 } |\epsilon_{6, n}(x)| + \frac{1}{2\cdot 24^2 d^2} |\epsilon_{7, n}(x)|\\ &&+ \frac{1}{24\cdot 8 d^3} |\epsilon_{8, n}(x)| +\frac{1}{2\cdot 8^2d^4} |\epsilon_{9, n}(x)| +C_d \frac{1}{n} \Big(\frac{n}{ {b}_n} \Big)^{(8+d)/2} \\ &\leq & C_d \Big(\frac{n}{ {b}_n} \Big)^{(8+d)/2} \Big( e^{-\frac{ {b}_n}{2\sqrt{n} d} } n^{ (6+d)/4} + \frac{1}{n} \Big) \\ & \leq &C_d \Big(\frac{n}{ {b}_n} \Big)^{4+d/2} \Big(\frac{1}{n}+ e^{-\frac{11 {b}_n}{24\sqrt{n} d} } n^{ (6+d)/4}\Big). \end{eqnarray}
(3.13)

然后将(3.8), (3.10), (3.12) 式与估计式(3.9), (3.11), (3.13)结合, 可得到所需式(3.1)及余项 \alpha_n(\xi, x) 满足(3.2)式.

x 满足 {\left\Vert {x} \right\Vert}<n^{1/6} 时, 有

\begin{equation} e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2}= 1- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2 + \frac{d^2}{8 {b}_n^2} {\left\Vert {x} \right\Vert}^4+ \frac{1}{n^2}\zeta_n(x), \end{equation}
(3.14)

这里 \zeta_n(x) 是无穷小且满足

\begin{equation} |\zeta_n(x)|\leq \frac{d^3}{48}\Big(\frac{n}{ {b}_n}\Big)^3 \frac{1}{n}{\left\Vert {x} \right\Vert}^6. \end{equation}
(3.15)

易证当 x 满足 {\left\Vert {x} \right\Vert}<n^{1/6} 时, 有

\begin{eqnarray} && e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \bigg|{\cal P}\Big(\frac{x_1^2}{ {b}_n}, \cdots, \frac{x_d^2}{ {b}_n}, {b}_n, {b}_{2, n}, {b}_{3, n} \Big) \bigg| {} \\ & \leq & K\Big(\frac{n}{ {b}_n}\frac{{\left\Vert {x} \right\Vert}^4}{ {b}_n} + \frac{{\left\Vert {x} \right\Vert}^2}{ {b}_n} \Big( 1\vee \frac{{\left\Vert {x} \right\Vert}^2}{ {b}_n} \Big)^3e^{- \frac{d}{2 {b}_n} {\left\Vert {x} \right\Vert}^2} \Big)\leq K \Big(\frac{n}{ {b}_n}\Big)^2 \frac{1}{ n^{1/3}}. \end{eqnarray}
(3.16)

将这些估计与式(3.1)和(3.2) 综合起来, 可以推出所需展式(3.3) 及余项 \widetilde{\alpha}_n(\xi, x) 满足(3.4)式. 定理3.1得证.

4 定理1.1的证明

这一节证明定理1.1. 该定理的证明基于一个重要的分解式. 此分解式早在文献[12]中已经引入, 之后在许多文献中广泛使用, 参见文献[2, 5, 17, 20]. 在介绍此分解之前, 先来引入一些记号.

{\mathbb{T}}(u) 表示 {\mathbb{T}} 的以 u 为端点的平移树, 组成元素为 \{N_{uv}\} 满足: 1) \varnothing \in {\mathbb{T}}(u) ; 2) vi\in {\mathbb{T}}(u)\Rightarrow v\in {\mathbb{T}}(u) ; 3) 如果 v\in {\mathbb{T}}(u) , 那么 vi\in {\mathbb{T}}(u) 当且仅当 1\leq i\leq N_{uv} . {\mathbb{T}}_n(u)=\{v\in {\mathbb{T}}(u): |v|=n\} . | {\mathbb{T}}_n(u)| 表示 {\mathbb{T}}_n(u) 的基数(即 u 的第 n 代子孙的个数).

u\in ( {\mathbb{N}}^*)^k (k\geq 0) n\geq 1 , 令 Z_n(u, x ) 表示 u 的第 n 代后代中位于 x+S_u\in {\mathbb{Z}}^d 处的粒子个数. 这意味着

Z_n(u, x)=\sum\limits_{v\in{\mathbb{T}}_n(u)}\delta_x(S_{uv}-S_u), \quad\mbox{ 其中 }\ \delta_x(y)= \left\{\begin{array}{ll} 1, & \quad x=y;\\ 0, & \quad{x\neq y}. \end{array}\right.

那么 Z_n(u, x) { {\mathbb{P}}}_{\xi} 下的分布等同于 Z_n(x) { {\mathbb{P}}}_{\theta^k\xi} 下的分布.

\kappa 是一个实数且满足 \frac{d/2+3}{\lambda} <\kappa<\frac{1}{6} . k_n=\lfloor n^{\kappa}\rfloor , 表示不大于 n^{\kappa} 的最大整数. 根据分枝过程的可加性质, 有下面的分解式

\begin{equation} Z_n(x)=\sum\limits_{u\in {\mathbb{T}}_{k_n}} Z_{n-k_n}(u, x-S_u). \end{equation}
(4.1)

由定义, 对 u\in{\mathbb{T}}_{k_n} , 成立

Z_{n-k_n}(u, x-S_u)=\sum\limits_{v\in{\mathbb{T}}_{n-k_n}(u)}\delta_{x}(S_{uv}).

此外将需要下面的 \sigma -代数

{\cal I}_0=\{\emptyset, \Omega\}, \quad {\cal I}_n=\sigma(\xi_k, N_u, L_i(u): k<n, i\geq1, |u|<n)\phantom{ss}\mbox{对}\phantom{ss} n\geq1,

及相关的条件概率和条件期望

\phantom{sss} {\mathbb{P}}_n(\cdot)= {\mathbb{P}}(\cdot|{\cal I}_n), \phantom{sss} {\mathbb{E}}_n(\cdot)= {\mathbb{E}}(\cdot|{\cal I}_n).

\widehat{S}_{n}= S_{1_n} ( n\geq 0 ), 其中 1_n = \underbrace{1 \cdots 1}_{n} , 当 n>1 , 1_0= \varnothing . 那么 \widehat{S}_{n} 是随机环境 \xi 下的随机游动.

因为环境序列是独立同分布的, 故对 u\in {\mathbb{T}}_k , Z_n(u, x) { {\mathbb{P}}}_{\xi} 下的分布律等价于 Z_n(x) { {\mathbb{P}}}_{\theta^k\xi} 下的分布律. 则对 u\in {\mathbb{T}}_{k_n} , 有

\begin{equation} {\mathbb{E}}_{\xi}\left(\frac{1}{ \Pi_{n-k_n}( \theta^{k_n}\xi )} Z_{n-k_n}(u, x)\right) = {\mathbb{P}}_{\theta^{k_n}\xi}(\widehat{S}_{n-{k_n}}=x), \end{equation}
(4.2)

其中 \Pi_{n}(\theta^k\xi)=m_k\cdots m_{k+n-1} .

则有下面的分解式成立

\begin{eqnarray} \frac{1}{\Pi_n}Z_n(z) &=& \frac{1}{\Pi_{k_n}}\sum\limits_{u\in{\mathbb{T}}_{k_n}}\Big(\frac{Z_{n-k_n}(u, z-S_u)}{\Pi_{n-k_n}( \theta^{k_n}\xi )}-\Big[{\mathbb{P}}_{\theta^{k_n}\xi}(\widehat{S}_{n-{k_n}}=z-y)\Big]_{y=S_u}\Big) {}\\ &&+\frac{1}{\Pi_{k_n}}\sum\limits_{u\in{\mathbb{T}}_{k_n}}\Big[{\mathbb{P}}_{\theta^{k_n}\xi}(\widehat{S}_{n-{k_n}}=z-y) \Big]_{y=S_u}=: {\mathbb{A}}_n+{\mathbb{B}}_n. \end{eqnarray}
(4.3)

基于(4.3)式, 可将定理1.1的证明归结为两个引理.

引理4.1  假设定理1.1的条件成立. 则

\begin{equation} n^{2+d/2} {\mathbb{A}}_n \mathop{\longrightarrow}_{\rm a.s.}^{n\longrightarrow \infty}0. \end{equation}
(4.4)

引理4.2  假设定理1.1的条件成立. 则

\begin{eqnarray} {\mathbb{B}}_n&=&\Big (\frac{ d}{2\pi {b}_{ n} } \Big)^{d/2}\Big \{ W + \frac{d}{ {b}_n} \Big [ F_{1}(z)-\frac{1}{8} \frac{ {b}_{2, n} }{ {b}_n} (d+2) W\Big ] {}\\ && + \frac{d^2}{ {b}_n^2} \Big[F_{2}(z) + \frac{ {b}_{2, n}}{ {b}_n} F_3(z) + Q_d( {b}_n, {b}_{2, n}, {b}_{3, n}) W\Big]+ \frac{1}{n^2}o(1)\Big\}, \end{eqnarray}
(4.5)

其中 F_1(z) , F_2(z) F_3(z) 分别由式(1.8), (1.9) 与(1.10)定义.

引理4.1的证明  先来引入一些记号. 对 u\in {\mathbb{T}}_{k_n} , 置

X_{n, u}= \frac{Z_{n-k_n}(u, x-S_u)}{\Pi_{n-k_n}(\theta^{k_n}\xi)} - \Big[{\mathbb{P}}_{\theta^{k_n}\xi}(\widehat{S}_{n-{k_n}}=x-y)\Big]_{y=S_u} ,

\overline{X}_{n, u}= X_{n, u} {\bf 1}_{\{ |X_{n, u}|\leq \Pi_{k_n}\}}, {\quad} \overline{{\mathbb{A}}}_n = \frac{1}{\Pi_{k_n}} \sum\limits_{u\in {\mathbb{T}}_{k_n}} \overline{X}_{n, u}.

易见下列事实成立

\begin{equation} | X_{n, u}|\leq W_{n-k_n}(u) +1, \quad \mbox{ 其中 }\ W_{n-k_n}(u) = | {\mathbb{T}}_{n-k_n}(u)|/\Pi_{(n-k_n)}. \end{equation}
(4.6)

回顾在 {\mathbb{P}}_{\xi} 下, \{W_{n-k_n}(u): u\in {\mathbb{T}}_{k_n}\} 是独立同分布的, 其分布等同于 W_{n-k_n} {\mathbb{P}}_{\theta^{k_n}\xi} 下的分布.

如果下面各式成立, 则引理可得

\begin{eqnarray} & & {\mathbb{P}}_{k_n} ( \overline{{\mathbb{A}}}_n \neq {\mathbb{A}} _n \mbox{ i.o.} ) =0, \end{eqnarray}
(4.7)

\begin{eqnarray} & &{n^{d/2+2}}\Big(\overline{ {\mathbb{A}}}_n - {\mathbb{E}}_{\xi, k_n } \overline{ {\mathbb{A}}}_n \Big) \mathop{\longrightarrow}^{n \rightarrow \infty } 0\quad\mbox{ a.s. }, \end{eqnarray}
(4.8)

\begin{eqnarray} & & {n^{d/2+2}} {\mathbb{E}}_{\xi, k_n } \overline{ {\mathbb{A}}}_n \mathop{\longrightarrow}^{n \rightarrow \infty } 0\quad\mbox{ a.s. }. \end{eqnarray}
(4.9)

为证明这些结论需要下面引理.

引理4.3[45, 推论1.1]  记 W^*= \sup_n W_n . 设存在 \delta>0 \lambda>0 , 使得 {\mathbb{E}} m_0^{-\delta}<\infty 与(1.3)式成立. 则

\begin{equation} { {\mathbb{E}}}(W^*+1)(\log (W^*+1))^{\lambda} <\infty. \end{equation}
(4.10)

下面证明分三步来证明(4.7), (4.8) 及(4.9)式.

第1步  先来证明(4.7)式. 为此只需证明

\begin{equation} \sum\limits_{n=1}^\infty {\mathbb{P}}_{k_n}( \overline{{\mathbb{A}}}_n \neq {\mathbb{A}} _n ) <\infty. \end{equation}
(4.11)

观察到

\begin{eqnarray} {\mathbb{P}}_{k_n} ( {\mathbb{A}}_n\neq \overline{ {\mathbb{A}}}_n ) & \leq& {\mathbb{E}} _{k_n}\sum\limits_{u\in {\mathbb{T}}_{k_n} } {\mathbb{P}}_{\xi, {k_n}}(X_{n, u}\neq \overline{X}_{n, u}) = \sum\limits_{u\in {\mathbb{T}}_{k_n} } {\mathbb{P}}_{k_n}(|X_{n, u}|\geq \Pi_{k_n}) \\&\leq&_{(4.6)} \sum\limits_{u\in {\mathbb{T}}_{k_n} } {\mathbb{P}} _{k_n}( W_{n-k_n} (u)+1 \geq \Pi_{k_n})\\ &=& | {\mathbb{T}}_{k_n}|\Big[ {\mathbb{P}} ( W_{n-k_n} +1 \geq t_n)\Big]_{t_n=\Pi_{k_n} } \\& \leq& W_{k_n} \Big[ {\mathbb{E}}\big((W_{n-k_n}+1 ) {\bf 1}_{ \{W_{n-k_n}+1 \geq t_n\}} \big)\Big]_{t_n=\Pi_{k_n} } \\ & \leq &W^* \Big[ {\mathbb{E}}\big((W^*+1 ) {\bf 1}_{ \{W^*+1 \geq t_n\}} \big) \Big]_{t_n=\Pi_{k_n} } \\& \leq &W^* (\log \Pi_{k_n}) ^{-\lambda} {\mathbb{E}} (W^*+1) \log ^{\lambda} (W^*+1) . \end{eqnarray}

由于 (\Pi_{n})^{\frac{1}{n}}\rightarrow \exp\{ {\mathbb{E}}\log m_0\} a.s. 及 k_n\sim n^{\kappa} , 可知 \liminf\limits_{n\rightarrow \infty}\frac{\log \Pi_{k_n}}{n^{\kappa}}>0 . 因此可由 \lambda \kappa>1 及(4.10)式得出(4.11)式.

第2步  证明(4.8)式. 为此需要下面不等式(参见文献[46] 中(5.3)式后的段落): 对 1<\alpha<2 , 有

\begin{eqnarray} && {\mathbb{P}}_{\xi, k_n} \Big( \Big| \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n} }(\bar{X}_{n, u}- {\mathbb{E}}_{\xi, {k_n} } \bar{X}_{n, u}) \Big| > \epsilon n^{-d/2-2} \Big) \\ & \leq & K_a \frac{n^{(d/2+2)\alpha}}{\epsilon^{\alpha}} \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n}^\alpha} {\mathbb{E}}_{\xi, {k_n} } |X_{n, u}|^{\alpha} {{\bf 1}_{\left\{{ |X_{n, u}|\leq \Pi_{k_n}}\right\}}}, \end{eqnarray}

其中 K_a 是一个绝对常数. 在上式两边取条件期望可得

\begin{eqnarray} && {\mathbb{P}}_{k_n} \Big( \Big| \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n} }(\bar{X}_{n, u}- {\mathbb{E}}_{\xi, {k_n} } \bar{X}_{n, u}) \Big| > \epsilon n^{-d/2-2} \Big) \\ & \leq & K_a \frac{n^{(d/2+2)\alpha}}{\epsilon^{\alpha}} \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n}^\alpha} {\mathbb{E}}_{k_n} \Big( |X_{n, u}|^{\alpha} {{\bf 1}_{\left\{{ |X_{n, u}|\leq \Pi_{k_n}}\right\}}}\Big), \end{eqnarray}

取常数 b\in (1, e^{ {\mathbb{E}} \log m_0}) . 观察到

\begin{eqnarray} && {\mathbb{E}}_{k_n}|X_{n, u}|^{\alpha} {{\bf 1}_{\left\{{ |X_{n, u}|\leq \Pi_{k_n}}\right\}}} \\ & =& \int_{0}^\infty \alpha x^{\alpha-1} {\mathbb{P}}_{k_n} ({{\bf 1}_{\left\{{ |X_{n, u}|\leq \Pi_{k_n}}\right\}}}|X_{n, u}|>x ) {\rm d}x \\ & \leq & \alpha \int_0^{\Pi_{k_n}} x^{\alpha-1} {\mathbb{P}}_{k_n} ( | W_{n-k_n}(u)+1 | >x) {\rm d}x\\ &=& \alpha \int_0^{\Pi_{k_n}} x^{\alpha-1} {\mathbb{P}} ( | W_{n-k_n}+1 | >x) {\rm d}x \\ & \leq& \alpha \int_0^{\Pi_{k_n}} x^{\alpha-1} {\mathbb{P}}( W^*+1 >x) {\rm d}x \\ & \leq& \alpha \int_e^{\Pi_{k_n} } x^{\alpha-2} (\log x)^{-\lambda} {\mathbb{E}} (W^*+1)(\log(W^*+1) )^{\lambda} {\rm d}x + e^\alpha \\ &\leq & \alpha {\mathbb{E}} (W^*+1)(\log(W^*+1) )^{\lambda} \left(\int_e^{b^{k_n}} x^{\alpha-2} (\log x)^{-\lambda} {\rm d}x + \int_{b^{k_n}}^{\Pi_{k_n}} x^{\alpha-2}(\log x)^{-\lambda} {\rm d}x \right)+ e^\alpha\\ & \leq & \alpha {\mathbb{E}} (W^*+1)(\log(W^*+1) )^{\lambda}\Big( \int_e^{b^{k_n}} x^{\alpha-2} {\rm d}x +(k_n\log b)^{-\lambda}\int_{b^{k_n}}^{\Pi_{k_n}} x^{\alpha-2} {\rm d}x \Big)+e^\alpha \\ & \leq & \frac{\alpha}{\alpha-1} {\mathbb{E}} (W^*+1)(\log(W^*+1) )^{\lambda} \Big( \big( b^{k_n}\big)^{\alpha-1} + (k_n\log b)^{-\lambda} \Pi_{k_n} ^{\alpha-1} \Big)+e^\alpha \\ &= & K(\lambda, \alpha) \Big( \big( b^{k_n}\big)^{\alpha-1} + (k_n\log b)^{-\lambda} \Pi_{k_n} ^{\alpha-1} \Big)+e^\alpha, \end{eqnarray}

其中 K(\lambda, \alpha) 是一个与 \lambda \alpha 相关的常数. 则有

\begin{eqnarray} & & {\mathbb{P}}_{k_n} \Big( \Big| \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n} }(\bar{X}_{n, u}- {\mathbb{E}}_{\xi, {k_n} } \bar{X}_{n, u}) \Big| > \epsilon n^{-d/2-2} \Big) \\ &\leq & K_a \frac{n^{(d/2+2)\alpha}}{\epsilon^{\alpha}} \frac{1}{\Pi_{k_n}^\alpha} \sum\limits_{u\in {\mathbb{T}}_{k_n}} \Big[ K(\lambda, \alpha) \Big( \big( b^{k_n}\big)^{\alpha-1} + (k_n\log b)^{-\lambda} \Pi_{k_n} ^{\alpha-1} \Big)+e^\alpha\Big] \\ & =& K_a \frac{n^{(d/2+2)\alpha}}{\epsilon^{\alpha}} W_{k_n} \Big[ K(\lambda, \alpha) \Big( \big( b^{k_n} /\Pi_{k_n}\big)^{\alpha-1} + (k_n\log b)^{-\lambda} \Big)+ e^\alpha\Pi_{k_n}^{1-\alpha}\Big]. \end{eqnarray}

那么

\begin{eqnarray} & &\sum\limits_{n=1}^\infty {\mathbb{P}}_{k_n} \Big( n^{ d/2+2}\Big| \bar{ {\mathbb{A}}_n}- {\mathbb{E}}_{\xi, {k_n} } \bar{ {\mathbb{A}}_n}\Big| > \epsilon \Big) \\ & = &\sum\limits_{n=1}^\infty {\mathbb{P}}_{k_n} \Big(n^{ d/2+2} \Big| \sum\limits_{u\in {\mathbb{T}}_{k_n}} \frac{1}{\Pi_{k_n} }(\bar{X}_{n, u}- {\mathbb{E}}_{\xi, {k_n} } \bar{X}_{n, u}) \Big| > \epsilon \Big) \\ & \leq& K_a \frac{W^* }{\epsilon^{\alpha}} \Big[ K(\lambda, \alpha) \Big( \sum\limits_{n=1}^\infty n^{(d/2+2)\alpha} \big( b^{k_n} /\Pi_{k_n}\big)^{\alpha-1} + \sum\limits_{n=1}^\infty n^{(d/2+2) \alpha}(k_n\log b)^{-\lambda} \Big) \\ & & + e^\alpha \sum\limits_{n=1}^\infty n^{(d/2+2) \alpha}\Pi_{k_n}^{1-\alpha}\Big] , \end{eqnarray}

\alpha 充分接近1, 由 \lambda\kappa>d/2+3 可推出 \lambda\kappa-(d/2+2)\alpha>1 , 从而上式最后一项有限.

第3步  观察发现

\begin{eqnarray} && {\mathbb{P}}_{k_n} \Big(| {\mathbb{E}}_{\xi, k_n} \bar{ {\mathbb{A}}}_n | > \epsilon n^{-d/2-2} \Big ) \\ & \leq & \frac{ n^{d/2+2}}{\varepsilon} {\mathbb{E}}_{k_n} | {\mathbb{E}}_{\xi, k_n} \bar{ {\mathbb{A}}}_n | = \frac{ n^{d/2+2}}{\varepsilon} {\mathbb{E}}_{k_n} \Big| \frac{1}{\Pi_{k_n} } \sum\limits_{u\in {\mathbb{T}}_{k_n}} {\mathbb{E}}_{\xi, k_n} \bar{X}_{n, u} \Big| \\ & = &\frac{ n^{d/2+2}}{\varepsilon} {\mathbb{E}}_{k_n} \Big| \frac{1}{\Pi_{k_n} } \sum\limits_{u\in {\mathbb{T}}_{k_n}} (- {\mathbb{E}}_{\xi, k_n } X_{n, u} {\bf 1}_{ \{ |X_{n, u}| \geq \Pi_{k_n}\}} ) \Big| \\ & \leq & \frac{ n^{d/2+2}}{\varepsilon} \frac{1}{\Pi_{k_n} } \sum\limits_{u\in {\mathbb{T}}_{k_n}} {\mathbb{E}}_{k_n } ( W_{n-k_n} (u) +1) {\bf 1}_{ \{ W_{n-k_n}(u)+1 \geq \Pi_{k_n}\}} \\ & = & \frac{ n^{d/2+2}W_{k_n}}{\varepsilon} \Big[ {\mathbb{E}} ( W_{n-k_n} +1) {\bf 1}_{ \{ W_{n-k_n}+1 \geq t_n\}} \Big]_{t_n =\Pi_{k_n}} \\ & \leq& \frac{W^*}{\varepsilon} n^{d/2+2} \Big[ {\mathbb{E}} ( W^* +1) {\bf 1}_{ \{ W^*+1 \geq t_n\}} \Big]_{t_n =\Pi_{k_n}} \\ & \leq &\frac{W^*}{\varepsilon} \frac{ n^{d/2+2}}{(\log\Pi_{k_n})^{\lambda} } {\mathbb{E}} (W^*+1) \log ^{\lambda } ( W^*+1 ) \\ & \leq & \frac{W^*}{\varepsilon} K_\xi n^{d/2+2 -\lambda\kappa} {\mathbb{E}} (W^*+1) \log ^{\lambda } ( W^*+1 ). \end{eqnarray}

那么由 \lambda \kappa > d/2+3 可推得

\sum\limits_{n=1}^\infty {\mathbb{P}}_{k_n} \Big(\Big| n^{d/2+2} {\mathbb{E}}_{\xi, k_n} \bar{ {\mathbb{A}}}_n \Big| > \epsilon \Big )<\infty.

于是(4.9)式成立.

综上, 引理4.1得证.

引理4.2的证明  容易发现对 u \in {\mathbb{T}}_{k_n} , {\left\Vert {S_u} \right\Vert} \leq k_n. 回顾 k_n<n^{1/6}. {\left\Vert {z+S_u} \right\Vert}<n^{1/6} 对充分大的 n 成立. 由定理3.1中的(3.3)式可得

\begin{eqnarray} & &{\mathbb{P}}_{\theta^{k_n}\xi}(\widehat{S}_{n-k_n}=z-y)|_{y=S_u}\\ & =&\left(\frac{d}{2\pi ( {b}_n- {b}_{k_n})}\right)^{d/2} \Big\{ 1+ \frac{d}{ {b}_n- {b}_{k_n}} \Big[ -\frac{1}{2}{\left\Vert {z-S_u} \right\Vert}^2 +\frac{1}{8}\Big( d - (d+2) \frac{ {b}_{2, n} - {b}_{2, k_n} }{ {b}_n- {b}_{k_n}} \Big)\Big] \\ &&+ \frac{ d^2}{( {b}_n- {b}_{k_n})^2} \Big[ \frac{1}{8}{\left\Vert {z-S_u} \right\Vert}^4- \frac{(d+4)}{16} {\left\Vert {z-S_u} \right\Vert}^2 \Big( 1- (1+\frac{2}{d})\frac{ {b}_{2, n} - {b}_{2, k_n} }{ {b}_n- {b}_{k_n}} \Big) \\ & & + Q_d( {b}_n- {b}_{k_n}, {b}_{2, n}- {b}_{2, k_n}, {b}_{3, n}- {b}_{3, k_n}) \Big] +n^{-2}\widetilde{\alpha}_{n}(\theta^{k_n}\xi, z-S_u)\Big\} \\ & = &\Big (\frac{ d}{2\pi {b}_{ n} } \Big)^{d/2}\Big\{ 1+ \frac{d}{ {b}_n} \Big[ -\frac{1}{2}{\left\Vert {z} \right\Vert}^2+\frac{1}{8}\Big( d - (d+2) \frac{ {b}_{2, n} }{ {b}_n} \Big)+\langle {{z}}, {{S_u}}\rangle-\frac{1}{2}({\left\Vert {S_u} \right\Vert}^2 -b_{k_n})\Big] \\ & & + \frac{ d^2}{8 {b}_n^2} \Big[\Big({\left\Vert {S_u} \right\Vert}^4-\Big(2+\frac{4}{d}\Big) {b}_{k_n}{\left\Vert {S_u} \right\Vert}^2 + \Big(1+\frac{2}{d}\Big)( {b}_{k_n}^2 + {b}_{2, k_n})- {b}_{k_n} \Big) \\ & & -4 \langle {{z}}, {{{\left\Vert {S_u} \right\Vert}^2S_u -\Big(1+\frac{2}{d}\Big) {b}_{k_n}S_u }}\rangle+ 4\Big(\langle {{z}}, {{S_u}}\rangle^2 - \frac{1} {d} {b}_{k_n}{\left\Vert {z} \right\Vert}^2 \Big) \\ && + \Big(2{\left\Vert {z} \right\Vert}^2- \frac{1}{2} (d+4)\Big(1- \Big( 1+\frac{2}{d} \Big)\frac{ {b}_{2, n}}{ {b}_n}\Big) \Big)({\left\Vert {S_u} \right\Vert}^2 - {b}_{k_n}) \\ && +\Big[(d+4) \Big(1- \Big( 1+\frac{2}{d} \Big)\frac{ {b}_{2, n}}{ {b}_n}\Big)- 4{\left\Vert {z} \right\Vert}^2\Big ] \langle {{z}}, {{S_u}}\rangle \\ && +{\left\Vert {z} \right\Vert}^4 - \frac{1}{2} (d+4) {\left\Vert {z} \right\Vert}^2\Big(1- \Big( 1+\frac{2}{d} \Big)\frac{ {b}_{2, n}}{ {b}_n}\Big) +Q_d( {b}_n, {b}_{2, n}, {b}_{3, n})\Big]+ n^{-2} \epsilon_{n, u}\Big\}, \end{eqnarray}

其中无穷小项 \epsilon_{n, u}(u\in {\mathbb{T}}_{k_n}) 满足

\begin{eqnarray} \sup\limits_{u\in {\mathbb{T}}_{k_n} }\{ |\epsilon_{n, u} | \} & \leq & C_d (n-k_n)^{2+d/2}e ^{ -(M_n-M_{k_n})} + C_d \Big(\frac{n-k_n}{ {b}_n- {b}_{k_n}} \Big)^{ 5+d/2}\\ &&\times \Big[(n-k_n)^{ (6+d)/4}e^{-\frac{11( {b}_n- {b}_{k_n})}{24 \sqrt{n-k_n}d} } + (n-k_n)^{-1/3}+ (n-k_n)^{ -1} ({\left\Vert {z} \right\Vert}+k_n )^6 \Big], \end{eqnarray}

\begin{equation} \epsilon_n = \sup\limits_{u\in {\mathbb{T}}_{k_n} }\{ | \epsilon_{n, u} | \} \mathop{\longrightarrow}^{n\rightarrow \infty} 0. \end{equation}
(4.12)

从而

\begin{eqnarray} {\mathbb{B}}_{n}&=& \frac{1}{\Pi_{k_n}}\sum\limits_{u\in {\mathbb{T}}_{k_n}} {\mathbb{P}}_{\theta^{k_n}\xi} \big(\widehat{S}_{n-k_n} =z-y\big)|_{y=S_u} \\ & =& \Big (\frac{ d}{2\pi {b}_{ n} } \Big)^{d/2}\Big \{ W_{k_n} + \frac{d}{ {b}_n} \Big [ F_{1, k_n}(z)-\frac{1}{8} \frac{ {b}_{2, n} }{ {b}_n} (d+2) W_{k_n} \Big ] \\ & &+\frac{d^2}{ {b}_n^2} \Big[F_{2, k_n}(z) + \frac{ {b}_{2, n}}{ {b}_n} F_{3, k_n}(z) + Q_d( {b}_n, {b}_{2, n}, {b}_{3, n}) W_{k_n}\Big]+ \frac{1}{n^2}\frac{1}{\Pi^{k_n}}\sum\limits_{u\in {\mathbb{T}}_{k_n}}\epsilon_{n, u}\Big\}, \end{eqnarray}
(4.13)

其中

\begin{eqnarray} F_{1, k_n}(z)&=& \Big[\frac{1}{8}d-\frac{1}{2}{\left\Vert {z} \right\Vert}^2\Big]W_{k_n}+\langle {{z}}, {{N_{1, k_n}}}\rangle-\frac{1}{2} N_{2, k_n}, \\ F_{2, k_n}(z)&= &\frac{1}{8} N_{4, k_n} - \frac{1}{2}\langle {{z}}, {{ N_{3, k_n}}}\rangle+\frac{1}{2} N^z_{2, k_n} + \Big( \frac{1}{4} {\left\Vert {z} \right\Vert}^2-\frac{d}{16}-\frac{1}{4}\Big) N_{2, k_n} \\ && + \Big( \frac{d}{8}+\frac{1}{2} -\frac{1}{2}{\left\Vert {z} \right\Vert}^2\Big)\langle {{z}}, {{ N_{1, k_n} }}\rangle +\Big[ \frac{1}{8}{\left\Vert {z} \right\Vert}^4 - \frac{1}{16} (d+4) {\left\Vert {z} \right\Vert}^2 \Big]W_{k_n}, \\ F_{3, k_n}(z)&=& (d+4)\Big(1+\frac{2}{d}\Big)\Big(\frac{1}{16} N_{2, k_n}-\frac{1}{8}\langle {{z}}, {{ N_{1, k_n}}}\rangle + \frac{1}{16}{\left\Vert {z} \right\Vert}^2 W_{k_n} \Big). \end{eqnarray}

当条件(1.3)对 \lambda>0 成立, 由(2.3)式, 可得

W-W_n=o(n^{-\lambda}), \quad\mbox{a.s. 当 }\ n\rightarrow \infty.

根据 \kappa 的选取及 k_n=n^{\kappa} , 可见

\begin{equation} W-W_{k_n}=o(n^{-\lambda\kappa})=o(n^{-2}) \quad\mbox{a.s. 当 }\ n\rightarrow \infty. \end{equation}
(4.14)

类似地, 由命题1.1可得当 n\rightarrow \infty 时, a.s.

\begin{eqnarray} &&N_{1, k_n}- {\cal V}_1= o(n^{-1}), N_{2, k_n}- {\cal V}_2= o(n^{-1}) , N^z_{2, k_n}- {\cal V}_2^z=o(1), \\ && N_{3, k_n} - {\cal V}_3 =o(1) , N_{4, k_n} - {\cal V}_4 =o(1) . \end{eqnarray}

于是可得当 n\rightarrow \infty 时,

\begin{equation} F_{1, k_n}(z)-F_1(z)= o(n^{-1}), \ F_{2, k_n}(z)- F_2(z)=o(1), \ F_{3, k_n}(z)- F_3(z)=o(1) \ \mbox{a.s.}. \end{equation}
(4.15)

而由(4.12)式, 有

\begin{equation} \bigg|\frac{1}{\Pi^{k_n}} \sum\limits_{u\in {\mathbb{T}}_{k_n}}\epsilon_{n, u}\bigg|\leq \epsilon_n W_{k_n} \rightarrow 0. \end{equation}
(4.16)

综合(4.14), (4.15), (4.16)与(4.13)式, 即可导出所需结论(4.5)式.

参考文献

Asmussen S, Hering H. Branching Processes. Boston: Birkhäuser Boston, 1983

[本文引用: 1]

Révész P . Random Walks of Infinitely Many Particles. River Edge: World Scientific Publishing Co, 1994

[本文引用: 3]

Harris T E . The Theory of Branching Processes. Berlin: Springer-Verlag, 1963

[本文引用: 1]

Asmussen S , Kaplan N .

Branching random walks. Ⅰ

Stochastic Process Appl, 1976, 4 (1): 1- 13

DOI:10.1016/0304-4149(76)90022-3      [本文引用: 1]

Gao Z Q , Liu Q , Wang H .

Central limit theorems for a branching random walk with a random environment in time

Acta Math Sci, 2014, 34B (2): 501- 512

[本文引用: 1]

Chen X , He H .

On large deviation probabilities for empirical distribution of supercritical branching random walks with unbounded displacements

Probab Theory Relat Fields, 2019, 175: 255- 307

DOI:10.1007/s00440-018-0891-4     

Biggins J D .

The central limit theorem for the supercritical branching random walk, and related results

Stochastic Process Appl, 1990, 34 (2): 255- 274

DOI:10.1016/0304-4149(90)90018-N     

Huang C , Liang X , Liu Q .

Branching random walks with random environments in time

Frontiers of Mathematics in China, 2014, 9 (4): 835- 842

DOI:10.1007/s11464-014-0407-1      [本文引用: 1]

Jagers P .

Galton-Watson processes in varying environments

J Appl Probab, 1974, 11: 174- 178

DOI:10.2307/3212594     

Joffe A , Moncayo A R .

Random variables, trees, and branching random walks

Adv Math, 1973, 10: 401- 416

DOI:10.1016/0001-8708(73)90123-0     

Kabluchko Z .

Distribution of levels in high-dimensional random landscapes

Ann Appl Probab, 2012, 22 (1): 337- 362

URL    

Kaplan N , Asmussen S .

Branching random walks. Ⅱ

Stoch Process Appl, 1976, 4 (1): 15- 31

DOI:10.1016/0304-4149(76)90023-5      [本文引用: 1]

Louidor O , Perkins W .

Large deviations for the empirical distribution in the branching random walk

Electron J Probab, 2015, 20 (18): 1- 19

URL    

Stam A J .

On a conjecture by Harris

Z Wahrsch verw Geb, 1966, 5: 202- 206

DOI:10.1007/BF00533055     

Uchiyama K .

Spatial growth of a branching process of particles living in \mathbb{R}.d

Ann Probab, 1982, 10 (4): 896- 918

Grübel R , Kabluchko Z .

Edgeworth expansions for profiles of lattice branching random walks

Ann Inst H Poincaré Probab Statist, 2017, 53 (4): 2103- 2134

URL     [本文引用: 1]

Chen X .

Exact convergence rates for the distribution of particles in branching random walks

Ann Appl Probab, 2001, 11 (4): 1242- 1262

URL     [本文引用: 3]

Gao Z Q .

Exact convergence rate of the local limit theorem for branching random walks on the integer lattice

Stoch Process Appl, 2017, 127 (4): 1282- 1296

DOI:10.1016/j.spa.2016.07.015      [本文引用: 2]

Gao Z Q .

A second order asymptotic expansion in the local limit theorem for a simple branching random walk in \mathbb{Z}^{d}

Stoch Process Appl, 2018, 128 (12): 4000- 4017

DOI:10.1016/j.spa.2018.01.005      [本文引用: 4]

Gao Z Q , Liu Q .

Exact convergence rate in the central limit theorem for a branching random walk with a random environment in time

Stoch Process Appl, 2016, 126 (9): 2634- 2664

DOI:10.1016/j.spa.2016.02.013      [本文引用: 2]

Gao Z Q , Liu Q .

Second and third orders asymptotic expansions for the distribution of particles in a branching random walk with a random environment in time

Bernoulli, 2018, 24 (1): 772- 800

URL     [本文引用: 1]

Liu Q .

Branching random walks in random environment

Proceedings of the 4th International Congress of Chinese Mathematicians (ICCM 2007), 2007, 2: 702- 719

URL     [本文引用: 1]

Wang X , Huang C .

Convergence of martingale and moderate deviations for a branching random walk with a random environment in time

J Theoret Probab, 2017, 30 (3): 961- 995

DOI:10.1007/s10959-016-0668-6      [本文引用: 1]

Wang X , Huang C .

Convergence of complex martingale for a branching random walk in a time random environment

Electron Commun Probab, 2019, 24 (41): 1- 14

URL    

Wang Y , Liu Z , Liu Q , Li Y .

Asymptotic properties of a branching random walk with a random environment in time

Acta Math Sci, 2019, 39B (5): 1345- 1362

[本文引用: 1]

Baillon J B , Clément Ph , Greven A , den Hollander F .

A variational approach to branching random walk in random environment

Ann Probab, 1993, 21 (1): 290- 317

URL     [本文引用: 1]

Birkner M, Geiger J, Kersting G. Branching Processes in Random Environment-A View on Critical and Subcritical Cases//Deuschel J, Greven A. Interacting Stochastic Systems. Berlin: Springer, 2005: 269-291

Comets F , Popov S .

On multidimensional branching random walks in random environment

Ann Probab, 2007, 35 (1): 68- 114

URL    

Comets F , Popov S .

Shape and local growth for multidimensional branching random walks in random environment

ALEA Lat Am J Probab Math Stat, 2007, 3: 273- 299

URL    

Comets F , Yoshida N .

Branching random walks in space-time random environment: survival probability, global and local growth rates

J Theoret Probab, 2011, 24 (3): 657- 687

DOI:10.1007/s10959-009-0267-x     

Greven A , den Hollander F .

Branching random walk in random environment: phase transitions for local and global growth rates

Probab Theory Related Fields, 1992, 91 (2): 195- 249

DOI:10.1007/BF01291424     

Hu Y , Yoshida N .

Localization for branching random walks in random environment

Stochastic Process Appl, 2009, 119 (5): 1632- 1651

DOI:10.1016/j.spa.2008.08.005     

Nakashima M .

Almost sure central limit theorem for branching random walks in random environment

Ann Appl Probab, 2011, 21 (1): 351- 373

Yoshida N .

Central limit theorem for branching random walks in random environment

Ann Appl Probab, 2008, 18 (4): 1619- 1635

URL    

Biggins J D , Kyprianou A E .

Measure change in multitype branching

Adv Appl Probab, 2004, 36 (2): 544- 581

DOI:10.1017/S0001867800013604      [本文引用: 1]

Athreya K B , Karlin S .

On branching processes with random environments. Ⅰ. Extinction probabilities

Ann Math Statist, 1971, 42: 1499- 1520

DOI:10.1214/aoms/1177693150      [本文引用: 1]

Athreya K B , Karlin S .

On branching processes with random environments. Ⅱ. Limit theorems

Ann Math Statist, 1971, 42: 1843- 1858

DOI:10.1214/aoms/1177693051      [本文引用: 1]

Smith W L, Wilkinson W E. On branching processes in random environments. Ann Math Statist, 1969, series 40: 814-827

[本文引用: 1]

Tanny D .

A necessary and sufficient condition for a branching process in a random environment to grow like the product of its means

Stochastic Process Appl, 1988, 28 (1): 123- 139

DOI:10.1016/0304-4149(88)90070-1      [本文引用: 1]

Huang C , Liu Q .

Convergence rates for a branching process in a random environment

Markov Process and Related Fields, 2014, 20 (2): 265- 286

[本文引用: 1]

Asmussen S .

Convergence rates for branching processes

Ann Probab, 1976, 4 (1): 139- 146

[本文引用: 3]

Petrov V V . Limit Theorems of Probability Theory. Oxford: Clarendon Press, 1995

[本文引用: 1]

Durrett R . Probability: Theory and Examples. Belmont: Duxbury Press, 1996

[本文引用: 1]

Lawler G F , Limic V . Random Walk: A Modern Introduction. Cambridge: Cambridge University Press, 2010

[本文引用: 2]

Liang X , Liu Q .

Weighted moments of the limit of a branching process in a random environment

Proceedings of the Steklov Institute of Mathematics, 2013, 282 (1): 127- 145

DOI:10.1134/S0081543813060126      [本文引用: 1]

Biggins J D .

Growth rates in the branching random walk

Z Wahrsch verw Geb, 1979, 48 (1): 17- 34

DOI:10.1007/BF00534879      [本文引用: 1]

/