数学物理学报, 2022, 42(1): 245-268 doi:

论文

一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型

王长有,1, 李楠,2, 蒋涛,3,4, 杨强1

1 成都信息工程大学应用数学学院 成都 610225

2 西南财经大学应用数学学院 成都 610074

3 成都信息工程大学控制工程学院 成都 610225

4 中国科学院沈阳自动化研究所机器人国家重点实验室 沈阳 110169

On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls

Wang Changyou,1, Li Nan,2, Jiang Tao,3,4, Yang Qiang1

1 College of Applied Mathematics, Chengdu University of Information Technology, Chengdu 610225

2 Department of Applied Mathematics, Southwestern University of Finance and Economics, Chengdu 610074

3 Control Engineering College, Chengdu University of Information Technology, Chengdu 610225

4 State key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110169

通讯作者: 李楠, E-mail: 2972028881@qq.com蒋涛, E-mail: jiangtop@126.com

收稿日期: 2020-09-26  

基金资助: 机器人国家重点实验室研究基金.  2019-O13
四川省科技厅科学研究项目.  2021YFH0069
成都信息工程大学人才引进项目.  KYTZ201820
四川省科技厅项目.  21ZYZYTS0158

Received: 2020-09-26  

Fund supported: the Robot Research Fund of State Key Laboratory.  2019-O13
the Science Research Project of Sichuan Provincial Department.  2021YFH0069
the Talent Introduction Project of Chengdu University of Information Engineering.  KYTZ201820
the Sichuan Science and Technology Program.  21ZYZYTS0158

作者简介 About authors

王长有,E-mail:wangchangyou417@163.com , E-mail:wangchangyou417@163.com

Abstract

In this paper, we study a 3-species nonlinear non-autonomous ratio-dependent food chain system with delays and feedback controls. Firstly, based on the theory of delay differential inequality, some new analytical methods are developed and a suitable Lyapunov function is constructed. Secondly, sufficient conditions for the permanence and global attractivity of positive solutions for the system are obtained. Thirdly, by using the theoretical analysis and fixed point theory, the corresponding periodic systems are discussed, and the conditions for the existence, uniqueness and stability of positive periodic solutions of periodic systems are established. Moreover, we give some numerical simulations to prove that our theoretical analysis are correct. Finally, we still give an numerical example for the corresponding stochastic food chain model with multiplicative noise sources, and achieve new interesting change process of the solution for the model.

Keywords: Delay ; Ratio-Dependent ; Feedback Control ; Permanence ; Global Attractive ; Periodic solution

PDF (1166KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王长有, 李楠, 蒋涛, 杨强. 一类具有时滞及反馈控制的非自治非线性比率依赖食物链模型. 数学物理学报[J], 2022, 42(1): 245-268 doi:

Wang Changyou, Li Nan, Jiang Tao, Yang Qiang. On a Nonlinear Non-Autonomous Ratio-Dependent Food Chain Model with Delays and Feedback Controls. Acta Mathematica Scientia[J], 2022, 42(1): 245-268 doi:

1 引言

本文研究以下具有时滞和反馈控制的三种群非自治比率依赖型食物链模型的解的动力学行为

$ \begin{equation} \left\{\begin{array}{l} \dot{x}_{1}(t)=x_{1}(t)\big[r_{1}(t)-a_{11}(t) _{1}\left(t-\tau_{1}\right)-\frac{a_{12}(t) x_{2}(t)}{b_{12}(t)+x_{1}(t)}-d_{1}(t) u_{1}(t)\big], \\ \dot{x}_{2}(t)=x_{2}(t)\big[-r_{2}(t)-a_{22}(t) x_{2}\left(t-\tau_{2}\right)+\frac{a_{21}(t) x_{1}\left(t-\tau_{3}\right)}{b_{12}(t)+x_{1}\left(t-\tau_{3}\right)}-\frac{a_{23}(t) x_{3}(t)}{b_{23}(t)+x_{2}(t)}+d_{2}(t) u_{2}(t)\big], \\ \dot{x}_{3}(t)=x_{3}(t)\big[-r_{3}(t)-a_{33}(t) x_{3}\left(t-\tau_{4}\right)+\frac{a_{32}(t) x_{2}\left(t-\tau_{5}\right)}{b_{23}(t)+x_{2}\left(t-\tau_{5}\right)}+d_{3}(t) u_{3}(t)\big], \\ \dot{u}_{1}(t)=e_{1}(t)-f_{1}(t) u_{1}(t)+q_{1}(t) x_{1}(t), \\ \dot{u}_{2}(t)=e_{2}(t)-f_{2}(t) u_{2}(t)-q_{2}(t) x_{2}(t), \\ \dot{u}_{3}(t)=e_{3}(t)-f_{3}(t) u_{3}(t)-q_{3}(t) x_{3}(t), \end{array}\right. \end{equation} $

带有如下初始条件

$ \begin{equation} x_{i}(t)=\phi_{i}(t) \geq 0, t \in[-\tau, 0), \phi_{i}(0)>0, u_{i}(0)=u_{i 0}>0, i=1, 2, 3, \end{equation} $

其中$ x_{i}(t), (i=1, 2, 3) $表示第$ i $个种群的密度, $ r_{1}(t) $是食饵种群的内禀增长率, $ r_{i}(t), i=2, 3 $是捕食者的死亡率. $ a_{ii}(t), (i=1, 2, 3) $表示第i个种群的内部竞争系数, $ a_{12}(t), a_{23}(t) $表示食饵被捕食者捕获的比率, $ a_{21}(t), a_{32}(t) $表示捕食者捕获食饵后的吸收率, $ b_{12}(t), b_{23}(t) $为捕食者的捕获率. $ u_{i}(t), (i=1, 2, 3) $是反馈控制函数, $ d_{i}(t), e_{i}(t), q_{i}(t), f_{i}(t), (i=1, 2, 3) $是控制参数. $ \tau_{1}, \tau_{2}, \tau_{4} $是常数, 分别表示因为食饵、捕食者和顶级捕食者拥挤引起的负反馈时滞. $ \tau_{3}, \tau_{5} $是由于怀孕而导致的时滞, 也就是说, 只有成熟的成年捕食者才能为捕食者提供食物. $ \tau=\max\{\tau_1, \tau_2, \tau_3, \tau_4, \tau_5\} $, 模型中的所有系数都是定义在$ [0, +\infty) $上的正连续和有界函数.

生物种群的持久性、全局吸引力和周期性是人口动力学的一个重要研究方向. 该模型(1.1)–(1.2)描述了三个物种之间的捕食性关系, 其中第二个种群捕食第一个种群, 第三个种群捕食第二个种群. 比率依赖的Lotka-Volterra捕食-食饵模型在参考文献[1, 11, 17, 19, 33, 37]中得到了广泛的研究, 并取得了许多优秀的结果. 2007年, Liang和Pan[17]通过构造李亚普诺夫函数, 研究了一类比率依赖的Holling-Tanner系统, 得到了该系统正平衡点的全局稳定性的充分条件. 在文献$ [37] $中, 作者利用李亚普诺夫泛函法和线性化方法, 研究了具有Holling二型函数响应的捕食-食饵系统, 取得其正常数平衡点的局部稳定性和全局稳定性的充分条件. Xu等人在文献[33]中研究了一类捕食- 食饵模型的动力学行为, 该模型假设捕食者和食饵都使用基于博弈论的策略来最大化它们的人均种群增长率. 在文献$ [11] $中, 作者研究了捕食者和食饵之间的相互作用及解的动力学行为. 2018年, Louartassi等人在文献[19] 中利用Pontryagin最大值原理研究了对食饵具有捕获和储备区的捕食-食饵模型的动力学行为. 此外, 现实世界中的生态系统往往受到一些不可预测的因素的干扰, 这些因素影响着生态模型的参数, 如死亡率、出生率等. 因此, 我们应该在生态系统中增加反馈控制, 研究反馈控制对系统持久性和全局稳定性的影响, 为生态系统的保护提供一些理论方法. 越来越多的学者对具有反馈控制的Lotka-Volterra捕食-食饵模型进行了讨论, 参见文献[13, 25, 31, 38]. Gopalsamy和翁在文献[13]中研究了具有反馈控制的两种群竞争模型的正平衡的全局吸引性. 2009年, Nie等人在文献[25]中研究了反馈控制对非自治捕食-食饵Lotka-Volterra系统动态行为的影响, 通过构造适当的李亚普诺夫泛函, 他们得到了模型的任何正解的全局稳定性的可验证的充分条件. 在文献[38]中, Zhang等人考虑了一类具有反馈控制的Lotka-Volterra随机系统, 结合Jensen不等式, 构造合适的李亚普诺夫函数, 得到了保证系统在均方意义下全局耗散的充分条件. 值得一提的是, 王等人在文献[32]中考虑了一类具有反馈控制的Lotka-Volterra比率依赖捕食-食饵系统, 并建立了保证该系统的持久性和正解的全局吸引力的充分条件. 最后, 实际上, 任何生物或环境参数都会自然地受到时间波动的影响. 因此, 更现实的描述种群之间相互作用的数学模型应该考虑时滞的影响. 基于越来越多的生理和生物学证据, 一些学者认识到在种群相互作用中不可避免地存在一定的时间延迟, 并发现较长的时间延迟可能会影响系统的稳定性, 参见文献[20, 22, 23, 26, 36]. Xu和Chen在文献[36]中研究了一类时滞三种群非自治的Lotka-Volterra捕食-食饵系统, 并利用时滞微分不等式和李亚普诺夫稳定性理论证明了该系统在适当的条件下是一致持久的和全局稳定的. 在文献[23]中, Nakata和Moroya考虑了一类具有时滞的非自治Lotka-Volterra互助模型, 建立了保证该系统持久的若干充分条件. 2010年, Shen和You在文献[26]中研究了一类三种群食物链比率依赖模型, 利用微分不等式获得了保证捕食者物种灭绝和系统持久性的充分条件. 特别是, Xu等人在文献[35]中, 通过构造合适的李亚普诺夫泛函, 研究了具有常系数且没有反馈控制的系统正平衡(1.1)–(1.2)的全局渐近稳定性. 有关更多类似的结果, 参见文献[3, 6, 10, 18, 34].

此外, 我们都知道, 任何真实的生态和生物系统都总是受到环境噪声[9, 14, 24]的影响. 噪声不可避免地出现于远离平衡态的真实系统中, 特别是在Lotka-Volterra系统中, 因为生态系统和一般的生物和物理系统都是开放的系统, 它们不可避免地与环境相互作用. 系统与外部环境的相互作用导致了周期性的确定性外力, 在种群动力系统中, 这种随机噪声主要是乘法类型的随机扰动. 此外, 乘法噪声负责噪声诱导跃迁[15], 类似于相变现象, 发生在噪声强度较大的某些特定值, 使阶参量的概率密度函数在噪声强度的某些值下突然改变其形状. 因此, 对具有随机噪声扰动的Lotka-Volterra生态系统的研究无疑具有重要的物理数学意义, 它也使研究环境噪声对低压系统的积极影响成为可能[7, 27, 30]. 一些关于环境噪声对生态系统动力学性质的影响以及噪声在跨学科物理模型中的积极作用的结果, 可参见文献[5, 8, 12, 21, 28, 29].

然而, 据作者所知, 还没有人考虑同时具有时滞、比率依赖性和反馈控制的一般非自治的Lotka-Volterra系统. 在上述工作的激励下, 我们提出并研究上述三种群具有时滞和反馈控制的非自治比率依赖型Lotka-Volterra食物链模型. 本文的结构如下: 在第二节中, 给出了系统(1.1)–(1.2)的持久性条件. 第三节通过构造非负李亚普诺夫函数, 得到了保证系统正解全局吸引的充分条件. 第四节利用一些新的分析方法和Brouwer不动点理论, 得到了相应周期系统正周期解的存在性、唯一性和稳定性的一些充分条件. 最后, 在第五部分对上述系统进行了数值仿真, 验证了所得的理论结果. 另外, 对具有乘法噪声的上述系统进行了数值仿真, 发现该模型一些新的有趣的动力学行为.

2 持久性

我们首先介绍以下定义和符号, 以获得系统$ (1.1) $的持久性结果. 如果$ g(t) $是一个定义在$ [0, +\infty) $上的连续有界函数, 则记

定义2.1  如果存在正常数$ M_{i}, N_{i}, m_{i}, n_{i}, (i=1, 2, 3) $$ T $, 使得对系统(1.1)–(1.2)的任意正解$ Z(t)=\left(x_{1}(t), x_{2}(t), x_{3}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right) $, 当$ t>T $时, 有$ m_{i} \leq x_{i}(t) \leq M_{i}, n_{i} \leq u_{i}(t) \leq N_{i} $, 则称系统$ (1.1) $是持久的.

作为文献[4]中引理2.1的直接推论, 我们有下述引理.

引理2.1  如果$ a>0, b>0 $$ \dot{x} \geq b-a x $, 当$ t \geq 0 $$ x(0)>0 $时, 我们有$ \liminf\limits_{t \rightarrow +\infty} x(t) \geq b / a $. 如果$ a>0, b>0 $$ \dot{x} \leq b-a x $, 当$ t \geq 0 $$ x(0)>0 $时, 我们有$ \limsup\limits_{t \rightarrow +\infty} x(t) \leq b / a $.

以下两个引理来自文献[23], 它们将被用于证明系统$ (1.1) $的持久性.

引理2.2  对初值$ y(t)=\phi(t) \geq 0 $, $ t \in[-m \tau, 0) $$ \phi(0)>0 $, 成立

其中$ \lambda>0, \mu^{l} \geq 0(l=0, 1, 2, \cdots, m), \mu=\sum\limits_{l=0}^{m} \mu^{l}>0 $$ D \geq 0 $是常数, 那么存在一个正的常数$ M_{y}<\infty $使得

$ \begin{equation} \limsup \limits_{t \rightarrow +\infty} y(t) \leq M_{y}=-\frac{D}{\lambda}+\left(\frac{D}{\lambda}+y^{*}\right) \exp (\lambda m \tau)<+\infty, \end{equation} $

其中$ y=y^{\ast } $是方程$ y(\lambda-\mu y)+D=0 $的唯一解.

引理2.3  假设$ y(t)>0 $, 并成立

如果$ (2.1) $式成立, 则存在一个正常数$ m_{y}>0 $, 使得对$ \mu=\sum\limits_{l=0}^{m} \mu^{l}>0 $, 有

对于系统$ (1.1) $, 我们设

定理2.1  若系统$ (1.1) $满足以下条件及初始条件$ (1.2) $

$ {\rm (H_{1})}\; r_{2}^{l}<\left(a_{21}^{m} M_{1}\right) /\left(b_{12}^{l}+M_{1}\right)+d_{2}^{m} N_{2}, $

$ {\rm (H_{2})}\; r_{3}^{l}<\left(a_{32}^{m} M_{2}\right) /\left(b_{23}^{l}+M_{2}\right)+d_{3}^{m} N_{3}, $

$ {\rm (H_{3})}\; r_{1}^{l}>a_{12}^{m} M_{2} / b_{12}^{l}+d_{1}^{m} N_{1}, $

$ {\rm (H_{4})}\; e_{2}^{l}>q_{2}^{m} M_{2}, $

$ {\rm (H_{5})}\; e_{3}^{l}>q_{3}^{m} M_{3}, $

$ {\rm (H_{6})}\; \left(a_{21}^{l} m_{1}\right) /\left(b_{12}^{m}+m_{1}\right)+d_{2}^{l} n_{2}>a_{23}^{m} M_{3} / b_{23}^{l}+r_{2}^{m}, $

$ {\rm (H_{7})}\; r_{3}^{m}<\left(a_{32}^{l} m_{2}\right) /\left(b_{23}^{m}+m_{2}\right)+d_{3}^{l} n_{3}, $

那么系统$ (1.1) $是持久的.

  由系统$ (1.1) $的第一个方程, 我们得到

根据引理2.2, 我们得到

$ \begin{equation} \limsup \limits_{t \rightarrow +\infty} x_{1}(t) \leq \frac{r_{1}^{m}}{a_{11}^{l}} \exp \left(r_{1}^{m} \tau_{1}\right)=M_{1} . \end{equation} $

根据系统$ (1.1) $的第四个方程, 我们可得

根据引理$ 2.1 $, 我们有

$ \begin{equation} \limsup \limits_{t \rightarrow +\infty}(t) \leq \frac{e_{1}^{\pi}+q_{1}^{n} M_{1}}{f_{1}^{l}}=N_{1} . \end{equation} $

根据系统$ (1.1) $的第五个和第六个方程, 我们可得

根据引理2.1, 我们可以得到

$ \begin{equation} \limsup \limits_{t \rightarrow +\infty} {p} u_{2}(t) \leq e_{2}^{n} / f_{2}^{l}=N_{2}, \end{equation} $

$ \begin{equation} \limsup \limits_{t \rightarrow +\infty} u_{3}(t) \leq e_{3}^{n} / f_{3}^{l}=N_{3} . \end{equation} $

根据系统$ (1.1) $的第二和第三个方程, 我们有

根据引理$ 2.2 $, 如果$ {\rm (H_{1}), (H_{2})} $成立, 我们有

$ \begin{eqnarray} \limsup \limits_{t\rightarrow +\infty} x_{2}(t) &\leq& \frac{(a_{21}^{m} M_{1}) /(b_{12}^{l}+M_{1})+d_{2}^{m} N_{2}-r_{2}^{l}}{a_{22}^{l}} \exp [((a_{21}^{m} M_{1})/(b_{12}^{l}+M_{1}){}\\ &&+d_{2}^{m}N_{2}-r_{2}^{l})\tau_{2}]=M_{2}, \end{eqnarray} $

$ \begin{eqnarray} \limsup \limits_{t \rightarrow +\infty} x_{3}(t) &\leq& \frac{\left(a_{32}^{m} M_{2}\right) /\left(b_{23}^{l}+M_{2}\right)+d_{3}^{m} N_{3}-r_{3}^{l}}{d_{33}^{l}}\exp [((a_{32}^{m} M_{2}) /(b_{23}^{l}+M_{2}){}\\ &&+d_{3}^{m}N_{3}-r_{3}^{l})\tau_{4}]=M_{3} . \end{eqnarray} $

另一方面, 根据系统$ (1.1) $的第一个方程, 我们可得

根据假设$ {\rm(H_{3})} $和引理$ 2.3 $, 我们可以得到

$ \begin{equation} \liminf\limits_{t \rightarrow +\infty} x_{1}(t) \geq \frac{r_{1}^{l}-a_{12}^{m} M_{2} / b_{12}^{l}-d_{1}^{m} N_{1}}{a_{11}^{m}}\exp \left[\left(r_{1}^{l}-a_{12}^{m} M_{2} / b_{12}^{l}-d_{1}^{m} N_{1}-a_{11}^{m} M_{1}\right) \tau_{1}\right]=m_{1}. \end{equation} $

根据系统$ (1.1) $的第四个方程, 我们有

根据引理$ 2.1 $, 可得

$ \begin{equation} \liminf\limits_{H+\infty}u_{1}(t)\geq\frac{e_{1}^{l}+q_{1}^{l}m_{1}}{f_{1}^{m}}=n_{1} . \end{equation} $

由系统$ (1.1) $的第五和第六方程, 我们可得

如果$ {\rm (H_{4}), (H_{5})} $成立, 根据引理$ 2.1 $, 我们可得

$ \begin{equation} \liminf\limits_{t \rightarrow +\infty} u_{2}(t) \geq \frac{e_{2}^{l}-q_{2}^{m} M_{2}}{f_{2}^{m}}=n_{2}, \end{equation} $

$ \begin{equation} \liminf\limits_{t \rightarrow +\infty} u_{3}(t) \geq \frac{e_{3}^{l}-q_{3}^{m} M_{3}}{f_{3}^{m}}=n_{3} . \end{equation} $

根据系统$ (1.1) $的第二和第三个方程, 我们有

根据引理$ 2.3 $, 如果$ {\rm (H_{6}), (H_{7})} $成立, 我们可得

$ \begin{eqnarray} \liminf\limits_{t \rightarrow +\infty} x_{2}(t)& \geq &\frac{\left(a_{21}^{l} m_{1}\right) /\left(b_{12}^{m}+m_{1}\right)+d_{2}^{l} n_{2}-a_{23}^{m} M_{3} / b_{23}^{l}-r_{2}^{m}}{a_{22}^{m}} \exp \left[\left(\left(a_{21}^{l} m_{1}\right) /\left(b_{12}^{m}+m_{1}\right)\right.\right.{}\\ &&\left.\left.+d_{2}^{l} n_{2}-a_{23}^{m} M_{3} / b_{23}^{l}-r_{2}^{m}-a_{22}^{m} M_{2}\right) \tau_{2}\right]=m_{2}, \end{eqnarray} $

$ \begin{eqnarray} \liminf\limits_{t \rightarrow +\infty} x_{3}(t)& \geq &\frac{\left(a_{32}^{l} m_{2}\right) /\left(b_{23}^{m}+m_{2}\right)+d_{3}^{l} n_{3}-r_{3}^{m}}{a_{33}^{m}} \exp \left[\left(\left(a_{32}^{l} m_{2}\right) /\left(b_{23}^{m}+m_{2}\right)\right.\right.{}\\ &&\left.\left.+d_{3}^{l} n_{3}-r_{3}^{m}-a_{33}^{m} M_{3}\right) \tau_{4}\right]=m_{3} . \end{eqnarray} $

根据(2.2)–(2.13)式, 可知系统$ (1.1) $是持久的.

3 全局吸引性

在本节中, 我们取得了一些保证捕食-食饵系统$ (1.1) $的正解的全局吸引性的一些充分条件. 首先, 我们给出以下定义和引理.

定义3.1  假设$ (x_{1}(t), $$ x_{2}(t), $$ x_{3}(t), $$ u_{1}(t), $$ u_{2}(t), $$ u_{3}(t)) $$ (y_{1}(t), y_{2}(t), y_{3}(t), v_{1}(t), v_{2}(t), $$ v_{3}(t)) $是系统$ (1.1) $的任意两个正解, 如果

那么系统$ (1.1) $被称为是全局吸引的.

引理3.1[16, 引理8.2]  如果函数$ f(t): {{\mathbb{R}}} ^{+} \rightarrow {{\mathbb{R}}} $是一致连续的, 极限$ \lim\limits_{t \rightarrow +\infty} \int_{0}^{t} f(s) {\rm d}s $存在且有限, 那么有$ \lim\limits_{t \rightarrow +\infty} f(t)=0 $.

定理3.1  假设系统$ (1.1) $除了条件$ {\rm (H_{1})} $$ {\rm (H_{7})} $之外, 还满足

其中

那么系统$ (1.1) $是全局吸引的.

  假设$ \left(x_{1}(t), x_{2}(t), x_{3}(t), u_{1}(t), u_{2}(t), u_{3}(t)\right) $$ \left(y_{1}(t), y_{2}(t), y_{3}(t), v_{1}(t), v_{2}(t), v_{3}(t)\right) $是系统$ (1.1) $的任意两个正解, 那么根据定理$ 2.1 $, 存在正常数$ T $$ M_{i}, N_{i}, m_{i}, n_{i}(i=1, 2, 3) $, 使得当$ t \geq T $时, 有

我们定义

计算$ V_{11}(t) $沿着系统$ (1.1) $的右上导数, 我们可得

$ \begin{eqnarray} D^{+}V_{11}(t)&=&{\rm sgn}\left\{x_{1}(t)-y_{1}(t)\right\} \bigg[-a_{11}(t)\left(x_{1}\left(t-\tau_{1}\right)-y_{1}\left(t-\tau_{1}\right)\right) {}\\ &&-\frac{(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t))(x_{2}(t)-y_{2}(t))-a_{12}(t) y_{2}(t)(x_{1}(t)-y_{1}(t))}{(b_{12}(t)+x_{1}(t))(b_{12}(t)+y_{1}(t))}{}\\ &&-d_{1}(t)(u_{1}(t)-v_{1}(t))\bigg]{}\\ &=&{\rm sgn}\left\{x_{1}(t)-y_{1}(t)\right\} \bigg[-a_{11}(t)\left(x_{1}(t)-y_{1}(t)\right)+a_{11}(t) \int_{t-\tau_{1}}^{t}\left(\dot{x}_{1}(\theta)-\dot{y}_{1}(\theta)\right) {\rm d}\theta{}\\ &&-\frac{(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t))(x_{2}(t)-y_{2}(t))-a_{12}(t) y_{2}(t)(x_{1}(t)-y_{1}(t))}{(b_{12}(t)+x_{1}(t))(b_{12}(t)+y_{1}(t))}{}\\ &&-d_{1}(t)(u_{1}(t)-v_{1}(t))\bigg]{}\\ &=&{\rm sgn}\{x_{1}(t)-y_{1}(t)\} \bigg[-a_{11}(t)(x_{1}(t)-y_{1}(t))-d_{1}(t)(u_{1}(t)-v_{1}(t)){}\\ &&-\frac{\left(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t)\right)\left(x_{2}(t)-y_{2}(t)\right)-a_{12}(t) y_{2}(t)\left(x_{1}(t)-y_{1}(t)\right)}{\left(b_{12}(t)+x_{1}(t)\right)\left(b_{12}(t)+y_{1}(t)\right)}{}\\ &&+a_{11}(t) \int_{t-\tau_{1}}^{t}\bigg(x_{1}(\theta)\bigg[r_{1}(\theta)-a_{11}(\theta) x_{1}(\theta-\tau_{1})-\frac{a_{12}(\theta) x_{2}(\theta)}{b_{12}(\theta)+x_{1}(\theta)}-d_{1}(\theta) u_{1}(\theta)\bigg]{}\\ && -y_{1}(\theta)\bigg[r_{1}(\theta)-a_{11}(\theta) y_{1}\left(\theta-\tau_{1}\right)-\frac{a_{12}(\theta) y_{2}(\theta)}{b_{12}(\theta)+y_{1}(\theta)}-d_{1}(\theta) v_{1}(\theta)\bigg]\bigg) {\rm d}\theta\bigg]{}\\ &=&{\rm sgn}\left\{x_{1}(t)-y_{1}(t)\right\} \bigg[-a_{11}(t) \left(x_{1}(t)-y_{1}(t)\right)-d_{1}(t)\left(u_{1}(t)-v_{1}(t)\right) {}\\ &&-\frac{\left(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t)\right)\left(x_{2}(t)-y_{2}(t)\right)-a_{12}(t) y_{2}(t)\left(x_{1}(t)-y_{1}(t)\right)} {\left(b_{12}(t)+x_{1}(t)\right) \left(b_{12}(t)+y_{1}(t)\right)}{}\\ &&+a_{11}(t) \int_{t-\tau_{1}}^{t}\bigg(((x_{1}(\theta)-y_{1}(\theta)) \bigg[r_{1}(\theta)-a_{11}(\theta) y_{1}(\theta-\tau_{1})-\frac{a_{12}(\theta) y_{2}(\theta)}{b_{12}(\theta)+y_{1}(\theta)}{}\\ & & -d_{1}(\theta) v_{1}(\theta)\bigg]+x_{1}(\theta)\bigg[-a_{11}(\theta)(x_{1}\left(\theta-\tau_{1}\right) -y_{1}\left(\theta-\tau_{1}\right)) {}\\ &&-\frac{a_{12}(\theta)}{b_{12}(\theta)+x_{1}(\theta)} (x_{2}(\theta)-y_{2}(\theta))-d_{1}(\theta)(u_{1}(\theta)-v_{1}(\theta))\bigg]\bigg) {\rm d}\theta\bigg]{}\\ & \leq &-\left(a_{11}(t)-\frac{a_{12}(t) y_{2}(t)}{\left(b_{12}(t)+x_{1}(t)\right) \left(b_{12}(t)+y_{1}(t)\right)}\right)\left|x_{1}(t)-y_{1}(t)\right|{}\\ &&+\frac{(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t))}{(b_{12}(t)+x_{1}(t))(b_{12}(t)+y_{1}(t))} |x_{2}(t)-y_{2}(t)|+d_{1}(t)|u_{1}(t)-v_{1}(t)|{}\\ &&+a_{11}(t) \int_{t-\tau_{1}}^{t}\bigg(\bigg[r_{1}(\theta)+a_{11}(\theta) y_{1}(\theta-\tau_{1})+\frac{a_{12}(\theta) y_{2}(\theta)}{b_{12}(\theta)+y_{1}(\theta)}+d_{1}(\theta) v_{1}(\theta)\bigg]{}\\ & &\times |x_{1}(\theta)-y_{1}(\theta)|+x_{1}(\theta) \bigg[a_{11}(\theta)|x_{1}(\theta-\tau_{1})-y_{1}(\theta-\tau_{1})|{}\\ &&+\frac{a_{12}(\theta)}{b_{12}(\theta)+x_{1}(\theta)} \left|x_{2}(\theta)-y_{2}(\theta)\right|+d_{1}(\theta)\left|u_{1} (\theta)-v_{1}(\theta)\right|\bigg]\bigg) {\rm d}\theta . \end{eqnarray} $

接下来, 我们定义

$ \begin{eqnarray} V_{12}(t)&=&\int_{t-\tau_{1}}^{t}\int_{s}^{t}a_{11}\left(s+\tau_{1}\right) \bigg(\bigg[r_{1}(\theta)+a_{11}(\theta) y_{1}\left(\theta-\tau_{1}\right)+\frac{a_{12}(\theta) y_{2}(\theta)}{b_{12}(\theta)+y_{1}(\theta)} {}\\ &&+d_{1}(\theta) v_{1}(\theta)\bigg] \left|x_{1}(\theta)-y_{1}(\theta)\right|+x_{1}(\theta) \bigg[a_{11}(\theta)\left|x_{1}\left(\theta-\tau_{1}\right)-y_{1}\left(\theta-\tau_{1}\right)\right| {}\\ &&+\frac{a_{12}(\theta)}{b_{12}(\theta)+x_{1}(\theta)}\left|x_{2}(\theta)-y_{2}(\theta) \right|+d_{1}(\theta)\left|u_{1}(\theta)-v_{1}(\theta)\right|\bigg]\bigg) {\rm d}\theta {\rm d}s, \end{eqnarray} $

于是, 根据$ (3.1) $$ (3.2) $式, 有

$ \begin{eqnarray} \sum\limits_{i=1}^{2} D^{+} V_{1 i}(t) &\leq &-\left(a_{11}(t)-\frac{a_{12}(t) y_{2}(t)}{\left(b_{12}(t)+x_{1}(t)\right)\left(b_{12}(t)+y_{1}(t)\right)}\right)\left|x_{1}(t)-y_{1}(t)\right|{}\\ &&+\frac{\left(a_{12}(t) b_{12}(t)+a_{12}(t) y_{1}(t)\right)}{\left(b_{12}(t)+x_{1}(t)\right)\left(b_{12}(t)+y_{1}(t)\right)}\left|x_{2}(t)-y_{2}(t)\right|+d_{1}(t)\left|u_{1}(t)-v_{1}(t)\right|{}\\ &&+\int_{t-\tau_{1}}^{t} a_{11}\left(s+\tau_{1}\right) {\rm d}s\bigg[r_{1}(t)+a_{11}(t) y_{1}\left(t-\tau_{1}\right)+\frac{a_{12}(t) y_{2}(t)}{b_{12}(t)+y_{1}(t)}{}\\ &&+d_{1}(t) v_{1}(t)\bigg]|x_{1}(t)-y_{1}(t)|+M_{1} \int_{t-\tau_{1}}^{t} a_{11}(s+\tau_{1}) {\rm d}s \times a_{11}(t)|x_{1}(t-\tau_{1}){}\\ & &-y_{1}(t-\tau_{1})|+M_{1} \int_{t-\tau_{1}}^{t} a_{11}(s+\tau_{1}) {\rm d}s \times \frac{a_{12}(t)}{b_{12}(t)+x_{1}(t)}|x_{2}(t)-y_{2}(t)|{}\\ &&+M_{1} \int_{t-\tau_{1}}^{t} a_{11}\left(s+\tau_{1}\right) {\rm d}s \times d_{1}(t)\left|u_{1}(t)-v_{1}(t)\right| . \end{eqnarray} $

定义

$ \begin{equation} V_{13}(t)=M_{1} \int_{t-\tau_{1}}^{t} \int_{w}^{w+\tau_{1}} a_{11}\left(s+\tau_{1}\right) a_{11}\left(w+\tau_{1}\right)\left|x_{1}(w)-y_{1}(w)\right| {\rm d}s{\rm d}w. \end{equation} $

$ \begin{equation} V_{1}(t)=V_{11}(t)+V_{12}(t)+V_{13}(t), \end{equation} $

根据(3.3)–(3.4)式, 计算$ V_{1}(t) $的右上导数, 可得

$ \begin{eqnarray} D^{+} V_{1}(t)&\leq &-\bigg[a_{11}^{l}-\frac{a_{12}^{m} M_{2}}{(b_{12}^{l}+m_{1})^{2}}-\bigg(r_{1}^{m}+a_{11}^{m} M_{1}+\frac{a_{12}^{m} M_{2}}{b_{12}^{l}+m_{1}}+d_{1}^{m} N_{1}\bigg)\int_{t-\tau_{1}}^{t} a_{11}^{m}(s+\tau_{1}){\rm d}s{}\\ &&-M_{1} a_{11}^{m} \int_{t}^{t+\tau_{1}} a_{11}^{m}\left(s+\tau_{1}\right) {\rm d}s\bigg]\left|x_{1}(t)-y_{1}(t)\right|{}\\ & &+\left[\frac{a_{12}^{m} b_{12}^{m}+d_{12}^{m} M_{1}}{\left(b_{12}^{l}+m_{1}\right)^{2}}+M_{1} \frac{d_{12}^{m}}{b_{12}^{l}+m_{1}} \int_{t-\tau}^{t} a_{11}^{m}\left(s+\tau_{1}\right) {\rm d}s\right]\left|x_{2}(t)-y_{2}(t)\right|{}\\ & &+\left[d_{1}^{m}+M_{1} d_{1}^{m} \int_{t-\tau_{1}}^{t} a_{11}^{m}\left(s+\tau_{1}\right) {\rm d}s\right]\left|u_{1}(t)-v_{1}(t)\right|{}\\ &\leq &-\bigg[a_{11}^{l}-\frac{d_{12}^{m} M_{2}}{(b_{12}^{l}+m_{1})^{2}}-\bigg(r_{1}^{m}+a_{11}^{m} M_{1}+\frac{a_{12}^{m} M_{2}}{b_{12}^{l}+m_{1}}+d_{1}^{m} N_{1}\bigg) a_{11}^{m} \tau_{1}{}\\ &&-M_{1}(a_{11}^{m})^{2} \tau_{1}\bigg]|x_{1}(t)-y_{1}(t)|+ \bigg(\frac{a_{12}^{m} b_{12}^{m}+a_{12}^{m} M_{1}}{(b_{12}^{l}+m_{1})^{2}}+\frac{M_{1} a_{12}^{m} a_{11}^{m} \tau_{1}}{b_{12}^{l}+m_{1}}\bigg)|x_{2}(t)-y_{2}(t)|{}\\ &&+(d_{1}^{m}+M_{1} d_{1}^{m} a_{11}^{m} \tau_{1})|u_{1}(t)-v_{1}(t)| . \end{eqnarray} $

类似地, 我们定义$ V_{21}(t)=\left|\ln x_{2}(t)-\ln y_{2}(t)\right| $. 计算和估计$ V_{21}(t) $沿着系统$ (1.1) $的右上导数, 可以得出如下结论

$ \begin{eqnarray} D^{+}V_{21}(t)&=&{\rm sgn}\{x_{2}(t)-y_{2}(t)\} \bigg[-a_{22}(t)(x_{2}(t-\tau_{2})-y_{2}(t-\tau_{2})){}\\ &&+\frac{a_{21}(t) b_{12}(t)(x_{1}(t-\tau_{3})-y_{1}(t-\tau_{3}))}{(b_{12}(t)+x_{1}(t-\tau_{3}))(b_{12}(t)+y_{1}(t-\tau_{3}))} {}\\ & &-\frac{(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t))(x_{3}(t)-y_{3}(t))-a_{23}(t) y_{3}(t)(x_{2}(t)-y_{2}(t))}{(b_{23}(t)+x_{2}(t))(b_{23}(t)+y_{2}(t))}{}\\ &&+d_{2}(t)(u_{2}(t)-v_{2}(t))\bigg]{}\\ &=&{\rm sgn}\{x_{2}(t)-y_{2}(t)\}\bigg[-a_{22}(t)(x_{2}(t)-y_{2}(t)){}\\ &&+\frac{a_{21}(t)b_{12}(t)(x_{1}(t-\tau_{3})-y_{1}(t-\tau_{3}))}{(b_{12}(t)+x_{1}(t-\tau_{3}))(b_{12}(t)+y_{1}(t-\tau_{3})}{}\\ &&-\frac{(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t))(x_{3}(t)-y_{3}(t))-a_{23}(t) y_{3}(t)(x_{2}(t)-y_{2}(t))}{(b_{23}(t)+x_{2}(t))(b_{23}(t)+y_{2}(t))}{}\\ &&+d_{2}(t)(u_{2}(t)-v_{2}(t))+a_{22}(t)\int_{t-\tau_{2}}^{t}(\dot{x}_{2}(\theta)-\dot{y}_{2}(\theta)) {\rm d}\theta\bigg]{} \\ &=&{\rm sgn}\left\{x_{2}(t)-y_{2}(t)\right\} \bigg[-a_{22}(t)\left(x_{2}(t)-y_{2}(t)\right) {}\\ && +\frac{a_{21}(t) b_{12}(t)\left(x_{1}\left(t-\tau_{3}\right)-y_{1}\left(t-\tau_{3}\right)\right)}{\left(b_{12}(t) +x_{1}\left(t-\tau_{3}\right)\right)\left(b_{12}(t)+y_{1}\left(t-\tau_{3}\right)\right)} {}\\ &&-\frac{(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t))(x_{3}(t)-y_{3}(t))-a_{23}(t) y_{3}(t)(x_{2}(t)-y_{2}(t))}{(b_{23}(t)+x_{2}(t))(b_{23}(t)+y_{2}(t))} {}\\ &&+d_{2}(t)(u_{2}(t)-v_{2}(t))+a_{22}(t)\int_{t-\tau_{2}}^{t} \bigg(x_{2}(\theta) \bigg[-r_{2}(\theta)-a_{22}(\theta)x_{2} (\theta-\tau_{2}) {}\\ &&+\frac{a_{21}(\theta)x_{1}(\theta-\tau_{3})}{b_{12}(\theta)+x_{1}(\theta-\tau_{3})} -\frac{a_{23}(\theta) x_{3}(\theta)}{b_{23}(\theta)+x_{2}(\theta)}+d_{2}(\theta) u_{2}(\theta)\bigg]{}\\ && -y_{2}(\theta)\bigg[-r_{2}(\theta)-a_{22}(\theta) y_{2}(\theta-\tau_{2})+\frac{a_{21}(\theta) y_{1}(\theta-\tau_{3})}{b_{12}(\theta)+y_{1}(\theta-\tau_{3})}{}\\ &&-\frac{a_{23}(\theta) y_{3}(\theta)}{b_{23}(\theta)+y_{2}(\theta)}+d_{2}(\theta) v_{2}(\theta)\bigg]\bigg) {\rm d}\theta\bigg]{}\\ &=&{\rm sgn}\left\{x_{2}(t)-y_{2}(t)\right\} \bigg[-a_{22}(t)\left(x_{2}(t)-y_{2}(t)\right) {}\\ && +\frac{a_{21}(t) b_{12}(t)\left(x_{1}\left(t-\tau_{3}\right)-y_{1}\left(t-\tau_{3}\right)\right)}{\left(b_{12}(t)+x_{1}\left(t-\tau_{3}\right)\right)\left(b_{12}(t)+y_{1}\left(t-\tau_{3}\right)\right)} {}\\ &&-\frac{\left(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t)\right)\left(x_{3}(t)-y_{3}(t)\right)-a_{23}(t) y_{3}(t)\left(x_{2}(t)-y_{2}(t)\right)}{\left(b_{23}(t)+x_{2}(t)\right)\left(b_{23}(t)+y_{2}(t)\right)}{}\\ &&+d_{2}(t)\left(u_{2}(t)-v_{2}(t)\right)+a_{22}(t) \int_{t-\tau_{2}}^{t}\bigg(( x _ { 2 } ( \theta ) - y _ { 2 } ( \theta ) ) {}\\ &&\times\bigg[-r_{2}(\theta)-a_{22}(\theta) y_{2}(\theta-\tau_{2})+\frac{a_{21}(\theta) y_{1}(\theta-\tau_{3})}{b_{12}(\theta)+y_{1}(\theta-\tau_{3})}-\frac{a_{23}(\theta) y_{3}(\theta)}{b_{23}(\theta)+y_{2}(\theta)} {}\\ &&+d_{2}(\theta) v_{2}(\theta)\bigg]+x_{2}(\theta) \bigg[-a_{22}(\theta)(x_{2}(\theta-\tau_{2})-y_{2}(\theta-\tau_{2})) {}\\ && +\frac{a_{21}(\theta)}{b_{12}(\theta)+x_{1}(\theta-\tau_{3})} \times\left(x_{1}\left(\theta-\tau_{3}\right)-y_{1}\left(\theta-\tau_{3}\right)\right){}\\ &&-\frac{a_{23}(\theta)}{b_{23}(\theta)+x_{2}(\theta)}\left(x_{3}(\theta) -y_{3}(\theta)\right)+d_{2}(\theta)\left(u_{2}(\theta)-v_{2}(\theta)\right)\bigg]\bigg) {\rm d}\theta\bigg]{}\\ &\leq &-\left(a_{22}(t)-\frac{a_{23}(t) y_{3}(t)}{\left(b_{23}(t)+x_{2}(t)\right)\left(b_{23}(t)+y_{2}(t)\right)}\right)\left|x_{2}(t)-y_{2}(t)\right|{}\\ &&+\frac{\left(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t)\right)}{\left(b_{23}(t)+x_{2}(t)\right)\left(b_{23}(t)+y_{2}(t)\right)}\times\left|x_{3}(t)-y_{3}(t)\right|+d_{2}(t)\left|u_{2}(t)-v_{2}(t)\right|{}\\ &&+\frac{a_{21}(t) b_{12}(t)}{\left(b_{12}(t)+x_{1}\left(t-\tau_{3}\right)\right)\left(b_{12}(t)+y_{1}\left(t-\tau_{3}\right)\right)}\times\left|x_{1}\left(t-\tau_{3}\right)-y_{1}\left(t-\tau_{3}\right)\right|{}\\ &&+a_{22}(t) \int_{t-\tau_{2}}^{t}\left(\left[r_{2}(\theta)+a_{22}(\theta) y_{2}\left(\theta-\tau_{2}\right)+\frac{a_{21}(\theta) y_{1}\left(\theta-\tau_{3}\right)}{b_{12}(\theta)+y_{1}\left(\theta-\tau_{3}\right)}\right.\right.{}\\ && +\frac{a_{23}(\theta) y_{3}(\theta)}{b_{23}(\theta)+y_{2}(\theta)}+d_{2}(\theta) v_{2}(\theta)\bigg]\left|x_{2}(\theta)-y_{2}(\theta)\right| {}\\ &&+x_{2}(\theta)\bigg[a_{22}(\theta) \left|x_{2}\left(\theta-\tau_{2}\right)-y_{2}\left(\theta-\tau_{2}\right)\right| {}\\ && +\frac{a_{21}(\theta)}{b_{12}(\theta)+x_{1}(\theta-\tau_{3})}|x_{1}(\theta-\tau_{3})-y_{1}(\theta-\tau_{3})| {}\\ && +\frac{a_{23}(\theta)}{b_{23}(\theta)+x_{2}(\theta)}|x_{3}(\theta)-y_{3}(\theta)| +d_{2}(\theta)|u_{2}(\theta)-v_{2}(\theta)|\bigg]\bigg) {\rm d}\theta . \end{eqnarray} $

定义

$ \begin{eqnarray} V_{22}(t) &=&\int_{t-\tau_{2}}^{t} \int_{s}^{t} a_{22}\left(s+\tau_{2}\right)\left\{\bigg[r_{2}(\theta)+a_{22}(\theta) y_{2}\left(\theta-\tau_{2}\right)+\frac{a_{21}(\theta) y_{1}\left(\theta-\tau_{3}\right)}{b_{22}(\theta)+y_{1}\left(\theta-\tau_{3}\right)}\right.{}\\ &&\left.+\frac{a_{23}(\theta) y_{3}(\theta)}{b_{23}(\theta)+y_{2}(\theta)}+d_{2}(\theta) v_{2}(\theta)\right]\left|x_{2}(\theta)-y_{2}(\theta)\right| {}\\ &&+x_{2}(\theta)\left[a_{22}(\theta)\left|x_{2}\left(\theta-\tau_{2}\right)-y_{2}\left(\theta-\tau_{2}\right)\right|+\frac{a_{21}(\theta)}{b_{2}(\theta) +x_{1}\left(\theta-\tau_{3}\right)}\left|x_{1}\left(\theta-\tau_{3}\right)\right.\right. {}\\ &&\left.\left.\left.-y_{1}\left(\theta-\tau_{3}\right)\right|+\frac{a_{23}(\theta)}{b_{23}(\theta)+x_{2}(\theta)}\left|x_{3}(\theta)-y_{3}(\theta)\right|+d_{2}(\theta)\left|u_{2}(\theta)-v_{2}(\theta)\right|\right]\right\} {\rm d}\theta {\rm d}s . \end{eqnarray} $

然后, 根据$ (3.7) $$ (3.8) $式, 我们有

$ \begin{eqnarray} \sum\limits_{i=1}^{2} D^{+} V_{2i}(t)& \leq &-\left(a_{22}(t)-\frac{a_{23}(t) y_{3}(t)}{\left(b_{3}(t)+x_{2}(t)\right)\left(b_{23}(t)+y_{2}(t)\right)}\right)\left|x_{2}(t)-y_{2}(t)\right|{}\\ &&+\frac{\left(a_{23}(t) b_{23}(t)+a_{23}(t) y_{2}(t)\right)}{\left(b_{23}(t)+x_{2}(t)\right)\left(b_{27}(t)+y_{2}(t)\right)}\times\left|x_{3}(t)-y_{3}(t)\right|+d_{2}(t)\left|u_{2}(t)-v_{2}(t)\right|{}\\ &&+\frac{a_{21}(t) b_{12}(t)}{\left(b_{12}(t)+x_{1}\left(t-\tau_{3}\right)\right)\left(b_{12}(t)+y_{1}\left(t-\tau_{3}\right)\right)}\times\left|x_{1}\left(t-\tau_{3}\right)-y_{1}\left(t-\tau_{3}\right)\right|{}\\ &&+\int_{t-\tau_{2}}^{t} a_{22}\left(s+\tau_{2}\right) {\rm d}s\left[r_{2}(t)+a_{22}(t) y_{2}\left(t-\tau_{2}\right)+\frac{a_{21}(t) y_{1}\left(t-\tau_{3}\right)}{b_{12}(t)+y_{1}\left(t-\tau_{3}\right)}\right.{}\\ &&\left.+\frac{a_{23}(t) y_{3}(t)}{b_{23}(t)+y_{2}(t)}+d_{2}(t) v_{2}(t)\right]\left|x_{2}(t)-y_{2}(t)\right|+M_{2} \int_{t-\tau_{2}}^{t} a_{22}\left(s+\tau_{2}\right) {\rm d}s {}\\ & &\times a_{22}(t)\times\left|x_{2}\left(t-\tau_{2}\right)-y_{2}\left(t-\tau_{2}\right)\right|+M_{2} \int_{t-\tau_{2}}^{t} a_{22}\left(s+\tau_{2}\right) {\rm d}s {}\\ & &\times \frac{a_{21}(t)}{b_{12}(t)+x_{1}\left(t-\tau_{3}\right)}\left|x_{1}\left(t-\tau_{3}\right)-y_{1}\left(t-\tau_{3}\right)\right|{}\\ &&+M_{2}\int_{t-\tau_{2}}^{t}a_{22}(s+\tau_{2}){\rm d}s\times \frac{a_{23}(t)}{b_{23}(t)+x_{2}(t)}|x_{3}(t)-y_{3}(t)|{}\\ &&+M_{2}\int_{t-\tau_{2}}^{t}a_{22}(s+\tau_{2}){\rm d}s\times d_{2}(t)|u_{2}(t)-v_{2}(t)|. \end{eqnarray} $

定义

$ \begin{eqnarray} V_{23}(t)&=&\int_{t-\tau_{3}}^{t} \frac{a_{21}\left(w+\tau_{3}\right) b_{12}\left(w+\tau_{3}\right)}{\left(b_{12}\left(w+\tau_{3}\right)+x_{1}(w)\right)\left(b_{12}\left(w+\tau_{3}\right)+y_{1}(w)\right)}\left|x_{1}(w)-y_{1}(w)\right| {\rm d}w{}\\ &&+M_{2} \int_{t-\tau_{2}}^{t} \int_{w}^{w+\tau_{2}} a_{22}\left(s+\tau_{2}\right) a_{22}\left(w+\tau_{2}\right)\left|x_{2}(w)-y_{2}(w)\right| {\rm d}s {\rm d}w{}\\ & &+M_{2} \int_{t-\tau_{3}}^{t} \int_{w+\tau_{3}-\tau_{2}}^{w+\tau_{3}} a_{22}\left(s+\tau_{2}\right) \frac{a_{21}\left(w+\tau_{3}\right)}{b_{12}\left(w+\tau_{3}\right)+x_{1}(w)}\left|x_{1}(w)-y_{1}(w)\right| {\rm d}s{\rm d}w . \end{eqnarray} $

$ \begin{equation} V_{2}(t)=V_{21}(t)+V_{22}(t)+V_{23}(t) . \end{equation} $

$ (3.9) $$ (3.10) $式可以得到$ V_{2}(t) $的右上导数

$ \begin{eqnarray} D^{+} V_{2}(t)&\leq &-\bigg[a_{22}^{l}-\frac{a_{23}^{m} M_{3}}{(b_{23}^{l}+m_{2})^{2}}-\bigg(r_{2}^{m}+a_{22}^{m} M_{2}+\frac{a_{21}^{m} M_{1}}{b_{12}^{l}+M_{1}}+\frac{a_{23}^{m} M_{3}}{b_{23}^{l}+m_{2}}+d_{2}^{m} N_{2}\bigg) {}\\ &&\times \int_{t-\tau_{2}}^{t} a_{22}^{m}(s+\tau_{2}) {\rm d}s-M_{2} a_{22}^{m} \int_{t}^{t+\tau_{2}} a_{22}^{m}(s+\tau_{2}) {\rm d}s\bigg]|x_{2}(t)-y_{2}(t)|{}\\ &&+\left[\frac{a_{21}^{m} b_{12}^{m}}{\left(b_{12}^{l}+m_{1}\right)^{2}}+M_{2} \frac{a_{21}^{m}}{b_{12}^{l}+m_{1}} \int_{t+\tau_{3}-\tau_{2}}^{t+\tau_{3}} a_{22}^{m}\left(s+\tau_{2}\right) {\rm d}s\right]\left|x_{1}(t)-y_{1}(t)\right|{}\\ &&+\left[\frac{a_{23}^{m} b_{23}^{m}+a_{23}^{m} M_{2}}{\left(b_{23}^{l}+m_{2}\right)^{2}}+M_{2} \frac{a_{23}^{m}}{b_{23}^{l}+m_{2}} \int_{t-\tau_{2}}^{t} a_{22}^{m}\left(s+\tau_{2}\right) {\rm d}s\right]\left|x_{3}(t)-y_{3}(t)\right|{}\\ &&+\left[d_{2}^{m}+M_{2} d_{2}^{m} \int_{t-\tau_{2}}^{t} a_{22}^{m}\left(s+\tau_{2}\right) {\rm d}s\right]\left|u_{2}(t)-v_{2}(t)\right|{}\\ & \leq &-\bigg[a_{22}^{l}-\frac{a_{23}^{m} M_{3}}{\left(b_{23}^{l}+m_{2}\right)^{2}}-\left(r_{2}^{m}+a_{22}^{m} M_{2}+\frac{a_{21}^{m} M_{1}}{b_{12}^{l}+M_{1}}+\frac{a_{23}^{m} M_{3}}{b_{23}^{l}+m_{2}}+d_{2}^{m} N_{2}\right) a_{22}^{m} \tau_{2}{}\\ &&-M_{2}\left(d_{22}^{m}\right)^{2} \tau_{2}\bigg]\left|x_{2}(t)-y_{2}(t)\right|+\left[\frac{d_{21}^{m} b_{12}^{m}}{\left(b_{12}+m_{1}\right)^{2}}+\frac{M_{2} d_{21}^{m} d_{22}^{m} \tau_{2}}{b_{12}+m_{1}}\right]\left|x_{1}(t)-y_{1}(t)\right|{}\\ &&+\left[\frac{a_{23}^{m} b_{23}^{m}+a_{23}^{m} M_{2}}{\left(b_{23}^{l}+m_{2}\right)^{2}}+\frac{M_{2} a_{23}^{m} d_{22}^{m} \tau_{2}}{b_{23}^{l}+m_{2}}\right]\left|x_{3}(t)-y_{3}(t)\right|{}\\ &&+\left(d_{2}^{n}+M_{2} d_{2}^{m} d_{22}^{m} \tau_{2}\right)\left|u_{2}(t)-v_{2}(t)\right| . \end{eqnarray} $

类似地, 我们定义

于是, 我们可得

$ \begin{eqnarray} D^{+} V_{31}(t)&=&{\rm sgn}\left\{x_{3}(t)-y_{3}(t)\right\} \bigg[-a_{33}(t)\left(x_{3}\left(t-\tau_{4}\right)-y_{3}\left(t-\tau_{4}\right)\right) {}\\ && +\frac{a_{32}(t) b_{23}(t)\left(x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right)}{\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t) +y_{2}\left(t-\tau_{5}\right)\right)}+d_{3}(t)\left(u_{3}(t)-v_{3}(t)\right)\bigg]{}\\ &=&{\rm sgn}\left\{x_{3}(t)-y_{3}(t)\right\} \bigg[-a_{33}(t)\left(x_{3}(t)-y_{3}(t)\right)+d_{3}(t)\left(u_{3}(t)-v_{3}(t)\right){}\\ &&+\frac{a_{32}(t) b_{23}(t)\left(x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right)} {\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t)+y_{2}\left(t-\tau_{5}\right)\right)}+a_{33}(t) \int_{t-\tau_{4}}^{t}\left(\dot{x}_{3}(\theta)-\dot{y}_{3}(\theta)\right) {\rm d}\theta\bigg]{}\\ &=&{\rm sgn}\left\{x_{3}(t)-y_{3}(t)\right\} \bigg[-a_{33}(t)\left(x_{3}(t)-y_{3}(t)\right)+d_{3}(t)\left(u_{3}(t)-v_{3}(t)\right){}\\ &&+\frac{a_{32}(t) b_{23}(t)\left(x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right)} {\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t)+y_{2}\left(t-\tau_{5}\right)\right)}+a_{33}(t) \int_{t-\tau_{4}}^{t}\left(x_{3}(\theta)\right.{}\\ &&\times\left[-r_{3}(\theta)-a_{33}(\theta) x_{3}\left(\theta-\tau_{4}\right)+\frac{a_{32}(\theta) x_{2}\left(\theta-\tau_{5}\right)}{b_{23}(\theta)+x_{2}\left(\theta-\tau_{5}\right)}+d_{3}(\theta) u_{3}(\theta)\right]{}\\ &&\left.\left.-y_{3}(\theta)\left[-r_{3}(\theta)-a_{33}(\theta) y_{3}\left(\theta-\tau_{4}\right)+\frac{a_{32}(\theta) y_{2}\left(\theta-\tau_{5}\right)}{b_{23}(\theta)+y_{2}\left(\theta-\tau_{5}\right)}+d_{3}(\theta) v_{3}(\theta)\right]\right) {\rm d}\theta\right]{}\\ &=&{\rm sgn}\left\{x_{3}(t)-y_{3}(t)\right\} \bigg[-a_{33}(t)\left(x_{3}(t)-y_{3}(t)\right)+d_{3}(t)\left(u_{3}(t)-v_{3}(t)\right) {}\\ &&+\frac{a_{32}(t) b_{23}(t)\left(x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right)}{\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t)+y_{2}\left(t-\tau_{5}\right)\right)}+a_{33}(t) \int_{t-\tau_{4}}^{t}\bigg(\left(x_{3}(\theta)-y_{3}(\theta)\right){}\\ &&\times\left[-r_{3}(\theta)-a_{33}(\theta) y_{3}\left(\theta-\tau_{4}\right)+\frac{a_{32}(\theta) y_{2}\left(\theta-\tau_{5}\right)}{b_{23}(\theta)+y_{2}\left(\theta-\tau_{5}\right)}+d_{3}(\theta) v_{3}(\theta)\right]{}\\ &&+x_{3}(\theta) \bigg[-a_{33}(\theta)\left(x_{3}\left(\theta-\tau_{4}\right)-y_{3} \left(\theta-\tau_{4}\right)\right)+\frac{a_{32}(\theta)}{b_{23}(\theta)+x_{2}\left(\theta-\tau_{5}\right)} {}\\ &&\times\left(x_{2}\left(\theta-\tau_{5}\right)-y_{2}\left(\theta-\tau_{5}\right)\right) +d_{3}(\theta)\left(u_{3}(\theta)-v_{3}(\theta)\right)\bigg]\bigg) {\rm d}\theta\bigg]{}\\ &\leq &-a_{33}(t)\left|x_{3}(t)-y_{3}(t)\right|+d_{3}(t)\left|u_{3}(t)-v_{3}(t)\right|{}\\ &&+\frac{a_{32}(t) b_{23}(t)}{\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t)+y_{2}\left(t-\tau_{s}\right)\right)} \left|x_{2}\left(t-\tau_{3}\right)-y_{2}\left(t-\tau_{3}\right)\right|{}\\ &&+a_{33}(t) \int_{t-\tau_{4}}^{t}\left(\left[r_{3}(\theta)+a_{33}(\theta) y_{3}\left(\theta-\tau_{4}\right)+\frac{a_{32}(\theta) y_{2}\left(\theta-\tau_{3}\right)}{b_{23}(\theta)+y_{2}\left(\theta-\tau_{s}\right)}\right.\right.{}\\ &&+d_{3}(\theta) v_{3}(\theta)\bigg] \left|x_{3}(\theta)-y_{3}(\theta)\right|+x_{3}(\theta)\bigg[a_{33}(\theta)\left|x_{3} \left(\theta-\tau_{4}\right)-y_{3}\left(\theta-\tau_{4}\right)\right| {}\\ &&+\frac{a_{32}(\theta)}{b_{23}(\theta)+x_{2}\left(\theta-\tau_{5}\right)}\left|x_{2} \left(\theta-\tau_{5}\right)-y_{2}\left(\theta-\tau_{s}\right)\right|+d_{3}(\theta)\left|u_{3}(\theta) -v_{3}(\theta)\right|\bigg]\bigg) {\rm d}\theta . {}\\ \end{eqnarray} $

接下来, 定义

$ \begin{eqnarray} V_{32}(t)&=&\int_{t-\tau_{4}}^{t} \int_{s}^{t} a_{33}\left(s+\tau_{4}\right)\left(\bigg[r_{3}(\theta)+a_{33}(\theta) y_{3}\left(\theta-\tau_{4}\right)+\frac{a_{32}(\theta) y_{2}\left(\theta-\tau_{5}\right)}{b_{23}(\theta)+y_{2}\left(\theta-\tau_{5}\right)}\right.{}\\ &&+d_{3}(\theta) v_{3}(\theta)\bigg]\left|x_{3}(\theta)-y_{3}(\theta)\right|+x_{3}(\theta) \bigg[a_{33}(\theta)\left|x_{3}\left(\theta-\tau_{4}\right)-y_{3}\left(\theta-\tau_{4}\right)\right|{}\\ && +\frac{a_{32}(\theta)}{b_{23}(\theta)+x_{2}\left(\theta-\tau_{5}\right)}\left|x_{2}\left(\theta-\tau_{5}\right) -y_{2}\left(\theta-\tau_{5}\right)\right|+d_{3}(\theta)\left|u_{3} (\theta)-v_{3}(\theta)\right|\bigg]\bigg) {\rm d}\theta {\rm d}s . {}\\ \end{eqnarray} $

于是, 我们有

$ \begin{eqnarray} \sum\limits_{i=1}^{2} D^{+} V_{3 i}(t)&\leq &-a_{33}(t)\left|x_{3}(t)-y_{3}(t)\right|+d_{3}(t)\left|u_{3}(t)-v_{3}(t)\right|{}\\ &&+\frac{a_{32}(t) b_{23}(t)}{\left(b_{23}(t)+x_{2}\left(t-\tau_{5}\right)\right)\left(b_{23}(t)+y_{2}\left(t-\tau_{5}\right)\right)}\left|x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right| {}\\ &&+\int_{t-\tau_{4}}^{t} a_{33}\left(s+\tau_{4}\right) {\rm d}s \times\bigg[r_{3}(t)+a_{33}(t) y_{3}\left(t-\tau_{4}\right)+\frac{a_{32}(t) y_{2}\left(t-\tau_{5}\right)}{b_{23}(t)+y_{2}\left(t-\tau_{5}\right)}{}\\ &&+d_{3}(t) v_{3}(t)\bigg]\left|x_{3}(t)-y_{3}(t)\right|{}\\ &&+M_{3} \int_{t-\tau_{4}}^{t} a_{33}\left(s+\tau_{4}\right) {\rm d}s \times a_{33}(t)\left|x_{3}\left(t-\tau_{4}\right)-y_{3}\left(t-\tau_{4}\right)\right|{}\\ &&+M_{3} \int_{t-\tau_{4}}^{t} a_{33}\left(s+\tau_{4}\right) {\rm d}s \times \frac{a_{32}(t)}{b_{23}(t)+x_{2}\left(t-\tau_{5}\right)}\left|x_{2}\left(t-\tau_{5}\right)-y_{2}\left(t-\tau_{5}\right)\right|{}\\ &&+M_{3} \int_{t-\tau_{4}}^{t} a_{33}\left(s+\tau_{4}\right) {\rm d}s \times d_{3}(t)\left|u_{3}(t)-v_{3}(t)\right| . \end{eqnarray} $

定义

$ \begin{eqnarray} V_{33}(t)&=&\int_{t-\tau_{5}}^{t} \frac{a_{32}\left(w+\tau_{5}\right) b_{23}\left(w+\tau_{5}\right)}{\left(b_{23}\left(w+\tau_{5}\right)+x_{2}(w)\right)\left(b_{23}\left(w+\tau_{5}\right)+y_{2}(w)\right)}\left|x_{2}(w)-y_{2}(w)\right| {\rm d}w{}\\ & &+M_{3} \int_{t-\tau_{4}}^{t} \int_{w}^{w+\tau_{4}} a_{33}\left(s+\tau_{4}\right) a_{33}\left(w+\tau_{4}\right)\left|x_{3}(w)-y_{3}(w)\right| {\rm d}s {\rm d}w{}\\ &&+M_{3} \int_{t-\tau_{5}}^{t} \int_{w+\tau_{5}-\tau_{4}}^{w+\tau_{5}} a_{33}\left(s+\tau_{4}\right) \frac{a_{32}\left(w+\tau_{5}\right)}{b_{23}\left(w+\tau_{5}\right)+x_{2}(w)}\left|x_{2}(w)-y_{2}(w)\right| {\rm d}s {\rm d}w . \end{eqnarray} $

$ \begin{equation} V_{3}(t)=V_{31}(t)+V_{32}(t)+V_{33}(t) . \end{equation} $

于是, 我们有

$ \begin{eqnarray} D^{+} V_{3}(t)&\leq &-\left[a_{33}^{l}-\left(r_{3}^{m}+a_{33}^{m} M_{3}+\frac{a_{32}^{m} M_{2}}{b_{23}^{l}+M_{2}}+d_{3}^{m} N_{3}\right) \int_{t-\tau_{4}}^{t} a_{33}^{m}\left(s+\tau_{4}\right) {\rm d}s\right.{}\\ & &\left.-M_{3} a_{33}^{m} \int_{t}^{t+\tau_{4}} a_{33}^{m}\left(s+\tau_{4}\right) {\rm d}s\right]\left|x_{3}(t)-y_{3}(t)\right|{}\\ &&+\left[\frac{a_{32}^{m} b_{23}^{m}}{\left(b_{23}^{l}+m_{2}\right)^{2}}+M_{3} \frac{a_{32}^{m}}{b_{23}^{l}+m_{2}} \int_{t+\tau_{5}-\tau_{4}}^{t+\tau_{5}} a_{33}^{m}\left(s+\tau_{4}\right) {\rm d}s\right]\left|x_{2}(t)-y_{2}(t)\right|{}\\ &&+\left(d_{3}^{m}+M_{3} d_{3}^{m} \int_{t-\tau_{4}}^{t} a_{33}^{m}\left(s+\tau_{4}\right) {\rm d}s\right)\left|u_{3}(t)-v_{3}(t)\right|{}\\ & \leq &-\left[a_{33}^{l}-\left(r_{3}^{m}+a_{33}^{m} M_{3}+\frac{a_{32}^{m} M_{2}}{b_{23}^{l}+M_{2}}+d_{3}^{m} N_{3}\right) a_{33}^{m} \tau_{4}-M_{3}\left(d_{33}^{m}\right)^{2} \tau_{4}\right]{}\\ &&\times\left|x_{3}(t)-y_{3}(t)\right|+\left(\frac{a_{32}^{m} b_{23}^{m}}{\left(b_{23}^{l}+m_{2}\right)^{2}}+\frac{M_{3} a_{32}^{m} a_{33}^{m} \tau_{4}}{b_{23}^{l}+m_{2}}\right)\left|x_{2}(t)-y_{2}(t)\right|{}\\ &&+\left(d_{3}^{m}+M_{3} d_{3}^{m} a_{33}^{m} \tau_{4}\right)\left|u_{3}(t)-v_{3}(t)\right| . \end{eqnarray} $

定义

计算$ V_{4}(t), V_{5}(t), V_{6}(t) $的右上导数, 我们有

$ \begin{eqnarray} D^{+} V_{4}(t)&\leq & {\rm sgn}\left(u_{1}(t)-v_{1}(t)\right)\left[-f_{1}(t)\left(u_{1}(t)-v_{1}(t)\right)+q_{1}(t)\left(x_{1}(t)-y_{1}(t)\right)\right. {}\\ &\leq&-f_{1}^{l}\left|u_{1}(t)-v_{1}(t)\right|+q_{1}^{m}\left|x_{1}(t)-y_{1}(t)\right|, \end{eqnarray} $

$ \begin{eqnarray} D^{+} V_{5}(t)&\leq & {\rm sgn}\left(u_{2}(t)-v_{2}(t)\right)\left[-f_{2}(t)\left(u_{2}(t)-v_{2}(t)\right)-q_{2}(t)\left(x_{2}(t)-y_{2}(t)\right)\right.{}\\ &\leq&-f_{2}^{l}\left|u_{2}(t)-v_{2}(t)\right|+q_{2}^{m}\left|x_{2}(t)-y_{2}(t)\right| \end{eqnarray} $

$ \begin{eqnarray} D^{+} V_{6}(t)&\leq& {\rm sgn}\left(u_{3}(t)-v_{3}(t)\right)\left[-f_{3}(t)\left(u_{3}(t)-v_{3}(t)\right)-q_{3}(t)\left(x_{3}(t)-y_{3}(t)\right)\right. {}\\ &\leq&-f_{3}^{l}\left|u_{3}(t)-v_{3}(t)\right|+q_{3}^{m}\left|x_{3}(t)-y_{3}(t)\right| . \end{eqnarray} $

进一步, 考虑李雅普诺夫泛函

于是, 根据$ (3.6) $, $ (3.12) $, (3.18)–(3.21)式, 我们可得, 当$ t \geq T^{*}=T+\tau $时, 有

$ \begin{equation} D^{+}V(t)\leq-\sum\limits_{i=1}^{3}\left(A_{i}\left|x_{i}(t)-y_{i}(t)\right|+B_{i}\left|u_{i}(t)-v_{i}(t)\right|\right) . \end{equation} $

根据定理$ 3.1 $的条件$ {\rm (H_{8})} $, 我们设$ \alpha=\min\left\{A_{1}, A_{2}, A_{3}, B_{1}, B_{2}, B_{3}\right\} $. 因此, 我们有

$ \begin{equation} A_{i} \geq \alpha>0, B_{i} \geq \alpha>0, (i=1, 2, 3). \end{equation} $

$ (3.22) $式两边从$ T^{\ast} $$ t $积分, 并利用$ (3.23) $可得

$ \begin{equation} V(t)+\alpha\int_{T^{*}}^{t}\left(\sum\limits_{i=1}^{3}\left[\left|x_{i}(s)-y_{i}(s)\right|+\left|u_{i}(s)-v_{i}(s)\right|\right]\right) {\rm d}s \leq V\left(T^{*}\right)<+\infty, \end{equation} $

所以$ V_(t) $在区间$ \left[T^{*}, +\infty\right) $上是有界的, 且有

$ \begin{equation} \int_{T^{*}}^{\infty}\left(\sum\limits_{i=1}^{3}\left[\left|x_{i}(t)-y_{i}(t)\right|+\left|u_{i}(t)-v_{i}(t)\right|\right]\right) {\rm d}s \leq \frac{V(T^{*})}{\alpha}<+\infty, \end{equation} $

根据$ (3.25) $式, 可得

$ \begin{equation} \sum\limits_{i=1}^{3}\left(\left|x_{i}(t)-y_{i}(t)\right|+\left|u_{i}(t)-v_{i}(t)\right|\right) \in L^{1}(T^{*}, +\infty), \end{equation} $

利用定理$ 2.1 $, 我们可得$ \left|x_{i}(t)-y_{i}(t)\right|, \left|u_{i}(t)-v_{i}(t)\right|, (i=1, 2, 3) $及它们的导数在区间$ \left[T^{*}, \right. $$ \left.+\infty\right) $上是有界的, 并且$ \left|x_{i}(t)-y_{i}(t)\right|, \left|u_{i}(t)-v_{i}(t)\right| $在区间$ \left[T^{*}, +\infty\right) $上是一致连续的. 根据引理$ 3.1 $, 我们可得

因此, 系统$ (1.1) $是全局吸引的.

4 周期解

在本节中, 我们将利用上述结果和不动点理论, 探讨参数为连续正$ \omega $ -周期函数的周期系统$ (1.1) $的正周期解的存在性、唯一性和稳定性. 首先, 我们给出以下基本引理.

引理4.1[2]  设$ S\subset R_{n} $是紧凸集. 如果映射$ T:S\rightarrow S $是连续的, 则存在一个不动点$ x^{*} \in S $使得$ T\left(x^{*}\right)=x^{*} $.

定理4.1  设条件$ {\rm (H_{1})} $$ {\rm (H_{8})} $成立, 则周期系统$ (1.1) $存在唯一的全局渐近稳定的正$ \omega $ -周期解.

  根据泛函微分方程解的存在唯一性定理, 我们可以定义一个Poincaré映射$ T: {{\mathbb{R}}} _{+}^{6} \rightarrow {{\mathbb{R}}} _{+}^{6} $, 其表达式为: $ T\left(X_{0}\right)=X\left(t, \omega, X_{0}\right) $, 其中$ X\left(t, \omega, X_{0}\right)=\left(x_{1}(t), x_{2}(t), x_{3}(t), \right. $$ \left. u_{1}(t), u_{2}(t), u_{3}(t)\right) $是初始条件为$ (1.2) $$ \omega $ -周期系统$ (1.1) $的一个正解. 设

那么$ S\subset {{\mathbb{R}}} _{6}^{+} $是一个紧凸集. 根据带有初值$ (1.2) $$ \omega $ -周期系统$ (1.1) $的解的连续性, 我们可知算子$ T $是连续的. 进一步, 根据定理$ 2.1 $知算子$ T $$ S $映射到$ S $. 因此, 根据引理$ 4.1 $和定理$ 3.1 $, 知$ \omega $ -周期系统$ (1.1) $存在唯一的正的全局渐近稳定的$ \omega $ -周期解.

5 数值模拟

基于种群的周期性增长和生长环境的周期性, 我们选择了合适的周期系数来验证上述理论结果. 为此, 我们考虑如下带有多时滞和反馈控制的三种群Lotka-Volterra比率依赖食物链模型:

$ \begin{equation} \left\{ \begin{array}{ll} \dot{x}_{1}(t)=& x_{1}(t)\left[(5.5+0.5 \cos \pi t)-(4.5+0.5 \sin \pi t) x_{1}\left(t-\tau_{1}\right)\right.\\ &{ } \left.-\frac{(0.5+0.1 \sin \pi t) x_{2}(t)}{(1.7+0.1 \sin \pi t)+x_{1}(t)}-(0.1+0.05 \sin \pi t) u_{1}(t)\right], \\ \dot{x}_{2}(t)=& x_{2}(t)\left[-(0.00015+0.00005 \cos \pi t)-(10+0.5 \sin \pi t) x_{2}\left(t-\tau_{2}\right)\right.\\ &{ } \left.+\frac{(9.5+0.5 \sin \pi t) x_{1}\left(t-\tau_{3}\right)}{(1.7+0.1 \sin \pi t)+x_{1}\left(t-\tau_{3}\right)}-\frac{(1.5+0.5 \sin \pi t) x_{3}(t)}{(1.6+0.1 \sin \pi t)+x_{2}(t)}\right.\\ &{ } \left.+(0.7+0.1 \sin \pi t) u_{2}(t)\right], \\ \dot{x}_{3}(t)=& x_{3}(t)\left[-(0.00005+0.00001 \cos \pi t)-(11.25+1.25 \sin \pi t) x_{3}\left(t-\tau_{4}\right)\right.\\ &{ } \left.+\frac{(13.5+0.5 \sin \pi t) x_{2}\left(t-\tau_{5}\right)}{(1.6+0.1 \sin \pi t)+x_{2}\left(t-\tau_{5}\right)}+(0.3+0.1 \sin \pi t) u_{3}(t)\right], \\ \dot{u}_{1}(t)=&(1.5+0.2 \cos \pi t)-(0.7+0.2 \sin \pi t) u_{1}(t)+(0.15+0.05 \sin \pi t) x_{1}(t), \\ \dot{u}_{2}(t)=&(4.5+0.1 \cos \pi t)-(4.05+0.05 \sin \pi t) u_{2}(t)-(1.5+0.5 \sin \pi t) x_{2}(t), \\ \dot{u}_{3}(t)=&(3+0.5 \cos \pi t)-(5.45+0.05 \sin \pi t) u_{3}(t)-(1.5+0.5 \sin \pi t) x_{3}(t) . \end{array}\right. \end{equation} $

通过简单的计算, 容易检验周期系统$ (5.1) $的系数满足定理$ 2.1 $、定理$ 3.1 $和定理$ 4.1 $中的所有假设条件. 因此, 周期系统$ (5.1) $是持久的;此外, 系统$ (5.1) $具有唯一正的全局渐近稳定的2 -周期解. 利用MATLAB $ 7.1 $软件包, 我们可以得到周期系统$ (5.1) $的数值解, 如图 1图 2图 3所示. 从图 1可以看出, 具有时滞$ \tau_{1}=0.01, \tau_{2}=0.02, \tau_{3}=0.03, \tau_{4}=0.02, \tau_{5}=0.01 $以及初始条件$ (5.2) $的周期系统$ (5.1) $的持久性.

$ \begin{equation} \left\{ \begin{array}{l} x_{1}(t)=x_{2}(t)=x_{3}(t)=\sin t+0.5, \quad t \in[-0.03, 0], \\ u_{1}(0)=0.5, u_{2}(0)=0.5, u_{3}(0)=0.5 . \end{array} \right. \end{equation} $

图 1

图 1   带有初值条件$ (5.2) $的系统$ (5.1) $的数值解


图 2

图 2   带有不同初值的系统$ (5.1) $的数值解


图 3

图 3   系统$ (5.1) $的动力学行为


根据图 2, 很容易发现系统$ (5.1) $具有全局吸引性. 系统$ (5.1) $的解的动态特性如图 3所示.

为了观察噪声对三种群食物链Lotka-Volterra系统$ (1.1) $的动力学行为的影响, 我们在系统$ (1.1) $的前三个方程中的每一个上添加了一个乘法噪声源, 并获得了如下具有乘法噪声源及时滞的随机三种群食物链模型

$ \begin{equation} \left\{\begin{array}{ll} \dot{x}_{1}(t)=& x_{1}(t)\left[(5.5+0.5 \cos \pi t)-(4.5+0.5 \sin \pi t) x_{1}\left(t-\tau_{1}\right)\right.\\ &{ } \left.-\frac{(0.5+0.1 \sin \pi t) x_{2}(t)}{(1.7+0.1 \sin \pi t)+x_{1}(t)}+D_{1} \xi_{1}(t)\right], \\ \dot{x}_{2}(t)=& x_{2}(t)\left[-(0.00015+0.00005 \cos \pi t)-(10+0.5 \sin \pi t) x_{2}\left(t-\tau_{2}\right)\right.\\ &{ } \left.+\frac{(9.5+0.5 \sin \pi t) x_{1}\left(t-\tau_{3}\right)}{(1.7+0.1 \sin \pi t)+x_{1}\left(t-\tau_{3}\right)}-\frac{(1.5+0.5 \sin \pi t) x_{3}(t)}{(1.6+0.1 \sin \pi t)+x_{2}(t)}+D_{2} \xi_{2}(t)\right], \\ \dot{x}_{3}(t)=& x_{3}(t)\left[-(0.00005+0.00001 \cos \pi t)-(11.25+1.25 \sin \pi t) x_{3}\left(t-\tau_{4}\right)\right.\\ &{ } \left.+\frac{(13.5+0.5 \sin \pi t) x_{2}\left(t-\tau_{5}\right)}{(1.6+0.1 \sin \pi t)+x_{2}\left(t-\tau_{5}\right)}+D_{3} \xi_{3}(t)\right], \end{array}\right. \end{equation} $

其中$ \zeta _{i}(t) $是具有零均值的$ \delta $ -型高斯白噪声源, 即: $ \langle \delta_{i}(t)\rangle=0 $, 与$ \langle\delta _{i}(t)\delta _{i}({t}')\rangle= D_{i}\delta \left ( t-{t}' \right )\delta _{ij} $, 其中$ D_{i} $表示噪声强度、时滞$ \tau_{1}= 0.01, \tau_{2}= 0.02, \tau_{3}= 0.02, \tau_{4}= 0.02, \tau_{5}= 0.01 $, 初始条件如下:

$ \begin{equation} x_{1}(t)=x_{2}(t)=x_{3}(t)=\sin t+0.5, \quad t\in[-0.03, 0], \end{equation} $

利用MATLAB $ 7.1 $软件, 我们可以获得不同噪声强度下模型(5.3)–(5.4)的一些数值解, 如图 4图 10所示.

图 4

图 4   带有很低噪声扰动的系统(5.3)–(5.4)的数值解


图 5

图 5   系统(5.3)–(5.4)在种群$ x_{1} $的噪声强度较低, 种群$ x_{2} $$ x_{3} $的噪声强度很低时的数值解


图 6

图 6   系统(5.3)–(5.4)在种群$ x_{2} $的噪声强度较低, 种群$ x_{1} $$ x_{3} $的噪声强度很低时的数值解


图 7

图 7   系统(5.3)–(5.4)在种群$ x_{3} $的噪声强度较低, 种群$ x_{1} $$ x_{2} $的噪声强度很低时的数值解


图 8

图 8   系统(5.3)–(5.4)在种群$ x_{1} $的噪声强度较高, 种群$ x_{2} $$ x_{3} $的噪声强度很低时的数值解


图 9

图 9   系统(5.3)–(5.4)在种群$ x_{2} $的噪声强度较高, 种群$ x_{1} $$ x_{3} $的噪声强度较低时的数值解


图 10

图 10   系统(5.3)–(5.4)在种群$ x_{3} $的噪声强度较高, 种群$ x_{1} $$ x_{2} $的噪声强度较低时的数值解


图 4中, 我们可以发现, 当噪声强度非常低时, 新的随机模型(5.3)–(5.4)具有几乎确定的周期解. 此外, 图 5显示, 当噪声强度$ D_{1} $增加到$ 0.04 $且噪声强度$ D_{2} $$ D_{3} $非常低时, 捕食种群$ x_{1}(t) $的周期性被破坏. 图 6显示, 当噪声强度$ D_{2} $增加到$ 0.085 $且噪声强度$ D_{1} $$ D_{3} $非常低时, 捕食者种群$ x_{2}(t) $的周期性被破坏, 图 7显示, 当噪声强度$ D_{3} $增加到$ 0.05 $且噪声强度$ D_{1} $$ D_{2} $非常低时, 捕食种群$ x_{3}(t) $的周期性被破坏. 最后, 图 8显示, 当噪声强度$ D_{1} $增加到$ 3.2 $且噪声强度$ D_{2} $$ D_{3} $非常低时, 捕食者种群和食饵种群$ x_{i}(t)(i=1, 2, 3) $都会灭绝. 图 9显示, 当噪声强度$ D_{2} $增加到$ 2.502 $且噪声强度$ D_{1} $$ D_{3} $非常低时, 捕食者种群$ x_{i}(t)(i=2, 3) $都会灭绝, 图 10显示, 当噪声强度$ D_{3} $增加到$ 2.216 $, 且噪声强度$ D_{1} $$ D_{2} $非常低时, 捕食者种群$ x_{3}(t) $趋于灭绝. 通过将图 4图 10所示结果与图 1图 3所示结果进行比较, 可以明显看出, 随机环境噪声会影响三种群食物链系统的持久性、周期性和稳定性.

6 结论

在本文中, 我们提出并研究了一类具有时滞和反馈控制的非线性非自治三种群比率依赖型食物链模型. 通过改进一些现有的方法, 尤其是针对具有反馈控制项的时滞微分方程构造Lyapunov函数的技巧, 研究了系统$ (1.1) $的持久性、全局吸引性以及相应周期系统$ (5.1) $的唯一正周期解的全局渐近稳定性等问题. 首先, 利用一些新的分析方法和比较定理, 构造了一个合适的Lyapunov函数, 得到了关于上述问题的一些有趣的结果, 这些结果可以看作是文献[32, 35]的主要结果的推广. 所得结果对相关种群动力学模型的研究及应用具有重要的理论及实际意义. 此外, 所研究的系统的数值模拟表明, 本文所得判据是新的、通用的、易于验证的. 最后, 我们还求得了相应的带有乘法噪声源的时滞随机三种群比率依赖食物链模型的数值解, 得到了该系统一些新的有趣的动力学行为. 通过比较模型(5.1)–(5.2)和模型(5.3)–(5.4)的解的变化过程, 容易发现随机环境噪声会影响具有时滞的周期三种群比率依赖食物链系统的持久性、周期性和稳定性.

参考文献

Arditi R , Ginzburg L R .

Coupling in predator-prey dynamics: Ratio-dependence

Journal of Theoretical Biology, 1989, 139 (3): 311- 326

DOI:10.1016/S0022-5193(89)80211-5      [本文引用: 1]

Basener W. Topology and Its Applications. Hoboken, NJ: John Wiley & Sons, 2006

[本文引用: 1]

Celik C .

Stability and Hopf Bifurcation in a delayed ratio dependent Holling-Tanner type model

Applied Mathematics and Computation, 2015, 255: 228- 237

DOI:10.1016/j.amc.2014.11.086      [本文引用: 1]

Chen F .

On a nonlinear nonautonomous predator-prey model with diffusion and distributed delay

Journal of Computational and Applied Mathematics, 2005, 180 (1): 33- 49

DOI:10.1016/j.cam.2004.10.001      [本文引用: 1]

Denaro G , Valenti D , La Cognata A , et al.

Spatio-temporal behaviour of the deep chlorophyll maximum in Mediterranean Sea: Development of a stochastic model for picophytoplankton dynamics

Ecological Complexity, 2013, 13: 21- 34

DOI:10.1016/j.ecocom.2012.10.002      [本文引用: 1]

Ding W , Huang W Z .

Global dynamics of a ratio-dependent holling-tanner predator-prey system

Journal of Mathematical Analysis and Applications, 2018, 460 (1): 458- 475

DOI:10.1016/j.jmaa.2017.11.057      [本文引用: 1]

Dubkov A A , Spagnolo B .

Verhulst model with lévy white noise excitation

The European Physical Journal B, 2008, 65 (3): 361- 367

DOI:10.1140/epjb/e2008-00337-0      [本文引用: 1]

Falci G, La Cognata A, Berritta M, et al. Design of a lambda system for population transfer in superconducting nanocircuits. Physical Review B, 2013, 87, ID: 214515

[本文引用: 1]

Feistel R, Ebeling W. Evolution of Complex System. Dordrecht: Kluwer, 1989

[本文引用: 1]

Freeze M , Chang Y , Feng W .

Analysis of dynamics in a complex food chain with ratio-dependent functional response

Journal of Applied Analysis & Computation, 2014, 4 (1): 69- 87

[本文引用: 1]

Garay J , Cressman R , Xu F , et al.

Optimal forager against ideal free distributed prey

The American Naturalist, 2015, 186 (1): 111- 122

DOI:10.1086/681638      [本文引用: 1]

Giuffrida A , Valenti D , Ziino G , et al.

A stochastic interspecific competition model to predict the behaviour of Listeria monocytogenes in the fermentation process of a traditional Sicilian salami

European Food Research and Technology, 2009, 228 (5): 767- 775

DOI:10.1007/s00217-008-0988-6      [本文引用: 1]

Gopalsamy K , Weng P .

Global attractivity in a competition system with feedback controls

Computers and Mathematics with Applications, 2003, 45 (4/5): 665- 676

[本文引用: 2]

Haken H . Advanced Synergetics. Berlin: Springer, 1985

[本文引用: 1]

Horsthemke W , Lefever R . Noise-Induced Transitions. Theory and Applications in Physics. Chemistry, and Biology. Berlin: Springer, 1984

[本文引用: 1]

Khalil H K. Nonlinear Systems. Englewood Cliffs: Prentice-Hall, 2002

[本文引用: 1]

Liang Z Q , Pan H W .

Qualitative analysis of a ratio-dependent holling-tanner model

Journal of Mathematical Analysis & Applications, 2007, 334 (2): 954- 964

[本文引用: 2]

Liang Z Q , Zeng X P , Pang G P , Liang Y H .

Periodic solution of a leslie predator-prey system with ratio-dependent and state impulsive feedback control

Nonlinear Dynamics, 2017, 89 (4): 2941- 2955

DOI:10.1007/s11071-017-3637-4      [本文引用: 1]

Louartassi Y , Alla A , Hattaf K , Nabil A .

Dynamics of a predator-prey model with harvesting and reserve area for prey in the presence of competition and toxicity

Journal of Applied Mathematics and Computing, 2019, 59 (1/2): 305- 321

[本文引用: 2]

Lu G , Lu Z , Lian X .

Delay effect on the permanence for lotka-volterra cooperative systems

Nonlinear Analysis: Real World Applications, 2010, 11 (4): 2810- 2816

DOI:10.1016/j.nonrwa.2009.10.005      [本文引用: 1]

Mikhaylov A N , Gryaznov E G , Belov A L , et al.

Field- and irradiation-induced phenomena in memristive nanomaterials

Physica Status Solidi (c), 2016, 13: 870- 881

DOI:10.1002/pssc.201600083      [本文引用: 1]

Muhammadhaji A , Teng Z , Rehim M .

Dynamical behavior for a class of delayed competitive-mutualism systems

Differential Equations and Dynamical Systems, 2015, 23 (3): 281- 301

DOI:10.1007/s12591-014-0226-6      [本文引用: 1]

Nakata Y , Muroya Y .

Permanence for nonautonomous Lotka-Volterra cooperative systems with delays

Nonlinear Analysis: Real World Applications, 2010, 11 (1): 528- 534

DOI:10.1016/j.nonrwa.2009.01.002      [本文引用: 3]

Nicolis G , Prigogine L . Self-Organization in Non-Equilibrium Systems. New Jersey: Wiley, 1977

[本文引用: 1]

Nie L , Teng Z , Hu L , Peng J G .

Permanence and stability in non-autonomous predator-prey Lotka-Volterra systems with feedback controls

Computers & Mathematics with Applications, 2009, 58 (3): 436- 448

[本文引用: 2]

Shen C X , You M S .

Permanence and extinction of a three-species ratio-dependent food chain model with delay and prey diffusion

Applied Mathematics and Computation, 2010, 217 (5): 1825- 1830

DOI:10.1016/j.amc.2010.02.037      [本文引用: 2]

Spagnolo B , La Barbera A .

Role of the noise on the transient dynamics of an ecosystem of interacting species

Physica A: Statistical Mechanics and its Applications, 2002, 315 (1/2): 114- 124

[本文引用: 1]

Spagnolo B , Dubkov A A , Pankratov A L , et al.

Lifetime of metastable states and suppression of noise in interdisciplinary physical models

Acta Physica Polonica B, 2007, 38 (5): 1925- 1950

[本文引用: 1]

Spagnolo B , Valenti D .

Volatility effects on the escape time in financial market models

International Journal of Bifurcation and Chaos, 2008, 18 (9): 2775- 2786

DOI:10.1142/S0218127408022007      [本文引用: 1]

Valenti D , Schimansky-Geier L , Sailer X , Spagnolo B .

Moment equations for a spatially extended system of two competing species

The European Physical Journal B, 2006, 50 (1/2): 199- 203

URL     [本文引用: 1]

Wang C Y , Li N , Zhou Y , Pu X , Li R .

On a multi-delay lotka-volterra predator-prey model with feedback controls and prey diffusion

Acta Mathematica Scientia, 2019, 39B (2): 429- 448

URL     [本文引用: 1]

Wang C Y, Zhou Y Q, Li Y H, Li R. Well-posedness of a ratio-dependent lotka-volterra system with feedback control. Boundary Value Problems, 2018, 2018, ID: 117

[本文引用: 2]

Xu F , Cressman R , Křivan V .

Evolution of mobility in predator-prey systems

Discrete and Continuous Dynamical Systems-Series B, 2014, 19 (10): 3397- 3432

DOI:10.3934/dcdsb.2014.19.3397      [本文引用: 2]

Xu J, Chen F. Permanence of a Lotka-Volterra cooperative system with time delays and feedback controls. Communications in Mathematical Biology & Neuroscience, 2015, 2015, ID: 18

[本文引用: 1]

Xu R , Chaplain M .

Persistence and global stability in a delayed predator-prey system with michaelis-menten type functional response

Applied Mathematics and Computation, 2002, 130 (1): 441- 455

URL     [本文引用: 2]

Xu R , Chen L S .

Ersistence and global stability for a delayed nonautonomous predator-prey system without dominating instantaneous negative feedback

Journal of Mathematical Analysis and Applications, 2001, 262 (1): 50- 61

DOI:10.1006/jmaa.2001.7524      [本文引用: 2]

Zhou J , Mu C .

Coexistence of a diffusive predator-prey model with holling type-Ⅱ functional response and density dependent mortality

Journal of Mathematical Analysis and Applications, 2012, 385 (2): 913- 927

DOI:10.1016/j.jmaa.2011.07.027      [本文引用: 1]

Zhang Q M, Zhang X J, Yang H F. Global dissipativity of stochastic Lotka-Volterra system with feedback controls. International Journal of Biomathematics, 2017, 10(2), ID: 1750022

[本文引用: 2]

/