数学物理学报, 2022, 42(1): 228-244 doi:

论文

具有年龄等级结构的种群竞争系统的最优收获控制

何泽荣,, 周楠

杭州电子科技大学运筹与控制研究所 杭州 310018

Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations

He Zerong,, Zhou Nan

Institute of Operational Research and Cybernetics, Hangzhou Dianzi University, Hangzhou 310018

通讯作者: 何泽荣, E-mail: zrhe@hdu.edu.cn

收稿日期: 2020-10-14  

基金资助: 国家自然科学基金.  11871185

Received: 2020-10-14  

Fund supported: the NSFC.  11871185

Abstract

In this paper, we investigate an optimal control problem for a hierarchical system of age-dependent competing populations, with the removal intensity as the control variable. After the existence of optimal strategies has been established, we prove a new continuity result, by which the optimal policies are exactly characterized with a normal cone and an adjoint system. Furthermore, some numerical results are presented to show the effects of the price on optimal profits.

Keywords: Hierarchy of age ; Competing system ; Optimal control ; Normal cone ; Pre-compactness

PDF (3345KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何泽荣, 周楠. 具有年龄等级结构的种群竞争系统的最优收获控制. 数学物理学报[J], 2022, 42(1): 228-244 doi:

He Zerong, Zhou Nan. Optimal Harvesting in a Competing System of Hierarchical Age-Structured Populations. Acta Mathematica Scientia[J], 2022, 42(1): 228-244 doi:

1 引言

研究结构化的种群动力系统控制问题的动机有三: 维护生态平衡和生物多样性; 利用种群资源获取最大经济利益; 探索一些有趣也有挑战性的无穷维系统问题. 学者们对此做了巨大的努力, 也获得了丰富成果. 对于年龄结构系统可参见文献[1-20]; 离散阶段结构模型参见文献[1]; 涉及空间分布的模型可参见文献[4] 和 [21]; 尺度结构系统可参见文献[5]. 这些工作关注的问题包括最优解的存在性, 最优性条件, 最优解的逼近和具体应用等, 大大增进了对于结构化种群系统调控的理解, 也是进一步发展的出发点.

大量生态学研究成果表明:许多种群内部的个体之间确实存在等级(或称社会地位)差异(参见综述文献[22]), 也有一些工作是借助数学模型法完成的(参见文献[23-30]). 概要而言, 在现有的等级结构种群系统的模型化工作中, 关注的主要问题包括适定性、平衡态及其稳定性、种内竞争与振动、模型的数值解法等, 属于演化动力学范畴, 相关的控制问题研究成果很少见. 虽然系统的行为分析很重要, 但那些与环境保护和人类利益密切相关的控制问题(如能控性和最优控制)也不应当被忽略.

本文考察一类非线性等级结构种群模型的最优收获问题, 系统由两个相互竞争的种群构成. 模型的主要特点是含有所谓“内部环境”, 它依赖于个体年龄并对繁殖率和死亡率产生影响. 粗略而言, 内部环境就是年长者与加权后的年轻者之和, 它依赖于瞬时年龄, 不同年龄的个体所面临的内部环境也不同. 本文力图在具有相互作用的等级结构种群系统控制问题方面取得进展. 下一节描述群落模型与最优控制问题, 第3节证明最优策略的存在性;第4节提出并确立最大值原理, 利用共轭系统和反馈形式刻画最优收获强度. 完成这一任务需要建立一个新的连续性结果. 第5节利用数值方法考察价格变化对最优策略及最优效益的影响, 最后一节总结全文.

2 问题描述

本文考察下列最优控制问题

$ \begin{equation} \max\limits_{u\in{\cal U}}J(u): = \sum\limits_{i = 1}^2 {\int_0^A {\int_0^T {{g_i}(a){u_i}(a, t){p_i}(a, t){\rm{d}}t{\rm{d}}a} } }, \end{equation} $

其中$ u_i $表示人对种群$ i $中个体的收获强度, 它满足

$ U_i $为给定常数, $ u=(u_1, u_2)\in {\cal U}:={{\cal U}}_1\times{{\cal U}}_2 $, $ g_i\in {L^\infty}([0, A]) $代表种群$ i $中年龄为$ a $的个体的经济价值, $ (u_i, p_i) $满足下列状态系统方程

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial p_i}{\partial t} + \frac{\partial p_i}{\partial a} = -\mu _{i}\left( a, E(p_1)(a, t), E(p_2)(a, t)\right)p_i(a, t)-u_i(a, t)p_i(a, t), \quad({a, t}) \in Q_{T}, \\ { } p_i(0, t) = \int_0^{A} \beta_i(a, E(p_i)(a, t))p_i(a, t){\rm d}a, \quad t \in(0, T), \\ p_i(a, 0) = p_i^0(a), \quad a \in [0, A], \\ { } E(p_i)({a, t}) = \alpha_i \int_0^a {p_i}( r, t) {\rm d}r + \int_a^{A} p_i(r, t){\rm d}r, \;\quad (a, t)\in Q_{T}, 0\leq\alpha_i <1; i=1, 2. \end{array} \right. \end{equation} $

在以上模型(2.2) 中, $ Q_{T}=[0, A]\times[0, T) $, 正常数$ A $$ T $分别表示两种群个体最大年龄和控制周期. $ p_1(a, t), p_2(a, t) $分别代表$ t $时刻两竞争种群的年龄密度函数, 而$ p_i^0(a) $表示初始年龄分布. 常数$ \alpha_i $表征对种群$ i $中年龄小于$ a $的个体的折扣系数, 体现了比年长个体较弱的竞争力. 函数$ \mu_i, \beta_i $分别表示种群$ i $中个体的死亡率和繁殖率. $ E(p_i) $称为种群$ i $中的内部环境.

本文假定下述条件成立($ i=1, 2 $).

(An1) 对任意$ (a, x)\in[0, A]\times[0, +\infty), $$ 0\le\beta_i(a, x)\le\beta_i^* $$ \beta_i^* $为常数; 对给定的$ M>0 $, 存在$ L_1(M)>0 $, 使得: 当$ x_1, x_2\in [0, M] $时有$ \vert \beta_i(a, x_1)-\beta_i(a, x_2) \vert \le L_1(M) \vert x_1 - x_2 \vert $;

(An2) 对任意$ (a, x, y)\in[0, A]\times[0, +\infty)\times[0, +\infty), $$ \mu_i(a, x, y)>0, $$ \mu_i(a, x, y)\in L_{loc}^1[0, A] $$ \int_0^A\mu_i(a, x, y){\rm d}a=+\infty $; 对给定的$ M>0, $存在$ L_2(M)>0 $使得: 当$ x_i, y_i\in[0, M] $时有

$ \mu_{ix}(a, x, y)>0, \mu_{iy}(a, x, y)>0 $, 其中$ \mu_{ix}, \mu_{iy} $分别表示函数$ \mu_i $对变量$ x, y $的偏导数.

(An3) 对任意$ a\in [0, A] $, 有$ 0 \le p_i^0(a) \le P_i $$ P_i $为常数.

文献[31] 已经证明了如下结论.

引理2.1  对任意给定的$ u\in{\cal U} $, 模型系统$ (2.2) $存在唯一的解$ p^{u}=(p_1^u, p_2^u) $, 满足$ 0\le p_i^u (a, t)\le \overline{M}_i, i=1, 2 $, $ \overline{M}_i $为常数.

刻画最优策略需要应用下列结果.

引理2.2  系统$ (2.2) $的解$ p^{u}\in[L^{\infty}(Q_T)]^2 $关于控制变量$ u\in{\cal U} $连续.

  令$ u^i=\left(u_1^i, u_2^i\right), p^i=\left(p_1^i, p_2^i\right), i=1, 2 $; $ (u^i, p^i) $满足$ (2.2) $式. 由特征线法可知

$ \begin{equation} p_i(a, t)= \left\{\begin{array}{ll} p_i^0(a-t)\Pi_i(a, t, t), \quad &a\geq t; \\ b_i(t-a)\Pi_i(a, t, a), \quad &a< t, \end{array}\right. \end{equation} $

其中

$ \begin{eqnarray} \Pi_i(a, t, s) &=&\exp\bigg\{-\int_0^s\big[\mu_i\left(a-\tau, E(p_1)(a-\tau, t-\tau), E(p_2)(a-\tau, t-\tau)\right) {}\\ &&+u_i(a-\tau, t-\tau)\big]{\rm d}\tau\bigg\}, \end{eqnarray} $

$ \begin{equation} b_i(t)=F_i(t)+\int_0^tK_i(t, s)b_i(t-s){\rm d}s, \quad t\in(0, T), \end{equation} $

$ \begin{equation} K_i(t, a)= \left\{\begin{array}{ll} \beta_i(a, E(p_i)(a, t))\Pi_i(a, t, a), \quad & a.e.\;(a, t)\in Q_T; \\ 0, \quad &\mbox{其它}, \end{array}\right. \end{equation} $

$ \begin{equation} F_i(t)= \left\{\begin{array}{ll} { } \int_0^A \beta_i(a+t, E(p_i)(a+t, t))p_i^0(a)\Pi_i(a+t, t, t){\rm d}a, &a.e.\;t\in(0, \min (A, T)); \\ 0, \quad &\mbox{其它}. \end{array}\right. \end{equation} $

以下假设$ T>A $; 相反情形可以类似处理.

根据Bellmann不等式和方程$ (2.5) $可知: $ 0\le b_i(t)\le B_i, i=1, 2 $, $ B_i $为常数. 若$ a\ge t $, 则等式(2.3)–(2.4) 意味着

$ \begin{eqnarray} \left|p_1^1(a, t)-p_1^2(a, t)\right| &=&\left|p_1^{0}(a-t)\Pi_1^1(a, t, t)-p_1^0(a-t)\Pi_1^2(a, t, t)\right|{}\\ &\le &p_1^{0}(a-t)\bigg| \int_{0}^{t}{ \Big[ \mu _{1}\left( a, E(p_{1}^{1})(a-\tau , t-\tau ), E(p_{2}^{1})(a-\tau , t-\tau ) \right) } {}\\ && -\mu _{1}\left( a, E(p_{1}^{2})(a-\tau , t-\tau ), E(p_{2}^{2})(a-\tau , t-\tau ) \right){}\\ && +u_{1}^{1}(a-\tau , t-\tau )-u_{1}^{2}(a-\tau , t-\tau ) \Big]{\rm d}\tau \bigg|{}\\ &\le& P_1 L_2(M)\int_{0}^{t}{\Big[ \left| E(p_{1}^{1})(a-\tau , t-\tau )-E(p_{1}^{2})(a-\tau , t-\tau ) \right| }{}\\ && +\left| E(p_{2}^{1})(a-\tau , t-\tau )-E(p_{2}^{2})(a-\tau , t-\tau ) \right| \Big] {\rm d}\tau+ P_1 T\parallel u^1_1 -u^2_1\parallel{}\\ &\le &P_1 T\parallel u^1_1 -u^2_1\parallel +P_1 L_2(M)\int_{0}^{t} {\bigg[\int_{0}^{A }{\left| p_{1}^{1}(r, y )-p_{1}^{2}(r, y ) \right|{\rm d}r} }{}\\ && +\int_{0}^{A}{\left| p_{2}^{1}(r, y)-p_{2}^{2}(r, y) \right|{\rm d}r} \bigg]{\rm d}y{}\\ &\le& P_1 T\parallel u^1_1 -u^2_1\parallel +P_1 L_2(M)A\int_0^t{\left\| p^{1}(\cdot, s)-p^{2}(\cdot, s)\right\|}_{[L^\infty(0, A)]^2}{\rm d}s. \end{eqnarray} $

类似地, 若$ a<t $, 则有

$ \begin{eqnarray} &&\left|p_1^1(a, t)-p_1^2(a, t)\right|{}\\ &=&\left|b_1(t-a;u^1)\Pi_1^1(a, t, a)-b_1(t-a;u^2)\Pi_1^2(a, t, a)\right|{}\\ &\le& \left|b_1(t-a;u^1)-b_1(t-a;u^2)\right|\Pi_1^1(a, t, a){}\\ && +\left|\Pi_1^1(a, t, a)-\Pi_1^2(a, t, a)\right|b_1(t-a;u^2){}\\ &\le &\left|b_1(t-a;u^1)-b_1(t-a;u^2)\right|+B_1 A{\left\|u_1^1-u_1^2\right\|}_{L^\infty(Q_T)}{}\\ && +B_1 L_2(M)\int_{0}^{a}{\bigg[\int_{0}^{A }{\left| p_{1}^{1}(r, s )-p_{1}^{2}(r, s) \right|{\rm d}r} +\int_{0}^{A}{\left| p_{2}^{1}(r, s )-p_{2}^{2}(r, s ) \right|{\rm d}r} \bigg]}{\rm d}s{} \\ &\le& \left|b_1(t-a;u^1)-b_1(t-a;u^2)\right|+B_1 A{\left\|u_1^1-u_1^2\right\|}_{L^\infty(Q_T)}{}\\ && +B_1L_2(M)A\int_{0}^{a}{\left\| p_{1}^{1}(\cdot, s)-p_{1}^{2}(\cdot, s ) \right\|_{L^\infty(0, A)}{\rm d}s}{}\\ &&+B_1L_2(M)A\int_{0}^{a}{\left\| p_{2}^{1}(\cdot, s )-p_{2}^{2}(\cdot, s ) \right\|_{L^\infty(0, A)}{\rm d}s}{}\\ &\le &\left|b_1(t-a;u^1)-b_1(t-a;u^2)\right|+B_1 A{\left\|u_1^1-u_1^2\right\|}_{L^\infty(Q_T)}{}\\ && +B_1L_2(M)A\int_{0}^{t}{\left\| p^{1}(\cdot, s)-p^{2} (\cdot, s)\right\|_{[L^\infty(0, A)]^2}{\rm d}s}. \end{eqnarray} $

$ (2.5) $式可导出

$ \begin{eqnarray} &&\left|b_1(t-a;u^1)-b_1(t-a;u^2)\right|{}\\ &\le & \left|F_1(t-a;u^1)-F_1(t-a;u^2)\right| +\int_0^t K_1(t-s, s;u^2)\left|b_1(s;u^1)-b_1(s;u^2)\right|{\rm d}s{}\\ & &+\int_0^t\left|K_1(t-s, s;u^1)-K_1(t-s, s;u^2)\right|b_1(s;u^1){\rm d}s. \end{eqnarray} $

利用表达式$ (2.7) $可得

其中$ C_0 $为常数. 据$ (2.6) $式推出

$ \begin{eqnarray} &&\int_0^t\left|K_1(t-s, s;u^1)-K_1(t-s, s;u^2)\right|b_1(s;u^1){\rm d}s{}\\ &\le& B_1\int_0^t\left|\beta_1(s, E(p_1^1)(s, t-s))-\beta_1(s, E(p_1^2)(s, t-s))\right|{\rm d}s{}\\ && + B_1\beta_1^*\int_0^t{\left| {\Pi _1^1 (s, t-s, s) - \Pi _1^2 (s, t-s, s)} \right|{\rm d}s}{}\\ &\le& C\left( \parallel u_1^1 -u_1^2\parallel_{L^{\infty}(Q_T)}+\int_0^t{\left\| p^{1}(\cdot, s) -p^{2}(\cdot, s)\right\|}_{[L^\infty(0, A)]^2}{\rm d}s\right). \end{eqnarray} $

此外

$ \begin{equation} \int_{0}^{t}{{{K}_{1}}}(t-s, s;{{u}^{2}})\left| {{b}_{1}}(s;{{u}^{1}})-{{b}_{1}}(s;{{u}^{2}}) \right|{\rm d}s\le \beta _{1}^{*}\int_{0}^{t}{\left| {{b}_{1}}(s;{{u}^{1}})-{{b}_{1}}(s;{{u}^{2}}) \right|}{\rm d}s. \end{equation} $

结合关系式$ (2.10) $与(2.11)–(2.12) 并运用Gronwall不等式可知: 存在常数$ C_1, C_2>0 $, 使得

$ \begin{equation} \left\|b_1(\cdot;u^1)-b_1(\cdot;u^2)\right\|_{L^\infty(0, T)} \le C_1{\left\|u_1^1-u_1^2\right\|}_{L^\infty(Q_T)}+C_2\int_0^t{\left\| p^{1}( \cdot, s)-p^{2}(\cdot, s)\right\|}_{[L^\infty(0, A)]^2}{\rm d}s. \end{equation} $

$ (2.13) $式代入$ (2.9) $式, 可得

其中$ C_3 $$ C_4 $均为常数. 类似可得下列不等式

因此

再次应用Gronwall不等式, 即可推出

这意味着

其中常数$ C $不依赖于$ u^i, i=1, 2 $.

3 最优控制的存在性

引理3.1  令$ \varepsilon>0 $充分小. 若存在常数$ M_i>A\overline{M}, i=1, 2, \overline{M}=\max\{\overline{M}_1, \overline{M}_2\} $, 使得

$ [0, A-\varepsilon] $上有界, 则集合$ \{E(p_i^{u}):u\in {\cal U}\} $在空间$ L^2(Q_T) $中预紧.

  对于给定的$ \varepsilon>0 $, 定义如下截断环境

在系统$ (2.2) $中的第一式对变量$ a $在区间$ [0, A-\varepsilon] $上积分, 可得

由上式和$ (2.2) $式中的第三式可推出

引理条件保证了$ \frac{\partial E^{\varepsilon}(p_i^{u})(a, t)}{\partial t} $关于$ u $一致有界. 此外, 由$ \frac{\partial E^{\varepsilon}(p_i^{u})(a, t)}{\partial a}=(\alpha_i-1)p^{u}_i(a, t) $知: $ \frac{\partial E^{\varepsilon}(p_i^{u})(a, t)}{\partial a} $也关于$ u $一致有界.

以下运用Fréchet-Kolmogorov定理[32, p275]证明集合$ \{E^{\varepsilon}(p_i^{u}):u\in {\cal U}\} $$ L^2(Q_T) $中预紧.

拓展函数$ E^{\varepsilon}(p_i^{u}) $的定义域: 当$ (a, t)\in R^2-Q_T $时, 令$ E^{\varepsilon}(p_i^{u})(a, t)=0 $. 易知

$ \begin{equation} \sup\limits_{u\in {\cal U}} \int_{{{R}^{2}}}{{{[{{E}^{\varepsilon }} ({{p}_{i}^{u}})(a, t)]}^{2}}{\rm d}a{\rm d}t<\infty }, \end{equation} $

$ \lim \limits_{r \rightarrow \infty \atop l \rightarrow \infty} \int_{|a|>r \atop|t|>l}\left[E^{\varepsilon}\left(p_{i}^{u}\right)(a, t)\right]^{2} \mathrm{d} a \mathrm{d} t=0$

$ \sup \limits_{u \in {\cal U}}\left|\frac{\partial E^{\varepsilon} (p_i^{u})(a, t)}{\partial a}\right|=N_1, \mathop {\sup }\limits_{u \in {\cal U}}\left| \frac{\partial E^{\varepsilon}(p_i^{u})(a, t)}{\partial t}\right|=N_2 $. 注意下列关系

其中$ \theta_1, \theta_2\in [0, 1] $, 由此即知

$ \lim \limits_{\Delta a \rightarrow 0 \atop \Delta t \rightarrow 0} \int_{0}^{T} \int_{0}^{A}\left[E^{\varepsilon}\left(p_{i}^{u}\right)(a+\Delta a, t+\Delta t)-E^{\varepsilon}\left(p_{i}^{u}\right)(a, t)\right]^{2} \mathrm{~d} a \mathrm{d} t=0 $

关于$ u $一致成立. 因此, Fréchet-Kolmogorov定理断言集合$ \{E^{\varepsilon}(p_i^{u}):u\in {\cal U}\} $的预紧性.

另一方面, 解$ p^{u} $关于$ u $的一致有界性意味着

所以, 环境集$ \{E(p_i^{u}):u\in {\cal U}\} $$ L^2(Q_T) $中预紧.

定理3.1  若引理3.1的条件成立, 则控制问题$ (2.1) $$ (2.2) $至少存在一个最优解.

  记$ d=\mathop {\sup }\limits_{u \in {\cal U}} J(u) $. 由引理2.1知$ 0\le d<+\infty $.

考虑任一最大化序列$ \left\{u^n=(u_{1}^n, u_{2}^n):{u^n}\in{\cal U}\right\}, n\in N^* $ (自然数集), 使得

$ \begin{eqnarray} d-\frac{1}{n}<J({u^n})\le d. \end{eqnarray} $

$ \{p^{u^n}\}\subset L^2 (Q_T) $有界, 故存在子序列(仍记为$ \{p^{u^n}\} $) 使得

$ \begin{eqnarray} p^{u^n}=(p_1^{u^n}, p_2^{u^n}) \mathop{\rightarrow }\limits^{\mbox弱} p^*=(p_1^*, p_2^*), \quad n\rightarrow \infty. \end{eqnarray} $

此外, 引理3.1意味着: 存在子序列(仍记为$ \{u^n\} $) 满足

$ \begin{equation} E(p_i^{u^n}) \rightarrow E(p_i^{u^*})\in L^2(Q_T), n\rightarrow \infty, \end{equation} $

$ \begin{equation} E(p_i^{u^n})(a, t) \rightarrow E(p_i^{u^*})(a, t), \quad a.e. (a, t)\in Q_T, n\rightarrow \infty. \end{equation} $

应用Mazur定理[2, p69]可知: 存在数$ \lambda_k^n $及如下函数

$ \begin{eqnarray} \widetilde{p}_i^n(a, t)=\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}p_{i}^{u^{k}}(a, t), \quad \lambda _{k}^{n}\ge 0, \quad \sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}}}=1, \end{eqnarray} $

使得

$ \begin{eqnarray} \widetilde{p}^n \rightarrow p^*, n\rightarrow \infty. \end{eqnarray} $

定义新的控制序列$ \left\{\widetilde{u}_i^n\right\} $如下$ (i=1, 2) $:

$ \begin{equation} \widetilde{u}_i^n(a, t)= \left\{\begin{array}{ll} { } \frac{\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}u_{i}^k(a, t){{p}_i^{u^{k}}}(a, t)}} {\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}{{p}_i^{u^{k}}}(a, t)}}, \quad & { }\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}{{p}_i^{u^{k}}}(a, t)}\ne 0, \\ 0, \quad &{ }\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}{{p}_i^{u^{k}}}(a, t)}= 0. \end{array}\right. \end{equation} $

易知$ \widetilde{u}^n=(\widetilde{u}_1^n, \widetilde{u}_2^n)\in {\cal U} $. 空间$ L^2(Q_T) $中有界集的弱紧性意味着: 存在子序列(仍记为$ \{\widetilde{u}^n\} $) 使得

$ \begin{eqnarray} \widetilde{u}^n \mathop{\rightarrow }\limits^{\mbox弱} u^*=(u_1^*, u_2^*), \quad n\rightarrow \infty. \end{eqnarray} $

$ (3.5) $$ (3.6) $式可导出

$ \begin{eqnarray} E(p_i^{u^*})({a, t}) = \alpha_i \int_0^a {p_i^*}( r, t) {\rm d}r + \int_a^{A} p_i^*(r, t){\rm d}r=E(p_i^*)({a, t})\quad {\rm a.e.}\ (a, t)\in Q_T. \end{eqnarray} $

综合$ (2.2) $, $ (3.8) $$ (3.10) $式, 能推知

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial \widetilde{p}_i^n}{\partial t} + \frac{\partial \widetilde{p}_i^n}{\partial a} = -\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}{{\mu}_{i}}\left( a, {{E}}({{p}_{1}^{u^{k}}})(a, t), {{E}}({{p}_{2}^{u^{k}}})(a, t) \right){p_{i}^{u^{k}}}(a, t)}-\widetilde{u}_i^n (a, t)\widetilde{p}_i^n (a, t), \\ { } \widetilde{p}_i^n(0, t)=\int_{0}^{A}{\sum\limits_{k=n+1}^{{{k}_{n}}}{\lambda _{k}^{n}{{\beta }_{i}}\left( a, {{E}}({{p}_{i}^{u^{k}}})(a, t) \right){{p}_i^{u^{k}}}(a, t){\rm d}a}}, \\ \widetilde{p}_i^n(a, 0)= p_i^0(a). \end{array} \right. \end{equation} $

如果$ k\ge n+1 $, 那么$ (3.6) $式表明

$ \begin{eqnarray} E(p_i^{u^k}) \rightarrow E(p_i^*), \quad n\rightarrow \infty. \end{eqnarray} $

因此, 假设条件$ \rm {(An1)}–{(An3)} $可以保证下列结论成立($ n\rightarrow \infty $)

对方程$ (3.13) $取极限, 即可推知: $ p_i^*=p_i^{u^*}, E(p_i^*)=E(p_i^{u^*}) $.

利用$ (3.4) $式可得

从而

另一方面, 由指标泛函定义和控制序列的结构可知

这意味着$ J(u^*)=d=\sup\limits_{u\in {\cal U}} J(u) $; 即$ u^* $就是一个最优策略.

4 最大值原理

本节对最优解作精确刻画. 为此先做一些技术准备.

应用不动点方法不难证明以下结果(细节略去).

引理4.1  给定有界函数$ b_i, \mu_i^2, \mu_i^3, \beta_i^2, (i=1, 2) $, 下列线性系统存在唯一解

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial \omega_1}{\partial t} + \frac{\partial \omega_1}{\partial a} =-\mu_1^{2}(a, t)E(\omega_1)(a, t)-\mu_1^{3}(a, t)E(\omega_2)(a, t), \quad({a, t}) \in Q_{T}, \\ { } \frac{\partial \omega_2}{\partial t} + \frac{\partial \omega_2}{\partial a} =-\mu_2^{2}(a, t)E(\omega_2)(a, t)-\mu_2^{3}(a, t)E(\omega_1)(a, t), \quad({a, t}) \in Q_{T}, \\ { } {{\omega }_{i}}(0, t)=\int_{0}^{A}{\beta _{i}^{2}(a, t)E({{\omega }_{i}})(a, t)}{\rm{d}}a+b_{i}(t), \quad t \in(0, T), \\ \omega_i(a, 0) = 0, \quad a \in [0, A]. \end{array} \right. \end{equation} $

类似于引理2.2的证明可得如下结果.

引理4.2  系统$ \rm (4.1) $的解$ w=(w_1, w_2)\in [L^{\infty}(Q_T)]^2 $连续依赖于$ b=(b_{1}, b_2)\in [L^{\infty}(0, T)]^2 $.

以下证明一个新的连续性结果, 它在刻画最优策略的过程中起关键作用.

引理4.3  令函数$ f_i^n, \mu_i^k, \beta_i^k, b_i^n $有界, 记$ \omega^n=(\omega_1^{n}, \omega_2^{n}) $为下列系统的解

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial \omega_1}{\partial t} + \frac{\partial \omega_1}{\partial a} =f_{1}^n(a, t)-\mu_1^{1}(a, t)\omega_1(a, t)-\mu_1^{2}(a, t)E(\omega_1)(a, t)-\mu_1^3(a, t)E(\omega_2)(a, t), \\ { } \frac{\partial \omega_2}{\partial t} + \frac{\partial \omega_2}{\partial a} =f_{2}^n(a, t)-\mu_2^{1}(a, t)\omega_2(a, t)-\mu_2^{2}(a, t)E(\omega_2)(a, t)-\mu_2^{3}(a, t)E(\omega_1)(a, t), \\ { } {{\omega }_{i}}(0, t)=\int_{0}^{A}{\left[ \beta _{i}^{1}(a, t){{\omega }_{i}}(a, t)+\beta _{i}^{2}(a, t)E({{\omega }_{i}})(a, t) \right]}{\rm{d}}a+b_{i}^n(t), \\ \omega_i(a, 0) = \omega_i^0(a), \quad({a, t}) \in Q_{T}, i=1, 2. \end{array} \right. \end{equation} $

$ (f_i^{n}, b_{i}^n)\rightarrow (f_i, b_i) $, $ n\rightarrow \infty $, 则$ \omega^n\rightarrow \omega $, 其中$ \omega=(\omega_1, \omega_2) $是系统$ (4.2) $相应于$ f_{i}^n=f_i, b_{i}^n=b_i (i=1, 2) $的解.

  系统$ (4.2) $可以分解成下列两个子系统

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial \omega_1^1}{\partial t} + \frac{\partial \omega_1^1}{\partial a} =f_1^{n}(a, t)-\mu_1^{1}(a, t)\omega_1^1(a, t), \\ { } \frac{\partial \omega_2^1}{\partial t} + \frac{\partial \omega_2^1}{\partial a} =f_2^{n}(a, t)-\mu_2^{1}(a, t)\omega_2^1(a, t), \\ { } {{\omega }_{i}}^1(0, t)=\int_{0}^{A}{\beta _{i}^{1}(a, t){{\omega }_{i}}^1(a, t)}{\rm{d}}a, \quad t \in(0, T), \\ \omega_i^1(a, 0) = \omega_i^0(a), \quad({a, t}) \in Q_{T}, i=1, 2, \end{array} \right. \end{equation} $

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{\partial \omega_1^2}{\partial t} + \frac{\partial \omega_1^2}{\partial a} =-\mu_1^{2}(a, t)E(\omega_1^2)(a, t)-\mu_1^{3}(a, t)E(\omega_2^2)(a, t), \\ { } \frac{\partial \omega_2^2}{\partial t} + \frac{\partial \omega_2^2}{\partial a} =-\mu_2^{2}(a, t)E(\omega_2^2)(a, t)-\mu_2^{3}(a, t)E(\omega_1^2)(a, t), \\ { } {{\omega }_{i}}^2(0, t)=\int_{0}^{A}{\beta _{i}^{2}(a, t)E({{\omega }_{i}}^2)(a, t)}{\rm{d}}a+b_i^{n}(t), \\ \omega_i^2(a, 0) = 0, \quad({a, t}) \in Q_{T}, i=1, 2. \end{array} \right. \end{equation} $

记系统$ (3.3) $的解为$ \omega^{1n}=(\omega_{1}^{1n}, \omega_2^{1n}) $. 利用一个已知结果[2, p24, Theorem 2.1.2(iii)]可得: 若$ f_i^{n}\rightarrow f_i $, $ n\rightarrow \infty $, 则$ \omega^{1n}\rightarrow \omega^1=(\omega_1^1, \omega_2^1) $, 其中$ \omega_i^1 $是系统$ (4.3) $相应于$ f_i^{n}=f_i $的解.

$ \omega^{2n}=(\omega_{1}^{2n}, \omega_2^{2n}) $为系统(4.4)的解. 引理4.1和4.2表明$ \omega^{2n} $已经适定且关于$ b^n $连续.

以下证明本节的主要结果.

定理4.1(最大值原理)  记

如果$ (u^*, p^*) $是控制问题(2.1)–(2.2) 的最优对, $ q=(q_1, q_2) $满足以下共轭系统($ i, j=1, 2; $$ i\neq j $)

$ \begin{equation} \left\{\begin{array}{ll} { } \quad \frac{\partial q_i}{\partial t} + \frac{\partial q_i}{\partial a}\\ { } =\alpha_i\int_a^A\left[\mu _{ix}(r, E(p_1^*)(r, t), E(p_2^*)(r, t))q_i(r, t)-\beta_{ix}(r, E(p_i^*)(r, t))q_i(0, t)\right]p_i^*(r, t){\rm{d}}r\\ { } \quad+\int_0^a\left[\mu _{ix}(r, E(p_1^*)(r, t), E(p_2^*)(r, t))q_i(r, t)-\beta_{ix}(r, E(p_i^*)(r, t))q_i(0, t)\right]p_i^*(r, t){\rm d}r\\ { } \quad+\alpha_i\int_a^A \mu_{jx}(r, E(p_1^*)(r, t), E(p_2^*)(r, t))q_j(r, t)p_j^*(r, t){\rm d}r\\ { } \quad+\int_0^a \mu_{jx}(r, E(p_1^*)(r, t), E(p_2^*)(r, t))q_j(r, t)p_j^*(r, t){\rm d}r\\ { } \quad+[g_i(a)+q_i(a, t)]u_i^*(a, t) -\beta_i(a, E(p_i^*)(a, t))q_i(0, t)\\ { } \quad+\mu_i(a, E(p_1^*)(a, t), E(p_2^*)(a, t))q_i(a, t), (a, t)\in [0, A)\times [0, T), \\ { } q_i(a, T)=0, q_i(A, t)=0, \quad({a, t}) \in Q_{T}, i=1, 2, \end{array}\right. \end{equation} $

那么最优策略$ u_i^* $必定具有如下结构

$ \begin{equation} u_i^*(a, t)= \left\{\begin{array}{ll} 0, &\mbox{if}\ g_i(a)+q_i(a, t)<0; \\ U_i, &\mbox{if}\ g_i(a)+q_i(a, t)>0. \end{array}\right. \end{equation} $

  对于任意切向量$ v=(v_1, v_2)\in {\cal T}_{\cal U}(u^*) $ (集$ {\cal U} $$ u^* $处的切锥), $ \varepsilon>0 $充分小时必有$ u^\varepsilon :=u^*+\varepsilon v\in {\cal U} $ (参见文献[33, p21, Proposition 2.3]). 由$ u^* $的最优性知$ J(u^\varepsilon)\le J(u^*) $; 此即

$ \begin{eqnarray} && \sum\limits_{i=1}^{2}{\int_{0}^{A}{\int_{0}^{T}{{{g}_{i}}(a)[u_{i}^{*}(a, t)+\varepsilon {{v}_{i}}(a, t)]p_{i}^{\varepsilon }(a, t){\rm d}t{\rm d}a}}} {}\\ &\le &\sum\limits_{i=1}^{2}{\int_{0}^{A}{\int_{0}^{T}{{{g}_{i}}(a)u_{i}^{*}(a, t)p_{i}^*(a, t){\rm d}t{\rm d}a}}}, \end{eqnarray} $

其中$ p^\varepsilon=(p_1^\varepsilon, p_2^\varepsilon) $为系统$ (2.2) $相应于$ u=u^\varepsilon $的解. 将$ (4.7) $式同除以$ \varepsilon $并取极限$ \varepsilon\rightarrow 0^+ $, 可得

$ \begin{equation} \sum\limits_{i=1}^{2}{\int_{0}^{A}{\int_{0}^{T}{{{g}_{i}}(a)[u_{i}^{*}(a, t){{z}_{i}}(a, t)+p_{i}^{*}(a, t){{v}_{i}}(a, t)]{\rm d}t{\rm d}a}}}\le 0, \end{equation} $

其中$ z_i(a, t)=\lim\limits_{\varepsilon \to {{0}^{+}}} \frac{p_{i}^{\varepsilon }(a, t)-p_{i}^{*}(a, t)}{\varepsilon } (i=1, 2) $由下列方程决定($ i, j=1, 2; i\neq j $)

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{\partial z_i}{\partial t} + \frac{\partial z_i}{\partial a}=-\left[\mu_{ix}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E(z_i)(a, t)\right.\\ {\quad} \quad\quad\quad\quad\quad +\mu_{iy}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E(z_j)(a, t)+v_i(a, t)\big]p_i^*(a, t)\\ {\quad} \quad\quad\quad\quad\quad -\left[u_i^*(a, t)+\mu_i(a, E(p_1^*)(a, t), E(p_2^*)(a, t))\right]z_i(a, t), \\ { } z_i(0, t)=\int_0^A\left[\beta_{ix}(a, E(p_i^*)(a, t))p_i^*(a, t)E(z_i)(a, t)+\beta_i(a, E(p_i^*)(a, t))z_i(a, t)\right]{\rm d}a, \\ z_i(a, 0)=0, \quad (a, t)\in Q_T, i=1, 2, \end{array}\right. \end{equation} $

上述系统中的$ \mu_{ix} $$ \mu_{iy} $分别表示$ \mu_i $对第二和第三个变量的偏导数.

首先证明$ \lim\limits_{\varepsilon \to {{0}^{+}}} \frac{p_{i}^{\varepsilon }(a, t)-p_{i}^{*}(a, t)}{\varepsilon } $存在. 注意方程$ (4.9) $是线性的, 其解的存在唯一性可用不动点方法建立, 此处略去细节.

利用方程$ (2.2) $经计算可得

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{\partial \omega_i^\varepsilon}{\partial t} + \frac{\partial \omega_i^\varepsilon}{\partial a}=-\mu_{ix}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E\left(\frac{1}{\varepsilon }\left[{p_{1}^{\varepsilon }-p_{1}^{*}}\right]\right)(a, t)p_i^\varepsilon(a, t)\\ { } {\quad} \ \quad\quad\quad\quad\quad -\mu_{iy}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E\left(\frac{1}{\varepsilon }\left[{p_{2}^{\varepsilon }-p_{2}^{*}}\right]\right)(a, t)p_i^\varepsilon(a, t)\\ \ {\quad} \quad\quad\quad\quad\quad -\omega_i^\varepsilon(a, t)\left[u_i^*(a, t)+\mu_i(a, E(p_1^*)(a, t), E(p_2^*)(a, t))\right]\\ {\quad} \ \quad\quad\quad\quad\quad +\mu_{ix}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E(z_1)(a, t)p_i^*(a, t)\\ {\quad} \ \quad\quad\quad\quad\quad +\mu_{iy}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E(z_2)(a, t)p_i^*(a, t)\\ {\quad} \ \quad\quad\quad\quad\quad -v_i(a, t)\left[p_i^\varepsilon(a, t)-p_i^*(a, t)\right], \\ { } \omega_i^\varepsilon(0, t)=\int_0^A\beta_{ix}(a, E(p_i^*)(a, t))p_i^\varepsilon(a, t)E\left(\frac{1}{\varepsilon }\left[{p_{i}^{\varepsilon }-p_{i}^{*}}\right]\right)(a, t){\rm d}a\\ { } \quad\quad\quad\quad \ -\int_0^A\beta_{ix}(a, E(p_i^*)(a, t))p_i^*(a, t)E(z_i)(a, t){\rm d}a\\ { }\quad\quad\quad\quad\ +\int_0^A\beta_i(a, E(p_i^*)(a, t))\omega_i^\varepsilon(a, t){\rm d}a+b_i^0(\varepsilon), \\ \omega_i^\varepsilon(a, 0)=0, \quad (a, t)\in Q_T, i=1, 2, \end{array}\right. \end{equation} $

其中$ b_i^0(\varepsilon)\rightarrow 0 $ ($ \varepsilon\rightarrow 0^+ $).

引理2.2意味着

因此, 系统($ 4.10 $) 的极限系统如下

$ \begin{equation} \left\{\begin{array}{ll} { } \frac{\partial \omega_i}{\partial t} + \frac{\partial \omega_i}{\partial a}=-\omega_i(a, t)\left[u_i^*(a, t)+\mu_i(a, E(p_1^*)(a, t), E(p_2^*)(a, t))\right]\\ {\quad} \quad\quad\quad\quad\quad -\mu_{ix}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E\left(\omega_1\right)(a, t)p_i^*(a, t)\\ {\quad} \quad\quad\quad\quad\quad -\mu_{iy}(a, E(p_1^*)(a, t), E(p_2^*)(a, t))E\left(\omega_2\right)(a, t)p_i^*(a, t), \\ { } \omega_i(0, t)=\int_0^A\beta_{ix}(a, E(p_i^*)(a, t))p_i^*(a, t)E\left(\omega_i\right)(a, t){\rm d}a \\ { } \ \quad\quad\quad\quad +\int_0^A\beta_i(a, E(p_i^*)(a, t))\omega_i(a, t){\rm d}a, \\ \omega_i(a, 0)=0, \quad (a, t)\in Q_T, i=1, 2. \end{array}\right. \end{equation} $

对于给定的$ (u^*, p^*) $, 系统($ 4.11 $) 为齐次线性且具有零初始条件, 其唯一解必定恒为零; 即$ \omega_i(a, t)\equiv 0 $. 由引理4.3知: $ \lim\limits_{\varepsilon \to {{0}^{+}}} \omega _{i}^{\varepsilon }=0 $; 此即下列极限

存在, 且为系统$ (4.9) $的解.

对系统$ (4.9) $的第一个方程乘以$ q_i(a, t) $并在$ Q_T $上积分, 计算并利用系统$ (4.5) $可得

$ \begin{equation} \sum\limits_{i=1}^{2}\int_{0}^{A}\int_{0}^{T}g_i(a)u_i^*(a, t)z_i(a, t){\rm d}t{\rm d}a=\sum\limits_{i=1}^{2}\int_{0}^{A} \int_{0}^{T}q_i(a, t)p_{i}^{*}(a, t)v_i(a, t){\rm d}t{\rm d}a. \end{equation} $

$ (4.12) $式代入$ (4.8) $式可知: 不等式

对于任意$ v_i\in {\cal T}_{{\cal U}_i}(u_i^*) $均成立. 法锥的定义意味着

其中$ {\cal N}_{{\cal U}_i}(u_i^*) $表示集$ {\cal U}_i $$ u_i^* $处的法锥. 再运用法向量的结构特征即可推出定理4.1的结论.

5 数值实验

本节根据定理4.1对控制问题(2.1)–(2.2) 做数值求解, 并观察最优收益随价格函数的变化情况.

例5.1  选取参数$ \alpha_1=0.4, \alpha_2=0.3, A=10, T=20 $;

初始控制为

死亡率

繁殖率

价格函数($ s $为可变参数):

对于四种参数值$ s=0, 1, 2, 3 $, 分别计算最优收获强度$ (u_1^* (a, t), u_2^* (a, t)) $, 最优种群密度$ (p_1^* (a, t), p_2^* (a, t)) $以及最优收益$ J(u^*) $, 利用计算数据绘制图 1图 8, 以及表 1.

图 1

图 1   最优控制$ u_1^{*}(a, t) $$ u_2^{*}(a, t) $ ($ s=0) $


图 2

图 2   最优密度$ p_1^{*}(a, t) $$ p_2^{*}(a, t) $ ($ s=0) $


图 3

图 3   最优控制$ u_1^{*}(a, t) $$ u_2^{*}(a, t) $ ($ s=1) $


图 4

图 4   最优密度$ p_1^{*}(a, t) $$ p_2^{*}(a, t) $ ($ s=1) $


图 5

图 5   最优控制$ u_1^{*}(a, t) $$ u_2^{*}(a, t) $ ($ s=2) $


图 6

图 6   最优密度$ p_1^{*}(a, t) $ and $ p_2^{*}(a, t) $ ($ s=2) $


图 7

图 7   最优控制$ u_1^{*}(a, t) $$ u_2^{*}(a, t) $ ($ s=3) $


图 8

图 8   最优密度$ p_1^{*}(a, t) $$ p_2^{*}(a, t) $ ($ s=3) $


表 1   价格参数与最优收益J(u*)

s0123
J(u*)21.064224.468927.896132.1155

新窗口打开| 下载CSV


6 结语

对基于种群系统($ 2.2 $) 的最优收益问题($ 2.1 $), 定理3.1断言它至少有一个最优解, 定理4.1则给出了最优策略的特征结构. 为了获得具体的最优策略, 必须综合运用状态系统($ 2.2 $) 和共轭方程($ 4.5 $). 因此, 最优策略是一种反馈形式, 基本上具有Bang-Bang结构. 定理4.1为逼近最优策略、最优密度函数和最优收益奠定了基础.

需要强调的是: 尽管表 1中的数据显示最优收益随着价格的上升而增加, 但数据来源于近似计算, 普遍的规律尚不清楚, 因为最优收益由($ 2.1 $)–($ 2.2 $) 式和($ 4.6 $) 式决定, 这是一个复杂的耦合约束控制问题, 难以从理论上发现收益随价格的变化趋势.

参考文献

Getz W M , Haight R G . Population Harvesting: Demographic Models of Fish, Forest, and Animal Resources. Princeton: Princeton University Press, 1989

[本文引用: 2]

Aniţa S . Analysis and Control of Age-Dependent Population Dynamics. Dordrecht: Kluwer Academic Publishers, 2000

[本文引用: 2]

Lenhart S , Workman J T . Optimal Control Applied to Biological Models. New York: Taylor & Francis Group, 2007

Leung A W . Nonlinear System of Partial Differential Equations: Applications to Life and Physical Sciences. Beijing: World Scientific Publishing, 2009

[本文引用: 1]

Boucekkine R , Hritoenko N , Yatsenko Y . Optimal Control of Age-Structured Populations in Economy, Demography, and the Environment. New York: Routledge, 2011

[本文引用: 1]

Rorres C , Fair W .

Optimal harvesting policy for an age-specific population

Mathematical Biosciences, 1975, 24: 31- 47

DOI:10.1016/0025-5564(75)90065-6     

Brokate M .

Pontryagin's principle for control problems in age-dependent population dynamics

J Math Biology, 1985, 23: 75- 101

DOI:10.1007/BF00276559     

Medhin N G .

Optimal harvesting in age-structured populations

J Optim Theor Appl, 1992, 74 (3): 413- 423

DOI:10.1007/BF00940318     

Cañada A , Gámez J L , Montero J A .

Study of an optimal control problem for diffusive nonlinear elliptic equations of Logistic type

SIAM J Control Optim, 1998, 36 (4): 1171- 1189

DOI:10.1137/S0363012995293323     

Yamauchi A , Matsummiya Y , Iwasa Y .

Optimal age-dependent sustainable harvesting of natural resouece populations: Sustainability value

Res Popul Ecol, 1997, 39 (2): 139- 148

DOI:10.1007/BF02765259     

Gurtin M E , Murphy L F .

On the optimal harvesting of persistent age-structured populations

J Math Biology, 1981, 13: 131- 148

DOI:10.1007/BF00275209     

Murphy L F , Smith S J .

Optimal harvesting of an age-structured population

J Math Biology, 1990, 29: 77- 90

Busoni G , Matucci S .

A problem of optimal harvesting policy in two-stage age-dependent populations

Mathematical Biosciences, 1997, 43: 1- 33

URL    

Barbu V , Iannelli M .

Optimal control of population dynamics

J Optim Theor Appl, 1999, 102: 1- 14

DOI:10.1023/A:1021865709529     

Fister K R , Lenhart S .

Optimal harvesting in an age-structured predator-prey model

Appl Math Optim, 2006, 54: 1- 15

DOI:10.1007/s00245-005-0847-9     

Hritoenko N , Yatsenko Y .

The structure of optimal time- and age-dependent harvesting in the Lotka-McKendrik population model

Mathematical Biosciences, 2007, 208: 48- 62

DOI:10.1016/j.mbs.2006.09.008     

Zhao C , Zhao P , Wang M S .

Optimal harvesting for nonlinear age-dependent population dynamics

Mathematical and Computer Modelling, 2006, 43: 310- 319

DOI:10.1016/j.mcm.2005.06.008     

Luo Z .

Optimal harvesting problem for an age-dependent n-dimensional food chain diffusion model

Applied Mathematics and Computation, 2007, 186: 1742- 1752

DOI:10.1016/j.amc.2006.08.168     

Lu D , Gu J , Wang X .

Optimal harvesting problems for an age-dependent n-dimensional food chain model with diffusion

Applied Mathematics and Computation, 2007, 184: 659- 668

DOI:10.1016/j.amc.2006.06.065     

He Z R .

Opitmal harvesting of two competing species with age dependence

Nonlinear Analysis: RWA, 2006, 7: 769- 788

DOI:10.1016/j.nonrwa.2005.04.005      [本文引用: 1]

Braverman E , Braverman L .

Optimal harvesting of diffusive models in a nonhomogeneous environment

Nonlinear Analysis, 2009, 71: e2173- e2191

DOI:10.1016/j.na.2009.04.025      [本文引用: 1]

Dewsbury D A .

Dominance rank, copulatory behavior, and differential reproduction

The Quarterly Review of Biology, 1982, 57 (2): 135- 159

DOI:10.1086/412672      [本文引用: 1]

Cushing J M , Li J .

Oscillations caused by cannibalism in a size-structured population model

Canadian Applied Mathematics Quarterly, 1995, 3 (2): 155- 172

URL     [本文引用: 1]

Cañada A , Saldana J .

Asymptotic behaviour of a model of hierarchically structured population dynamics

Journal of Mathematical Biology, 1997, 35 (8): 967- 987

DOI:10.1007/s002850050085     

Kraev E A .

Existence and uniqueness for height structured hierarchical population models

Natural Resource Modeling, 2001, 14 (1): 45- 70

DOI:10.1111/j.1939-7445.2001.tb00050.x     

Jang R J , Cushing J M .

A discrete hierarchical model of intra-specific competition

Journal of Mathematical Analysis and Applications, 2003, 280 (1): 102- 122

DOI:10.1016/S0022-247X(03)00050-7     

Ackleh A S , Deng K .

Monotone approximation for a hierarchical age-structured population model

Dynamics of Continuous, Discrete and Impulsive Systems, 2005, 2 (2): 203- 214

Shen J , Shu C W , Zhang M .

A high order WENO Scheme for a hierarchical size-structured population model

Journal of Scientific Computing, 2007, 33 (3): 279- 291

DOI:10.1007/s10915-007-9152-x     

Liu Y , He Z .

On the well-posedness of a nonlinear hierarchical size-structured population model

ANZIAM Journal, 2017, 58 (3/4): 482- 490

He Z R , Ni D , Wang S P .

Optimal harvesting of a hierarchical age-structured population system

International Journal of Biomathematics, 2019, 12 (8): 1950091

DOI:10.1142/S1793524519500918      [本文引用: 1]

何泽荣, 周楠, 韩梦杰.

年龄等级结构两种群系统模型解的存在唯一性

数学进展, 2020, 49 (6): 713- 722

URL     [本文引用: 1]

He Z R , Zhou N , Han M J .

On the system model of two hierarchical age-structured populations

Advances in Mathematics, 2020, 49 (6): 713- 722

URL     [本文引用: 1]

Yosida K . Functional Analysis. Beijing: Beijing World Publishing Corporation, 1999

[本文引用: 1]

Barbu V . Mathematical Methods in Optimization of Differential Systems. Dordrecht: Kluwer Academic Publishers, 1994

[本文引用: 1]

/