数学物理学报, 2022, 42(1): 139-156 doi:

论文

星图上非线性分数阶微分方程边值问题解的存在唯一性

韩晓玲,1, 蔡蕙泽2, 杨虎军1

1 西北师范大学数学与统计学院 兰州 730070

2 兰州财经大学长青学院 兰州 730022

Existence and Uniqueness of Solutions for the Boundary Value Problems of Nonlinear Fractional Differential Equations on Star Graph

Han Xiaoling,1, Cai Huize2, Yang Hujun1

1 College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070

2 Changqing College, Lanzhou University of Finance and Economics, Lanzhou 730022

通讯作者: 韩晓玲, E-mail: hanxiaoling9@163.com

收稿日期: 2020-10-28  

基金资助: 国家自然科学基金.  12161079
甘肃省自然科学基金.  20JR10RA086

Received: 2020-10-28  

Fund supported: the NSFC.  12161079
the NSF of Gansu Province.  20JR10RA086

Abstract

In this paper, by using Banach's contraction principle and Schaefer's fixed point theorem, we study the existence and uniqueness of solutions for the boundary value problems of nonlinear fractional differential equations on star graphwhere $2<\alpha\leq3, 0<\beta<1,\ _{C}D_{0,x}^{\alpha},\ _{C}D_{0,x}^{\beta}$ are Caputo fractional derivative, $f_{i}, i=1,2,\cdots,k$ with respect to a continuously differentiable function of three variables on $[0,1]\times \mathbb{R}\times \mathbb{R} $.

Keywords: Boundary value problem of fractional differential equations ; Star graph ; Banach's contraction principle ; Schaefer's fixed point theorem

PDF (367KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩晓玲, 蔡蕙泽, 杨虎军. 星图上非线性分数阶微分方程边值问题解的存在唯一性. 数学物理学报[J], 2022, 42(1): 139-156 doi:

Han Xiaoling, Cai Huize, Yang Hujun. Existence and Uniqueness of Solutions for the Boundary Value Problems of Nonlinear Fractional Differential Equations on Star Graph. Acta Mathematica Scientia[J], 2022, 42(1): 139-156 doi:

1 引言

分数阶微积分理论的研究最早源于Euler的一些猜想, 随后在17世纪数学家Leibniz和Hospital的信件中说到: 分数阶导数相当于在两个整数阶导数之间引入某种插入法. 此后, 越来越多的学者开始对分数阶理论进行研究. 1812年, Laplace定义了分数阶导数, 1822年, Fourier给出了函数的任意$ \mu $阶导数的定义, 1832–1837年, Riemann给出了分数阶积分的定义, 1847年, Liouville给出了分数阶微分的定义, 1967年, Caputo提出了以自己名字命名的分数阶导的定义, 1974年, Oldhun出版了第一本分数阶微积分著作, 后来越来越多的分数阶微积分著作被出版, 使得分数阶微积分的发展更加完善. 起初分数阶微分方程的研究仅仅局限在数学领域, 直到1982年, Mandel-brot首次提出分数阶理论可以应用在其他学科, 如: 分数阶很适合描述各种原材料和混合物的性质、记忆和遗传性质等各种原料的形成、混沌与湍流及电磁学等诸多方面. 因此, 分数阶研究不仅有重要的理论价值, 还有广泛的实际应用价值[1-9].

近几十年来, 越来越多的学者注重将分数阶理论与(神经脉冲的传播, 桥梁铰链)生物模型和工程模型等结合起来[11-21]. 特别地, 2019年Mehandiratta等[15]考虑的分数阶导数不仅依赖于未知函数, 还取决于它的分数阶导数和由$ k $条边$ k+1 $个结点组成的星图$ G=V\cup E, V=\{v_{0}, v_{1}, \cdots , v_{k}\}, E=\{e_{i}=\overrightarrow{v_{i}v_{0}}, i=1, 2, \cdots , k\}, $其中$ v_{0} $是联结点, $ e_{i}=\overrightarrow{v_{i}v_{0}} $, $ l_{i} $是连接点$ v_{i} $$ v_{0} $的边的长度, 即$ l_{i}=|\overrightarrow{v_{i}v_{0}}|. $在每条边$ e_{i} $上作者考虑了$ x\in(0, l_{i}) $上以$ v_{i} $为原点的局部坐标系上的非线性分数阶微分方程边值问题

解的存在唯一性, 其中$ 1<\alpha\leq2, 0<\beta\leq\alpha-1, _{C}D_{0, x}^{\alpha}, _{C}D_{0, x}^{\beta} $是Caputo分数阶导数, $ f_{i} $$ [0, 1]\times {{\Bbb R}} \times{{\Bbb R}} $上的连续函数, 其中$ i=1, 2, \cdots , k $.

受上述文献的启发, 本文运用Banach压缩映射原理和Schaefer不动点定理研究星图上的非线性分数阶微分方程边值问题

解的存在唯一性, 其中$ 2<\alpha\leq3, 0<\beta<1, $$ _{C}D_{0, x}^{\alpha}, $$ _{C}D_{0, x}^{\beta} $是Caputo分数阶导数, $ f_{i}, $$ i=1, 2, \cdots , k $$ [0, 1]\times {{\Bbb R}} \times{{\Bbb R}} $上关于三个变元连续可微的函数.

值得注意的是, 本文考虑的分数阶导数不仅依赖于未知函数, 还取决于它的分数阶导数和由$ k $条边$ k+1 $个结点组成的图 1

图 1


其中$ v_{0} $是联结点, $ e_{i}=\overrightarrow{v_{i}v_{0}} $, $ l_{i} $是连接点$ v_{i} $和点$ v_{0} $的边的长度, 即$ l_{i}=|\overrightarrow{v_{i}v_{0}}|. $在每条边$ e_{i} $上, 我们考虑了$ x\in(0, l_{i}) $上以$ v_{i} $为原点的局部坐标系.

2 预备知识

记空间$ X=\{u:u\in C^{2}[0, 1], \ _{C}D_{0, t}^{\beta}u\in C[0, 1]\}, $其范数为

其中$ ||u||_{\infty}=\sup\limits_{t\in[0, 1]}|u(t)|. $因此$ (X, ||\cdot||_{X}) $是Banach空间, 且乘积空间$ (X^{k}=X\times X\times X\times\cdots \times X) $是Banach空间, 其范数为$ ||(u_{1}, u_{2}, \cdots , u_{k})||_{X^{k}}=\sum\limits_{i=1}^k||u_{i}||_{X}, (u_{1}, u_{2}, \cdots , u_{k})\in X^{k} $.

本文假设

(H1) $ f_{i}:[0, 1]\times {{\Bbb R}} \times{{\Bbb R}} \rightarrow {{\Bbb R}} $是关于三个变元连续可微的函数, 其中$ i=1, 2, \cdots , k. $

(H2) 在$ [0, 1] $上存在非负连续函数$ a_{i}(t), i=1, 2, \cdots , k, $使得对任意的$ (x, y), (x_{1}, y_{1}) \in {{\Bbb R}} ^{2}, $$ t\in[0, 1] $

其中$ \omega_{i}=\sup\limits_{t\in[0, 1]}a_{i}(t), i=1, 2, \cdots , k $.

(H3) 存在$ L_{i}>0, $使得$ |f_{i}(t, x, y)|\leq L_{i}, t\in[0, 1], x, y \in R, i=1, 2, \cdots , k. $

$ \begin{eqnarray} M_{i}&=&\Big[\Big(l_{i}^{\alpha}+l_{i}^{\alpha-\beta}\Big)(\frac{11}{\Gamma(\alpha-1)}+\frac{2}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha-\beta)} +\frac{4}{\Gamma(\alpha-2)\Gamma(3-\beta)})\Big]{}\\ &&+\frac{10}{\Gamma(\alpha-2)}\sum^k_{j=1}\Big(l_{j}^{\alpha}+l_{j}^{\alpha-\beta}\Big)+ \sum\limits_{j=1\atop j\neq i}^{k}\Big(l_{j}^{\alpha}+l_{j}^{\alpha-\beta}\Big)\Big(\frac{6}{\Gamma(\alpha-2)}+\frac{4}{\Gamma(\alpha-2)\Gamma(3-\beta)}\Big), {\quad} \end{eqnarray} $

$ \begin{eqnarray} P_{i}&=&\Big[l_{i}^{\alpha}\Big(\frac{2}{\Gamma(\alpha)}+\frac{2}{\Gamma(\alpha-1)}+\frac{2}{\Gamma(\alpha-2)}+\frac{1}{\Gamma(\alpha-\beta)}\Big)+\frac{2}{\Gamma(\alpha-2)}\sum\limits_{j=1\atop j\neq i}^{k}l_{j}^{\alpha}{}\\ &&+\sum^k_{j=1}l_{j}^{\alpha}\Big(\frac{10}{\Gamma(\alpha-2)}+\frac{6}{\Gamma(\alpha-2)\Gamma(3-\beta)}\Big)\Big]. \end{eqnarray} $

下面介绍本文的主要工具定理以及一些重要定义和引理.

定义2.1[15]  函数$ f \in C(a, b) $$ \alpha>0 $阶分数阶积分定义为

定义2.2[15]  函数$ f \in C^{n}(a, b) $$ \alpha>0 $阶Caputo分数阶导数定义为

其中$ n=[\alpha]+1 $.

引理2.3[10]   (Schaefer不动点定理)  令$ X $是一个Banach空间, $ T: X\rightarrow X $是全连续算子, 若集合$ \{x\in X, x=\mu Tx, \mu\in(0, 1)\} $是有界的, 则$ T $$ X $中至少有一个不动点.

引理2.4[10]   (Banach压缩映射原理)  设$ X $是完备的度量空间, $ T: X\rightarrow X $是压缩映射, 则$ T $$ X $上有唯一的不动点.

引理2.5[22]  设$ \alpha>0 $, 则分数阶微分方程$ _{C}D_{0, t}^{\alpha}u(t)=0 $有解

$ c_{i}\in {{\Bbb R}} , i=1, 2, \cdots , n, n=[\alpha]+1. $

引理2.6[22]  设$ \alpha>0 $, 则

$ c_{i}\in {{\Bbb R}} , i=1, 2, \cdots , n, n=[\alpha]+1. $

引理2.7[15]  令$ u $$ [0, l] $上的函数, 且在$ [0, l] $上存在$ {}_{C}D_{0, x}^{\alpha}u , \alpha>0 $使得$ x\in[0, l] $, $ t=\frac{x}{l}\in[0, 1] $, 则有

引用引理2.7且做变量变换$ u(x)=u(lt) $, 则边值问题(1.1)–(1.4)等价于

引理2.8  令$ h_{i}\in C^{1}[0, 1], $则分数阶微分方程

$ \begin{equation} {}_{C}D_{0, t}^{\alpha}u_{i}(t)=h_{i}(t) \end{equation} $

的解与积分方程

$ \begin{eqnarray} u_{i}(t)&=&\frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha-1}h_{i}(s){\rm d}s- \frac{1}{\Gamma(\alpha)}\int_{0}^{1}(1-s)^{\alpha-1}h_{i}(s){\rm d}s\\ &&+\frac{1}{\Gamma(\alpha-2)}\sum\limits_{j=1}^k\Big(\frac{l_{j}^{-2}} {2\sum\limits_{j=1}^kl_{j}^{-2}}\Big)\int_{0}^{1}(1-s)^{\alpha-3}(1-t^{2})h_{j}(s){\rm d}s{} \\ &&-\frac{1}{\Gamma(\alpha-2)}\sum\limits_{j=1\atop j\neq i}^{k}\Big(\frac{l_{j}^{-2}} {2\sum\limits_{j=1}^kl_{j}^{-2}}\Big)\int_{0}^{1}(1-s)^{\alpha-3}(1-t^{2})(h_{j}(s)-h_{i}(s)){\rm d}s \end{eqnarray} $

的解是等价的.

  首先证明微分方程(2.7)的解是积分方程(2.8)的解.

由引理2.6得

其中$ C_{i}^{(j)}, i=1, 2, \cdots , k, j=1, 2, 3 $都是常数, 则有

$ u_{i}'(0)=0, $$ C_{i}^{(2)}=0. $由(2.6)式知

$ \begin{equation} \sum\limits_{i=1}^kl_{i}^{-2}\Big(\frac{1}{\Gamma(\alpha-2)}\int_{0}^{1}(1-s)^{\alpha-3}h_{i}(s){\rm d}s-2C_{i}^{(3)}\Big)=0. \end{equation} $

$ u_{i}''(1)=u_{j}''(1) $

两边同时求和再作差得

$ \begin{equation} \sum\limits_{j=1\atop j\neq i}^{k}l_{j}^{-2}\left[\frac{1}{\Gamma(\alpha-2)} \int_{0}^{1}(1-s)^{\alpha-3}(h_{j}(s)-h_{i}(s)){\rm d}s+2C_{i}^{(3)}\right]=0. \end{equation} $

由(2.9)和(2.10)式得

因此可得

因此微分方程(2.7)的解一定是积分方程(2.8)的解.

下面证明积分方程(2.8)的解一定是微分方程(2.7)的解.

则有

$ 2<\alpha<3 $时, 有

因此

$ \alpha=3 $时, 有

因此积分方程(2.8)的解一定是微分方程(2.7)的解.

注2.9  从上面的证明知道, 在证明微分方程(2.7)的解是积分方程(2.8)的解时要求$ h_{i}\in C[0, 1] $即可. 在证明积分方程(2.8)的解一定是微分方程(2.7)的解时, 当$ \alpha=3 $$ h_{i}\in C[0, 1] $即可, 但是当$ 2<\alpha<3 $时要求$ h_{i}\in C^{1}[0, 1] $, 所以在引理2.8中要求$ h_{i}\in C^{1}[0, 1] $. 当把线性项$ h_{i}(t) $换成非线性项$ l_{i}^{\alpha}f_{i}(t, u_{i}(t), l_{i}^{-\beta}\cdot {}_{C}D_{0, t}^{\beta}u_{i}(t)) $是, 对函数$ f_{i} $要求关于三个变元连续可微.

由引理2.8, 定义算子$ T: X^{k}\rightarrow X^{k} $

其中

$ \begin{eqnarray} &&T_{i}(u_{1}, u_{2}, \cdots , u_{k})(t){}\\ &=&l_{i}^{\alpha}\frac{1}{\Gamma(\alpha)}\int_{0}^{t}(t-s)^{\alpha-1}f_{i}(s, u_{i}(s), l_{i}^{-\beta}\cdot {}_{C}D_{0, s}^{\beta}u_{i}(s)){\rm d}s\\ &&-l_{i}^{\alpha}\frac{1}{\Gamma(\alpha)}\int_{0}^{1}(1-s)^{\alpha-1}f_{i}(s, u_{i}(s), l_{i}^{-\beta}\cdot {}_{C}D_{0, s}^{\beta}u_{i}(s)){\rm d}s {}\\ &&+\frac{1-t^{2}}{\Gamma(\alpha-2)}\sum\limits_{j=1}^k\Big(\frac{l_{j}^{-2}}{2\sum\limits_{j=1}^kl_{j}^{-2}}\Big)l_{j}^{\alpha}\int_{0}^{1}(1-s)^{\alpha-3}f_{j}(s, u_{j}(s), l_{j}^{-\beta}\cdot {}_{C}D_{0, s}^{\beta}u_{j}(s)){\rm d}s{} \\ &&-\frac{1-t^{2}}{\Gamma(\alpha-2)}\sum\limits_{j=1\atop j\neq i}^{k}\Big(\frac{l_{j}^{-2}}{2\sum\limits_{j=1}^kl_{j}^{-2}}\Big)l_{j}^{\alpha}\int_{0}^{1}(1-s)^{\alpha-3}f_{j}(s, u_{j}(s), l_{j}^{-\beta}\cdot {}_{C}D_{0, s}^{\beta}u_{j}(s)){\rm d}s{} \\ &&+\frac{1-t^{2}}{\Gamma(\alpha-2)}\sum\limits_{j=1\atop j\neq i}^{k}\Big(\frac{l_{j}^{-2}}{2\sum\limits_{j=1}^kl_{j}^{-2}}\Big)l_{i}^{\alpha}\int_{0}^{1}(1-s)^{\alpha-3}f_{i}(s, u_{i}(s), l_{i}^{-\beta}\cdot {}_{C}D_{0, s}^{\beta}u_{i}(s)){\rm d}s. \end{eqnarray} $

则有

进一步有

3 主要结果及其证明

定理3.1   假设条件(H2)成立, 如果满足$ (\sum\limits_{i=1}^kM_{i})(\sum\limits_{i=1}^k\omega_{i})<1, $则边值问题(2.3)–(2.6)存在唯一解.

  令$ u=(u_{1}, u_{2}, \cdots , u_{k}), v=(v_{1}, v_{2}, \cdots , v_{k})\in X^{k}, t\in[0, 1], $则由(2.11)式可得

因为$ 1-t^{2}<1, (t<1), (\frac{l_{j}^{-2}}{\sum\limits_{j=1}^{k}l_{j}^{-2}})<1, j=1, 2, \cdots , k, $故由(H2)可知

因此

另一方面, 有

从而

因此

因此

$ \begin{eqnarray} ||T_{i}u-T_{i}v||_{X^{k}} &\leq&\Big[\Big(l_{i}^{\alpha}+l_{i}^{\alpha-\beta}\Big)(\frac{11}{\Gamma(\alpha-1)}+\frac{2}{\Gamma(\alpha+1)}+\frac{1}{\Gamma(\alpha)}+\frac{1}{\Gamma(\alpha-\beta)} {}\\ &&+\frac{4}{\Gamma(\alpha-2)\Gamma(3-\beta)})\Big]\Big(\sum\limits_{i=1}^k\omega_{i}\Big)\Big(\sum\limits_{j=1}^k\Big(||u_{j}-v_{j}||+ ||_{C}D_{0, s}^{\beta}u_{j}-_{C}D_{0, s}^{\beta}v_{j}||\Big)\Big){} \\ &&+\frac{10}{\Gamma(\alpha-2)}\sum^k_{j=1}\Big(l_{j}^{\alpha}+l_{j}^{\alpha-\beta}\Big)\Big(\sum\limits_{j=1}^k\omega_{j}\Big)\Big(||u_{j}-v_{j}||+||_{C}D_{0, s}^{\beta}u_{j}-_{C}D_{0, s}^{\beta}v_{j}||\Big){}\\ &&+\sum\limits_{j=1\atop j\neq i}^{k}\Big(l_{j}^{\alpha}+l_{j}^{\alpha-\beta}\Big)\Big(\frac{6}{\Gamma(\alpha-2)}+\frac{4}{\Gamma(\alpha-2)\Gamma(3-\beta)}\Big){} \\ &&\times\Big(\sum\limits_{i=1}^k\omega_{i}\Big)\Big(\sum\limits_{j=1}^k\Big(||u_{j}-v_{j}||+||_{C}D_{0, s}^{\beta}u_{j}-_{C}D_{0, s}^{\beta}v_{j}||\Big)\Big){} \\ &=&M_{i}\Big(\sum\limits_{i=1}^k\omega_{i}\Big)||u-v||_{X^{k}}. \end{eqnarray} $

由(3.1)式得

$ \Big(\sum\limits_{i=1}^kM_{i}\Big)\Big(\sum\limits_{i=1}^k\omega_{i}\Big)<1 $可知$ T $是压缩的, 故由引理2.4可得问题(2.3)–(2.6)存在唯一解. 因此原问题(1.1)–(1.4)存在唯一解.

定理3.2  假设(H1)–(H3)成立, 则边值问题(2.3)–(2.6)至少有一个解.

  由函数$ f_{i} $的连续性知$ T:X^{k}\rightarrow X^{k} $是连续算子. 设$ \Omega\subset X^{k} $是有界集, 故对任意的$ u=(u_{1}, u_{2}, \cdots , u_{k})\in\Omega, t\in[0, 1], $

由条件(H3), 有

$ \begin{equation} |T_{i}u(t)|\leq\frac{2L_{i}l_{i}^{\alpha}}{\Gamma(\alpha)}+\sum\limits_{j=1}^k\frac{2L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)} +\sum\limits_{j=1\atop j\neq i}^{k}\Big(\frac{L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)}\Big), \end{equation} $

$ \begin{equation} |T_{i}'u(t)|\leq\frac{2L_{i}l_{i}^{\alpha}}{\Gamma(\alpha-1)} +\sum\limits_{j=1}^k\frac{4L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)} +\sum\limits_{j=1\atop j\neq i}^{k}\frac{2L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)}, \end{equation} $

$ \begin{equation} |T_{i}''u(t)|\leq\frac{2L_{i}l_{i}^{\alpha}}{\Gamma(\alpha-2)} +4\sum\limits_{j=1}^k\frac{L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)} +\sum\limits_{j=1\atop j\neq i}^{k}\frac{2L_{j}l_{j}^{\alpha}}{\Gamma(\alpha-2)}. \end{equation} $

因为

因为$ t^{2-\beta}<1\ (0<2-\beta<1) $$ \Big(\frac{l_{j}^{-2}}{\sum\limits_{j=1}^kl_{j}^{-2}}\Big)<1, j=1, 2, \cdots , k, $故由(H3)可知

由(3.2)–(3.4)式可得

因此

$ \begin{equation} ||Tu||_{X^{k}}=\sum\limits_{i=1}^k||T_{i}u||_{X}\leq\Big(\sum\limits_{i=1}^kP_{i}\Big)\Big(\sum\limits_{i=1}^kL_{j}\Big)<\infty. \end{equation} $

所以由(3.5)式知$ T $是一致有界的.

下证$ T $是等度连续的. 对任意的$ u=(u_{1}, u_{2}, \cdots , u_{k})\in\Omega, t_{1}, t_{2}\in[0, 1], t_{1}<t_{2}, $

由(H3)得

同理

由(H3)得

因此$ ||T_{i}u(t_{2})-T_{i}u(t_{1})||_{X}\rightarrow 0, (t_{2}\rightarrow t_{1}) $$ ||Tu(t_{2})-Tu(t_{1})||_{X^{k}}\rightarrow 0, (t_{2}\rightarrow t_{1}). $

综上可得$ T $$ X $上等度连续, 且由Arzela-Ascoli定理知$ T $是全连续算子.

定义集合

$ (u_{1}, u_{2}, \cdots , u_{k})\in Q $时, 有$ (u_{1}, u_{2}, \cdots , u_{k})=\mu T(u_{1}, u_{2}, \cdots , u_{k}), t\in[0, 1]. $$ u_{i}(t)=\mu T_{i}(u_{1}, u_{2}, \cdots , u_{k}), i=1, 2, \cdots , k. $因此由(3.2)–(3.4)式及(H3)得

因此

$ Q $有界, 由引理2.3知, 算子$ T $至少有一个不动点, 即边值问题(2.3)–(2.6)在$ [0, 1] $上至少有一个解, 因此边值问题(1.1)–(1.4)也至少有一个解.

参考文献

Abbas M I .

Existence and uniqueness results for fractional differential equations with Riemann-Liouville fractional integral boundary conditions

Abstract and Applied Analysis, 2015, 2015: 1- 6

[本文引用: 1]

Agarwal R P , Nieto J J , Zhou Y .

A survey on fuzzy fractional differential and optimal control nonlocal evolution equations

Journal of Computational and Applied Mathematics, 2018, 399: 3- 29

Amann H .

On the number of solutions of nonlinear equations in ordred Banach spaces

Journal of Functional Analysis, 1972, 14: 346- 384

Bai Z B , Zhang H Y .

Solvability of fractional three-point boundary value problems with nonlinear growth

Applied Mathematics and Computation, 2011, 218 (5): 1719- 1725

DOI:10.1016/j.amc.2011.06.051     

Berdyshev A B , Cabada A , Turmetov K B .

On the solvability of some boundary value problem for polyharmonic equation with boundary operator of a fractional order

Applied Mathematical Modelling, 2015, 39 (15): 4548- 4569

DOI:10.1016/j.apm.2015.01.006     

Bondarenko N P .

A partial inverse problem for the differential pencil on a star-shaped graph

Results in Mathematics, 2017, 72: 1933- 1942

DOI:10.1007/s00025-017-0683-7     

Caballero J , Harjani J , Sadarangani K .

Positive solutions for a class of singular fractional boundary value problems

Computers Mathematics with Applications, 2011, 62: 1325- 1332

DOI:10.1016/j.camwa.2011.04.013     

Cabada A , Wang J T .

Positive solutions of nonlinear fractional differential equations with integral boundary value conditions

Journal of Mathematical Analysis and Applications, 2012, 389 (1): 403- 411

DOI:10.1016/j.jmaa.2011.11.065     

Cui Y J .

Uniqueness of solution for boundary value problems for fractional differential equations

Applied Mathematics Letters, 2016, 51: 48- 54

DOI:10.1016/j.aml.2015.07.002      [本文引用: 1]

Granas A , Dugundji J . Fixed Point Theory. New York: Springer-Verlag, 2003

[本文引用: 2]

Graef J R , Kong L , Wang M .

Existence and uniqueness of solutions for a fractional boundary value problem on a graph

Fractional Calculus and Applied Analysis, 2014, 17 (2): 499- 510

DOI:10.2478/s13540-014-0182-4      [本文引用: 1]

Graef J R , Kong L J , Yang B .

Positive solutions for a fractional boundary value problem

Applied Mathematics Letters, 2016, 56: 49- 55

DOI:10.1016/j.aml.2015.12.006     

Ma T T , Tian Y , Zhang Y .

Boundary value problem for linear and nonlinear fractional differential equations

Applied Mathematics Letters, 2018, 17: 1- 7

Mehandiratta V , Mehra M .

A difference scheme for the time-fractional diffusion equation on a metric star graph

Applied Numerical Mathematics, 2020, 158: 152- 163

DOI:10.1016/j.apnum.2020.07.022     

Mehandiratta V , Mehra M , Leugering G .

Existence and uniqueness results for a nonlinear Caputo fractional boundary value problem on a star graph

Journal of Mathematical Analysis and Applications, 2019, 477 (2): 1243- 1264

DOI:10.1016/j.jmaa.2019.05.011      [本文引用: 4]

Su X W .

Boundary value problem for a couple systerm of nonlinear fractional differential equations

Applied Mathematics Letters, 2009, 22: 64- 69

DOI:10.1016/j.aml.2008.03.001     

Vol'pert A I .

Differential equations on graphs

Mathematical Modelling of Natural Phenomena, 2015, 10: 6- 15

Wang Y Q , Wang H Q .

Triple positive solutions for fractional differential equation boundary value problems at resonance

Applied Mathematics Letters, 2020, 106: 106376

DOI:10.1016/j.aml.2020.106376     

Xu J F , Wei Z L , Dong W .

Uniqueness of positive solutions for a class of fractional boundary value problems

Applied Mathematics Letters, 2012, 25: 590- 593

DOI:10.1016/j.aml.2011.09.065     

Yang X , Wei Z L , Dong W .

Existence of positive solutions for the boundary value problem of nonlinear fractional differential equations

Communications in Nonlinear Science and Numerical Simulation, 2012, 17 (1): 85- 92

DOI:10.1016/j.cnsns.2011.05.007     

Yong Z . Basic Theory of Fractional Differential Equations. Singapore: World Scientific, 2014

[本文引用: 1]

Zhang S .

Positive solutions for boundary-value problems of nonlinear fractional differential equations

Electronic Journal of Differential Equations, 2006, 2006: 1- 12

[本文引用: 2]

/