一类非局部时滞的SVIR反应扩散模型的全局吸引性
Global Attractivity of a Nonlocal Delayed and Diffusive SVIR Model
收稿日期: 2021-01-11
Received: 2021-01-11
作者简介 About authors
杨瑜,E-mail:
In this paper, by using Lyapunov functional, we prove the global attractivity of the endemic equilibrium for a nonlocal delayed and diffusive SVIR model when $\mathcal{R}_{0}>1$, which cover and improve some known results.
Keywords:
本文引用格式
杨瑜.
Yang Yu.
1 引言
最近, 文献[1]考虑了如下一类非局部时滞的SVIR反应扩散模型:
其中
由于系统(1.1)的第四个方程与前三个方程是解耦的, 故只需考虑如下系统:
假定系统(1.2)中的参数都是常数.由
定义
故
由
得
即
本文结构安排如下:第二节给出一些预备知识.第三节讨论当基本再生数
2 预备知识
对
由文献[1]的定理6.1有
定理2.1 对
易知, 系统(1.3)总是存在一个无病平衡点
而且系统(1.3)的基本再生数
由文献[11]知, 当
这里
再由文献[1]的推论6.7有
定理2.2 (ⅰ)若
(ⅱ) 若
3 全局吸引性
下面给出本文的主要结果.
定理3.1 若
其中
证 定义
由定理2.1和2.2(ⅱ)可知,
构造Lyapunov泛函
其中
注意到
和
通过计算得
其中
进一步, 有
由于
对
因此,
4 结论
当不考虑扩散和空间异质时, 系统(1.3)即为如下的时滞系统:
当不考虑固定潜伏期时, 系统(1.3)即为如下的反应扩散系统:
系统(4.2)的正平衡点的全局吸引性的结果见文献[16].
参考文献
Analysis of a reaction-diffusion SVIR model with a fixed latent period and non-local infections
,DOI:10.1080/00036811.2020.1750601 [本文引用: 3]
A non-local delayed and diffusive predator-prey model
,DOI:10.1016/S0362-546X(00)00112-7 [本文引用: 2]
A reaction-diffusion malaria model with incubation period in the vector population
,DOI:10.1007/s00285-010-0346-8 [本文引用: 1]
A vector-bias malaria model with incubation period and diffusion
,
A diffusive dengue disease model with nonlocal delayed transmission
,
A time-periodic and reaction-diffusion Dengue fever model with extrinsic incubation period and crowding effects
,DOI:10.1016/j.nonrwa.2019.102988 [本文引用: 1]
Global dynamics of a nonlocal periodic reaction-diffusion model of bluetongue disease
,DOI:10.1016/j.jde.2020.09.019 [本文引用: 2]
Global stability of a diffusive virus dynamics model with general incidence function and time delay
,DOI:10.1016/j.nonrwa.2015.03.002 [本文引用: 1]
Impacts of the cell-free and cell-to-cell infection modes on viral dynamics
,
Global dynamics of a delayed within-host viral infection model with both virus-to-cell and cell-to-cell transmissions
,DOI:10.1016/j.mbs.2015.05.001 [本文引用: 1]
Wave propagation of a diffusive epidemic model with latency and vaccination
,DOI:10.1080/00036811.2019.1672868 [本文引用: 1]
Global dynamics of an SVEIR epidemic model with distributed delay and nonlinear incidence
,
Global stability of a delayed epidemic model with latent period and vaccination strategy
,
一类具有接种和潜伏期的传染病模型及动力学分析
,DOI:10.3969/j.issn.1003-3998.2019.05.025 [本文引用: 1]
Dynamical properties of a delayed epidemic model with vaccination and saturation incidence
DOI:10.3969/j.issn.1003-3998.2019.05.025 [本文引用: 1]
SVIR epidemic models with vaccination strategies
,DOI:10.1016/j.jtbi.2007.10.014 [本文引用: 1]
Stability and traveling waves of a vaccination model with nonlinear incidence
,DOI:10.1016/j.camwa.2017.09.042 [本文引用: 1]
Threshold dynamics of an infective disease model with a fixed latent period and non-local infections
,DOI:10.1007/s00285-011-0500-y [本文引用: 4]
Threshold dynamics of a time periodic reaction-diffusion epidemic model with latent period
,DOI:10.1016/j.jde.2014.12.032 [本文引用: 2]
/
〈 | 〉 |