数学物理学报, 2021, 41(5): 1545-1554 doi:

论文

非自治复合系统的集态敏感性和集态可达性

杨晓芳,1, 唐孝,2, 卢天秀,1,3

1 四川轻化工大学数学与统计学院 四川自贡 643000

2 四川师范大学数学科学学院 成都 610068

3 企业信息化与物联网测控技术四川省高校重点实验室 四川自贡 643000

The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems

Yang Xiaofang,1, Tang Xiao,2, Lu Tianxiu,1,3

1 College of Mathematics and Statistics, Sichuan University of Science and Engineering, Sichuan Zigong 643000

2 School of Mathematical Science, Sichuan Normal University, Chengdu 610068

3 Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Sichuan Zigong 643000

通讯作者: 卢天秀, E-mail: lubeeltx@163.com

收稿日期: 2020-09-29  

基金资助: 四川省科技计划.  19YYJC2845
企业信息化与物联网测控技术四川省高校重点实验室开放基金.  2020WZJ01
四川轻化工大学人才引进项目.  2020RC24
研究生创新基金项目.  Y2020077

Received: 2020-09-29  

Fund supported: the Science and Technology Plan of Sichuan Province.  19YYJC2845
the Key Laboratory of Colleges and Universities Open Fund for Enterprise Information and Internet of Measurement and Control Technology in Sichuan Province.  2020WZJ01
the Talent Introduction Program.  2020RC24
the Graduate Student Innovation Fund.  Y2020077

作者简介 About authors

杨晓芳,E-mail:yxf_suse@163.com , E-mail:yxf_suse@163.com

唐孝,E-mail:80651177@163.com , E-mail:80651177@163.com

Abstract

In this paper, collectively sensitivity, collectively infinity sensitivity, collectively Li-Yorke sensitivity and collectively accessible are defined in the non-autonomous discrete system. First of all, it is showed that, on compact metric spaces, mapping sequence $(f_k)^\infty_{k=1}$ is ${\cal P}$-chaos if and only if $ \forall n\in {\Bbb N}$ ($N$ is the set of natural numbers and does not contain 0). Then, under the condition that $f_{1, \infty}$ is uniformly convergence, it is proved that $f_{1, \infty}$ is ${\cal CP}$-chaos if and only if for any $m\in {\Bbb N}$, $f_{1, \infty}^{[m]}$ is ${\cal CP}$-chaos. Where ${\cal P}$-chaos denote one of the five properties: transitivity, sensitivity, infinitely sensitivity, accessibility and exact, ${\cal CP}$-chaos denote one of the four properties: collectively sensitivity, collectively infinity sensitivity, collectively Li-Yorke sensitivity and collectively accessible.

Keywords: Non-autonomous discrete system ; Composite mapping ; Transitivity ; Sensitivity ; Accessibility

PDF (371KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨晓芳, 唐孝, 卢天秀. 非自治复合系统的集态敏感性和集态可达性. 数学物理学报[J], 2021, 41(5): 1545-1554 doi:

Yang Xiaofang, Tang Xiao, Lu Tianxiu. The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems. Acta Mathematica Scientia[J], 2021, 41(5): 1545-1554 doi:

1 引言

1996年, Kolyada[1]介绍了非自治离散动力系统的概念. 之后, Elaydi等学者将它们与一些非自治微分方程联系起来(参见文献[2-3]).

$ f_{1, \infty} = (f_{n})^{\infty}_{n = 1} $是紧度量空间$ (I, d) $上的一个连续自映射序列. 对于任意正整数$ i, n\in{\Bbb N} $, 记$ f^{n}_{i} = f_{i+(n-1)}\circ\cdots\circ f_{i} $, $ f^{0}_{1} = {\rm id}_{I} $ (恒等映射). 称系统$ (I, f_{1, \infty}) $为非自治离散动力系统. $ \forall x\in I $, 点$ x $在映射序列$ f_{1, \infty} $下的轨道为$ \{f^{n}_{1}(x): n \in {\Bbb N}\} = orb(x, f_{1, \infty}) $. 换句话说, 这个轨道也就是非自治微分方程

的解. 当$ f_{n} = f $ ($ \forall n\in {\Bbb N} $) 时, 系统简化为$ (I, f ) $, 就成为与自治微分方程相关的自治离散动力系统.

21世纪初以来, 关于非自治离散系统的混沌性问题一直倍受学者们关注. Canovas[4]研究了映射序列$ f_{1, \infty} $的极限行为, 考虑当$ f_{1, \infty} $一致收敛于$ f $时, 是否有极限映射$ f $的混沌性意味着原映射序列$ f_{1, \infty} $的混沌性. Kumar[5]在无限维空间中讨论了具有有限延迟的非自治二阶非线性微分方程的近似可控性. 2020年, 邵华[6-7]建立了非自治离散系统中强Li-Yorke混沌和分布混沌的判断准据, 并讨论了非自治集值系统与有限子移位系统之间的拓扑等度半共轭性和等度共轭性. 同年, 黎日松[8]则进一步将非自治系统的一般传递性和敏感性扩展到了更强形式的传递性和敏感性. 此外, 我们也曾经得到过关于$ f_{1, \infty} $的分布混沌性, 敏感性和$ {\cal F} $ -混沌性的一些结果[9-11]. 其它有关非自治离散系统混沌性的研究, 参见文献[12-24].

$ \forall m\in {\Bbb N} $, 定义

$ (I, g_{1, \infty}) $$ m $次迭代的或者称其为系统$ (I, f_{1, \infty}) $的一个复合系统. 记$ g_{1, \infty} = f_{1, \infty}^{[m]} $.

这篇文章将讨论非自治复合系统的集态敏感性、集态无限敏感性、集态可达性和集态Li-Yorke敏感性等.

2 相关定义

$ (I, d) $是一个紧度量空间, $ f_n:I\mapsto I (n\geq1) $是连续自映射序列.

定义2.1  (1) $ f_{1, \infty} $是敏感依赖的, 如果存在$ \eta>0 $, 使得对任意$ a\in I $$ \varepsilon>0 $, 存在$ b\in B(a, \varepsilon) $$ n\in {\Bbb N} $, 满足$ d(f^n_1(a), f^n_1(b))>\eta $;

$ \rm(2) $$ f_{1, \infty} $称为无限敏感的, 如果存在$ \eta>0 $, 使得对任意$ a\in I $$ \varepsilon>0 $, 存在$ b\in B(a, \varepsilon) $$ n\in {\Bbb N} $, 满足$ \limsup\limits_{n\rightarrow \infty}d(f^n_1(a), f^n_1(b))\geq \eta $;

$ \rm(3) $$ f_{1, \infty} $称为传递的, 如果对任意非空开子集$ U_{1}, U_{2}\subset I $, 存在$ n\in {\Bbb N} $, 满足$ f_1^{n}(U_{1})\cap U_{2}\neq\emptyset $;

$ \rm(4) $$ f_{1, \infty} $称为可达的, 如果对任意的$ \varepsilon>0 $和任意两个非空开子集$ U_1, U_2\subset I $, 存在$ a\in U_1 $, $ b\in U_2 $$ n\in {\Bbb N} $使得$ d(f^n_1(a), f^n_1(b))<\varepsilon $;

$ \rm(5) $$ f_{1, \infty} $称为正合的, 如果对任意非空开子集$ U\subset I $, 存在$ n\in {\Bbb N} $使得$ f_1^n(U) = I $.

定义2.2  称映射序列$ f_n(n\geq1) $是一致连续的, 如果对任意$ \varepsilon>0 $, 存在$ \delta>0 $$ N\in{\Bbb N} $使得对$ \forall a, b\in I $, 当$ d(a, b)<\delta $时, 对$ \forall n>N $, 有$ d(f_n(a), f_n(b))<\varepsilon $.

定义2.3  称映射序列$ f_n(n\geq1) $是集态一致连续的, 如果对任意$ \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s; b_1, b_2, \cdots, b_s\in I $, 有下列两个条件成立:

(1) 对$ \forall 1\leq i, j \leq s $, $ \exists \delta>0 $满足$ d(a_i, b_j)<\delta $;

(2) $ \exists N\in {\Bbb N} $, 对$ \forall n>N $, $ \exists 1\leq i_0, j_0\leq s $使得

定义2.4  称系统$ (I, f_{1, \infty}) $ (或者映射序列$ f_{1, \infty} $) 是集态敏感的, 其集态敏感常数为$ \delta $. 如果存在$ \delta>0 $, 对$ \forall \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得下列两个条件成立:

(1) 对一切$ 1\leq i, j\leq s $, 满足$ d(a_i, b_j)<\varepsilon $;

(2) 存在$ 1\leq i_0, j_0\leq s $$ n\in{\Bbb N} $使得

定义2.5  称系统$ (I, f_{1, \infty}) $ (或者映射序列$ f_{1, \infty} $) 是集态无限敏感的, 其集态无限敏感常数为$ \delta $. 如果存在$ \delta>0 $, 对任意$ \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得下列两个条件成立:

$ \rm(1) $对一切$ 1\leq i, j\leq s $, 满足$ d(a_i, b_j)<\varepsilon $;

$ \rm(2) $存在$ 1\leq i_0, j_0\leq s $使得

命题2.1  如果系统$ (I, f_{1, \infty}) $ (或者映射序列$ f_{1, \infty} $) 是集态无限敏感的, 则该系统一定是集态敏感的.

  因为$ (I, f_{1, \infty}) $是集态无限敏感的, 则存在$ \lambda>0 $, 对任意$ \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得下列两个条件成立:

(1) 对一切$ 1\leq i, j\leq s $, 满足$ d(a_i, b_j)<\varepsilon $;

(2) 存在$ 1\leq i_0, j_0\leq s $使得

由条件(2)可知, 存在一个$ \{n_k\}_{k\in{\Bbb N}} $$ \eta>\lambda $使得

或者

从而, 存在一个$ k_i\in{\Bbb N} $使得

因此, 系统$ (I, f_{1, \infty}) $是集态敏感的.

定义2.6  称系统$ (I, f_{1, \infty}) $ (或者映射序列$ f_{1, \infty} $) 是集态可达的, 如果对任意$ \varepsilon>0 $和任意非空开子集$ A_1, A_2, \cdots, A_{s}; B_1, B_2, \cdots, B_{s}\subset I $, 存在$ a_i\in A_i(i\in \{1, 2, \cdots, s\}) $$ b_j\in B_j(j\in \{1, 2, \cdots, s\}) $使得下列条件之一成立:

$ \rm(1) $$ \exists i_0\in \{1, 2, \cdots, s\} $, 对$ \forall j\in \{1, 2, \cdots, s\} $, $ \exists n\in {\Bbb N} $满足$ d(f_1^n(a_{i_0}), f_1^n(b_{j}))<\varepsilon $;

$ \rm(2) $$ \exists j_0\in \{1, 2, \cdots, s\} $, 对$ \forall i\in \{1, 2, \cdots, s\} $, $ \exists n\in {\Bbb N} $满足$ d(f_1^n(a_{i}), f_1^n(b_{j_0}))<\varepsilon. $

定义2.7  称系统$ (I, f_{1, \infty}) $ (或者映射序列$ f_{1, \infty} $) 是集态Li-Yorke敏感的, 其集态Li-Yorke敏感常数为$ \delta $. 如果存在$ \delta>0 $, 对任意$ \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得下列两个条件成立:

$ \rm(1) $对一切$ 1\leq i, j\leq s $, 满足$ d(a_i, b_j)<\varepsilon $;

$ \rm(2) $存在$ 1\leq i_0, j_0\leq s $使得

或者

3 映射序列$ f_{1, \infty} $$ f_{n, \infty} $的混沌性

在本节, 区间$ I $的度量为$ d(a, b) = \mid a-b\mid (\forall a, b\in I) $. 同时, 我们总是假设$ f_n(n\in {\Bbb N}) $为满射.

定理3.1  映射序列$ f_{1, \infty} $$ {\cal P} $ -混沌的当且仅当对任意$ n\in {\Bbb N}, $$ n\geq 2 $, $ f_{n, \infty} $$ {\cal P} $ -混沌的. 其中, $ {\cal P} $ -混沌表示下面五个性质之一: 传递性、敏感性、无限敏感性、可达性和正合性.

  (ⅰ) (传递性)   仅需要证明$ n = 2 $的情形.

充分性. 因为$ f_{2, \infty} $是传递的, 则对任意非空开集$ U_{1}, U_{2}\subset I $, 存在$ n\in {\Bbb N} $使得$ f_2^{n}(U_{1})\cap U_{2}\neq\emptyset $. 也就是说存在一个$ a\in U_1 $$ n\in {\Bbb N} $使得$ f_2^n(a)\in U_2 $. 因为$ f_1 $是满射. 取$ U_1 $中每个元素在$ f_1 $之下的逆象构成集合$ U_1^{*} $. 那么, 存在一个$ a^{*}\in U_1^* $使得$ f_1(a^{*}) = a $. 从而可以得到$ f_1^n(a^{*}) = f_2^n(a)\in U_2 $. 由集合$ U_1 $的任意性, $ f_{1, \infty} $是传递的.

必要性. 因为$ f_{1, \infty} $是传递的, 则对任意非空开子集$ U_{1}, U_{2}\subset I $, 存在$ n\in {\Bbb N} $使得$ f_1^{n}(U_{1})\cap U_{2}\neq\emptyset $. 也就是说存在一个$ a\in U_1 $$ n\in {\Bbb N} $满足$ f_1^n(a)\in U_2 $. 因为$ f_1 $是满射. 取$ U_1 $中每个元素在$ f_1 $之下的象构成集合$ U_1^{*} $. 那么, 存在一个$ a^{*}\in U_1^* $使得$ f_1(a) = a^{*} $. 则可得$ f_2^{n-1}(a^{*}) = f_1^n(a)\in U_2 $. 即对$ U_1^{*}, U_2\in I $, $ \exists n-1\in {\Bbb N} $使得$ f_2^{n-1}(U_{1}^{*})\cap U_{2}\neq\emptyset $. 由集合$ U_1 $的任意性知$ U_1^{*} $为任意非空开子集, 从而$ f_{2, \infty} $是传递的.

(ⅱ) (敏感性)   与下面无限敏感性的证明相似.

(ⅲ) (无限敏感性)   因为$ f_{2, \infty} $是无限敏感的, 则存在$ \eta>0 $使得对任意$ a\in I $$ \varepsilon>0 $, 存在$ b\in B(a, \varepsilon) $$ n\in {\Bbb N} $满足

因为$ f_1 $是一个满射, 所以存在点$ a^{*}\in I $使得$ f_1(a^{*}) = a $. 又因为$ f_1 $是连续的, 则对$ \forall \varepsilon_1>0 $, 存在$ B(a^{*}, \varepsilon_1) $使得$ f_1(B(a^{*}, \varepsilon_1))\subset B(f_1(a^{*}), \varepsilon) = B(a, \varepsilon) $. 从而, 存在$ b^{*}\in B(a^{*}, \varepsilon_1) $使得$ f_1(b^{*}) = b $. 因此

由点$ a $$ \varepsilon_1 $的任意性, $ f_{1, \infty} $是无限敏感的.

必要性. 因为$ f_{1, \infty} $是无限敏感的, 则存在$ \eta>0 $使得对任意点$ a\in I $$ \varepsilon>0 $, 存在$ b\in B(a, \varepsilon) $$ n\in {\Bbb N} $满足

因为$ f_1 $是一个满射, 所以存在点$ a^{*}\in I $使得$ f_1(a) = a^{*} $. 又因为$ f_1 $是连续的, 可得$ f_1(B(a, \varepsilon))\subset B(f_1(a), \varepsilon_1) = B(a^{*}, \varepsilon_1) $. 因此, 存在$ b^{*}\in B(a^{*}, \varepsilon) $使得$ f_1(b) = b^{*} $. 从而

$ a $$ \varepsilon $的任意性, $ f_{2, \infty} $是无限敏感的.

(ⅳ) (可达性)   充分性. 因为$ f_{2, \infty} $是可达的, 则对$ \forall \varepsilon>0 $和任意非空开子集$ U_1, U_2\subset I $, 存在两点$ a\in U_1 $, $ b\in U_2 $$ n\in {\Bbb N} $使得$ d(f_2^n(a), f_2^n(b)))<\varepsilon $. 因为$ f_1 $是一个满射, 取$ U_1 $$ U_2 $中每个元素在$ f_1 $之下的逆象分别构成集合$ U_1^{*} $$ U_2^{*} $. 则存在$ a^{*}\in U_1^{*} $, $ b^{*}\in U_2^{*} $使得$ f_1(a^{*}) = a $$ f_1(b^{*}) = b $. 因此, 可得

$ U_1 $$ U_2 $的任意性, $ f_{1, \infty} $是可达的.

必要性. 因为$ f_{1, \infty} $是可达的, 则对任意$ \varepsilon>0 $和任意非空开子集$ U_1, U_2\subset I $, 存在两点$ a\in U_1 $, $ b\in U_2 $$ n\in {\Bbb N} $使得$ d(f_1^n(a), f_1^n(b)))<\varepsilon $. 因为$ f_1 $是一个满射. 取$ U_1 $$ U_2 $中每个元素在$ f_1 $之下的象分别构成集合$ U_1^{*} $$ U_2^{*} $. 那么存在$ a^{*}\in U_1^{*} $, $ b^{*}\in U_2^{*} $使得$ f_1(a) = a^{*} $$ f_1(b) = b^{*} $. 因此, 可得

$ U_1 $$ U_2 $的任意性, $ f_{2, \infty} $是可达的.

(ⅴ) (正合性)   充分性. 因为$ f_{2, \infty} $是正合的, 则对任意非空开子集$ U\subset I $, 存在$ n\in{\Bbb N} $使得$ f_2^n(U) = X $. 也就是说$ f^n_2(U)\subseteq I $$ I\subseteq f^n_2(U) $都成立. 所以, 对任意$ a\in U $, 可以得到$ f^n_2(a)\in I $. 因为$ f_1 $是一个满射, 取$ U $中每个元素在$ f_1 $之下的逆象构成集合$ U^{*} $. 那么, 存在一个$ a^{*}\in U^{*} $, $ f_1(a^{*}) = a $满足$ f_1^n(a^{*}) = f_2^n(a)\in I $. 再根据点$ a $的任意性, 可知$ f_1^n(U^{*})\subseteq I $. 又因为$ I\subseteq f_2^n(U) = f_1^n(U^{*}) $, 则$ I\subseteq f_1^n(U^{*}) $.$ U $的任意性, 可得$ f_1^n(U^{*}) = I $. 因此, $ f_{1, \infty} $是正合的.

必要性. 因为$ f_{1, \infty} $是正合的, 则对任意的非空开子集$ U\subset I $, 存在$ n\in{\Bbb N} $使得$ f_1^n(U) = X $. 从而有$ f^n_1(U)\subseteq I $$ I\subseteq f^n_1(U) $. 所以, 对任意$ a\in U $, 可以得到$ f^n_1(a)\in I $.$ f_1 $是满射, 取$ U $中每个元素在$ f_1 $之下的象构成集合$ U^{*} $, 可知存在$ a^{*}\in U^{*} $使得$ f_1(a) = a^{*} $. 从而可得$ f_2^n(a^{*}) = f_1^n(a)\in I $. 再由$ a $的任意性可得$ f_2^n(U^{*})\subseteq I $. 又因为$ I\subseteq f_1^n(U) = f_2^n(U^{*}) $, 则$ I\subseteq f_2^n(U^{*}) $.$ U $的任意性可得$ f_2^n(U^{*}) = I $. 因此, $ f_{2, \infty} $是正合的.

4 复合系统$ f^{[m]}_{1, \infty} $的集态敏感性和可达性

在这一节, 我们将讨论非自治离散系统中复合映射$ f^{[m]}_{1, \infty} $的集态敏感性、集态无限敏感性、集态Li-Yorke敏感性和集态可达性.

引理4.1[10]  如果映射序列$ (f_n)_{n = 1}^{\infty} $一致收敛于$ f $, 则对$ \forall m\in {\Bbb N}, m\geq2 $, 映射序列$ (f_n^m)_{n = 1}^{\infty} $一致收敛于$ f^m $.

引理4.2  如果$ (f_n)_{n = 1}^{\infty} $是一致连续的, 则它一定是集态一致连续的.

  因为$ (f_n)_{n = 1}^{\infty} $是一致连续的, 则对$ \forall \varepsilon>0 $, 存在一个$ \delta(\varepsilon) $使得对任意的$ a_1, b_1\in I $, $ d(a_1, b_1)<\delta(\varepsilon) $, $ \exists N_1\in {\Bbb N} $, 对$ \forall n>N_1 $, 有$ d(f_n(a_1), f_n(b_1))<\varepsilon $. 我们取$ \delta^{*}<\delta(\varepsilon) $使得$ d(a_1, b_1)<\delta^{*}<\delta(\varepsilon) $.$ b_2\in I $, $ d(a_1, b_2)<\delta^{*} $, $ \exists N_2\in {\Bbb N} $, 对$ \forall n>N_2 $, $ d(f_n(a_1), f_n(b_2))<\varepsilon $; $ \cdots $; 取$ b_s\in I $, $ d(a_1, b_s)<\delta^{*} $, $ \exists N_s\in {\Bbb N} $, 对$ \forall n>N_s $, $ d(f_n(a_1), f_n(b_s))<\varepsilon $. 从而有$ b_1, b_2, \cdots, b_s\in I $.$ a_2, a_3, \cdots, a_s\in I $$ a_i\in B(a_1, \delta(\varepsilon)-\delta^{*}) $, 则对$ \forall 1\leq i, j\leq s $$ d(a_i, b_j)<\delta(\varepsilon) $.$ N^{*} = max\{N_1, N_2, \cdots, N_S\} $, 对$ \forall n>N^{*} $, 存在一个$ i_0 = 1 $使得$ d(f_n(a_{i_0}), f_n(b_j))<\varepsilon, (1\leq j\leq s). $类似的, 存在一个$ 1\leq j_0\leq s $使得$ d(f_n(a_{i}), f_n(b_{j_0}))<\varepsilon, (1\leq i\leq s). $因此, $ (f_n)_{n = 1}^{\infty} $是集态一致连续的.

引理4.3  如果$ (f_n^m)_{n = 1}^{\infty}, m\in {\Bbb N} $是一致连续的, 则它一定是集态一致连续的.

  证明类似于引理4.2.

引理4.4  如果$ (f_n)_{n = 1}^{\infty} $一致收敛于$ f $, 则对$ \forall\varepsilon>0 $$ \forall m\in{\Bbb N} $, 存在$ \delta>0 $$ N\in {\Bbb N} $使得对任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $, 下列两个结论成立:

$ \rm(1) $$ \forall1\leq i, j \leq s $, 有$ d(a_i, b_j)<\delta $;

$ \rm(2) $$ \forall n>N $, $ \exists 1\leq i_0, j_0\leq s $, 有

  根据引理4.1和不等式

可知$ d(f_n^m(a_{i_0}), f_n^m(b_j))<\varepsilon $成立. $ d(f_n^m(a_i), f_n^m(b_{j_0}))<\varepsilon $同理可证.

定理4.1   如果映射序列$ (f_n)_{n = 1}^{\infty} $是一致收敛的, 则$ f_{1, \infty} $集态敏感当且仅当对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $集态敏感.

  必要性. 因为$ f_{1, \infty} $是集态敏感的, 设其集态敏感常数为$ \delta $, 则对$ \forall \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得

(1) 对一切$ 1\leq i, j\leq s $, 满足$ d(a_i, b_j)<\varepsilon $;

(2) 存在$ 1\leq i_0, j_0\leq s $$ n\in {\Bbb N} $使得

又因为$ (f_n)_{n = 1}^{\infty} $是一致收敛的, 根据引理4.4, 对$ \forall m\in{\Bbb N} $, 存在$ \xi>0 $$ N\in {\Bbb N} $使得对上述$ s $个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $, 满足:

(a) 对$ \forall 1\leq i, j\leq s $, $ d(a_i, b_j)<\xi $;

(b) 对$ \forall n>N $, $ \exists 1\leq i'_0, j'_0\leq s $使得

所以, $ \exists N_0>2m $, 对任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $, 满足:

(a$ ' $)$ \forall 1\leq i, j\leq s $, 有$ d(a_i, b_j)<\xi $;

(b$ ' $)$ \forall n> N_0 $, $ \exists1\leq i'_0, j'_0\leq s $使得

因为$ f_1^p(p:1\leq p\leq 2N_0) $是一致连续的, 根据引理4.3, $ f_1^p $是集态一致连续的, 也就是说存在$ \varepsilon^{*}>0 $, 对上述$ s $个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $满足:

(a$ '' $) 对一切$ 1\leq i, j\leq s $, $ d(a_i, b_j)<\varepsilon^{*} $;

(b$ '' $)$ \forall n>N_0 $, $ \exists 1\leq i_0^{*}, j_0^{*}\leq s $使得

或者

所以, 对$ \forall\varepsilon<\varepsilon^{*} $, 存在有$ n>2N_0\geq 4m $. 因此, 存在$ p_0\in \{0, 1, \cdots, m-1\} $$ l\in {\Bbb N} $使得$ n-p_0 = ml $.

注意到

或者

因为$ n-p_0+1\geq N_0 $, 则对$ \forall \varepsilon<\varepsilon^{*} $, 可得

又由于$ m|(n-p_0) $, 因此, 对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $是集态敏感的.

充分性. 如果对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $是集态敏感的. 令$ m = 1 $, 即, $ f_{1, \infty} $是集态敏感的.

定理4.2  如果映射序列$ (f_n)_{n = 1}^{\infty} $是一致收敛的, 则$ f_{1, \infty} $是集态无限敏感的当且仅当对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $是集态无限敏感的.

  必要性. 因为$ f_{1, \infty} $集态无限敏感, 所以存在一个常数$ \lambda>0 $, 对$ \forall \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s \in I $使得下列两个条件成立:

(1) 对$ \forall 1\leq i, j\leq s $, 有$ d(a_i, b_j)<\varepsilon $;

(2) 存在$ i_0 $$ j_0 $满足$ 1\leq i_0, j_0\leq s $使得

不失一般性, 我们考虑条件(2)中的$ \limsup\limits_{n\rightarrow \infty}d(f_1^n(a_i), f_1^n(b_{j_0}))>\lambda(1\leq i\leq s) $. 因为$ \forall p:0\leq p\leq m-1 $, $ \forall k\in{\Bbb N} $, $ f_k^p $是集态一致连续的, 对上述常数$ \lambda >0 $, $ \exists \beta>0 $, 对任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $, 有

(a) 对$ \forall 1\leq i, j\leq s $, $ d(a_i, b_j)<\beta $;

(b) $ \exists 1\leq i_0, j_0\leq s $, 满足$ d(f_{k}^{p}(a_i), d(f_{k}^{p}(b_{j_0}))<\frac{\lambda}{2}, (0\leq i\leq s). $

$ \alpha = min(\frac{\lambda}{2}, \frac{\beta}{2}) $, 可以证明

事实上, 假设

那么, 存在$ N_0\in{\Bbb N} $, 当$ n>N_0 $时, 有

也就是说

此结果与$ f_{1, \infty} $是集态Li-Yorke敏感的条件$ \limsup\limits_{n\rightarrow \infty}d(f_{1}^{n}(a_i), f_1^n(b_{j_0}))>\delta (1\leq i\leq s) $产生矛盾. 因此, $ f_{1, \infty}^{[m]} $是集态无限敏感的.

充分性. 令$ m = 1 $, 即得结论.

定理4.3  如果映射序列$ (f_n)_{n-1}^{\infty} $是一致收敛的, 则$ f_{1, \infty} $是集态Li-Yorke敏感的当且仅当对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $是集态Li-Yorke敏感的.

  必要性. 因为$ f_{1, \infty} $是集态Li-Yorke敏感的, 设其敏感常数为$ \delta>0 $, 则对$ \forall \varepsilon>0 $和任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $, 存在$ s $个不同的点$ b_1, b_2, \cdots, b_s\in I $使得:

(1) 对$ \forall 1\leq i, j\leq s $, 有$ d(a_i, b_j)<\varepsilon $;

(2) 存在$ 1\leq i_0, j_0\leq s $使得

或者

不妨设

则有

(ⅰ) 由$ \liminf\limits_{n\rightarrow \infty}d(f_{1}^{n}(a_i), f_1^n(b_{j_0})) = 0(1\leq i \leq s) $知, 存在一个递增序列$ \{n_s\}_{s\in {\Bbb N}} $使得$ \lim\limits_{n\rightarrow \infty}d(f_1^{n_s}(a_i), f_1^{n_s}(b_{j_0}) ) = 0(1\leq i \leq s) $. 对任意的$ p\in {\Bbb N}\; (0\leq p\leq m-1) $, 注意到有$ N_i = \{mj+i: j\in {\Bbb N}^{+}\} \cap \{n_s: s\in {\Bbb N}\} $, 那么$ \cup_{i = 0}^{s-1}N_i = \{n_s:s\in{\Bbb N}\} $. 所以, 存在一个$ i^{*}\in\{0, 1, \cdots, s-1\} $使得$ N_{i^{*}} $是一个无限集. 令$ N_{i^{*}} = \{n_s^{i^{*}}\}_{s = 0}^{\infty} $, 显然$ N_{i^{*}} $$ \{n_s\}_{s\in{\Bbb N}} $的一个子序列. 因此, $ \lim\limits_{s\rightarrow \infty}d(f_1^{n_s^ {i^{*}}}(a_i), f_1^{n_s^{i^{*}}}(b_{j_0})) = 0 $. 由引理4.3, 对$ \forall k\in{\Bbb N} $, $ f_k^{m-i^{*}} $是集态一致连续的, 所以有

(ⅱ) 因为$ \forall p:0\leq p\leq m-1 $, $ \forall k\in{\Bbb N} $, $ f_k^p $是集态一致连续的, 对上述常数$ \delta >0 $, 存在$ \beta>0 $, 对任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $, 有

(a) 对$ \forall 1\leq i, j\leq s $, $ d(a_i, b_j)<\beta $;

(b) $ \exists 1\leq i_0, j_0\leq s $, 满足$ d(f_{k}^{p}(a_i), d(f_{k}^{p}(b_{j_0}))<\frac{\delta}{2}, (0\leq i\leq s) $.$ \alpha = \min(\frac{\delta}{2}, \frac{\beta}{2}) $, 可以证明

事实上, 假设

那么, 存在$ N\in{\Bbb N} $, 当$ n>N $时, 有

也就是说

这与$ f_{1, \infty} $是集态Li-Yorke敏感中条件$ \limsup\limits_{n\rightarrow \infty}d(f_{1}^{n}(a_i), f_1^n(b_{j_0}))>\delta\ (1\leq i\leq s) $产生矛盾.

同理, 可以证明若

也有类似结论. 综上可得, $ f_{1, \infty}^{[m]} $是集态Li-Yorke敏感的, 其敏感常数为$ \alpha $.

充分性. 令$ m = 1 $, 即得结论.

定理4.4   如果映射序列$ (f_n)_{n = 1}^{\infty} $是一致收敛的, 则$ f_{1, \infty} $是集态可达的当且仅当对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $是集态可达的.

  根据$ (f_n)_{n = 1}^{\infty} $的一致收敛性和引理4.3可知, 对$ \forall\varepsilon>0 $, $ \forall m\in{\Bbb N} $, 存在$ \delta>0 $$ N\in {\Bbb N} $使得对任意有限个不同的点$ a_1, a_2, \cdots, a_s\in I $满足$ b_1, b_2, \cdots, b_s\in I $, $ d(a_i, b_j)<\delta $$ (\forall1\leq i, j \leq s) $, 且$ \forall n>N $, $ \exists 1\leq i_0, j_0\leq s $

给定$ \varepsilon_i, \varepsilon_j>0\ (i, j\in\{1, 2, \cdots, s\}) $使得$ A_i = B(a_i, \varepsilon_i) $$ (i\in\{1, 2, \cdots, s\}) $; $ B_j = B(b_j, \varepsilon_j) $$ (j\in\{1, 2, \cdots, s\}) $. 因为$ f_{1, \infty} $是集态可达的, 则对上述任意$ s $个不同的点$ a_1, a_2, \cdots, a_s\in I $$ b_1, b_2, \cdots, b_s\in I $有下列结论之一成立:

(1) 存在$ i_0\in \{1, 2, \cdots, s\} $$ n\in{\Bbb N} $, 对$ \forall j\in \{1, 2, \cdots, s\} $, 有$ d(f_1^n(a_{i_0}), f_1^n(b_{j}))<\delta(\varepsilon) $;

(2) 存在$ j_0\in \{1, 2, \cdots, s\} $$ n\in{\Bbb N} $, 对$ \forall i\in \{1, 2, \cdots, s\} $, 有$ d(f_1^n(a_{i}), f_1^n(b_{j_0}))<\delta(\varepsilon) $.

不失一般性, 我假设上述条件(1)成立, 结合$ (f_n)_{n = 1}^{\infty} $的一致收敛性可得

因此, $ f_{1, \infty}^{[m]} $是集态可达的.

充分性. 令$ m = 1 $, 即得结论.

定理4.1–定理4.4可以综合描述为: 如果映射序列$ (f_n)_{n = 1}^{\infty} $是一致收敛的, 则$ f_{1, \infty} $$ {\cal CP} $ -混沌的当且仅当对$ \forall m\in {\Bbb N} $, $ f_{1, \infty}^{[m]} $$ {\cal CP} $ -混沌的.

参考文献

Kolyada S , Snoha L .

Topological entropy of nonautononous dynamical systems

Random Comput Dyn, 1996, 4, 205- 233

[本文引用: 1]

Elaydi S .

Nonautonomous difference equations: open problems and conjectures

Fields Inst Commun, 2004, 42, 423- 428

URL     [本文引用: 1]

Elaydi S , Sacker R J .

Nonautonomous Beverton-Holt equations and the Cushing-Henson conjectures

J Difference Equ Appl, 2005, 11, 337- 346

DOI:10.1080/10236190412331335418      [本文引用: 1]

Canovas J S .

Li-Yorke chaos in a class of nonautonomous discrete systems

J Difference Equ Appl, 2011, 17, 479- 486

DOI:10.1080/10236190903049025      [本文引用: 1]

Kumar A , Vats R K , Kumar A .

Approximate controllability of second-order non-autonomous system with finite delay

J Dyn Control Syst, 2020, 3, 1- 17

DOI:10.1007/s10883-019-09475-0?utm_source=xmol      [本文引用: 1]

Shao H , Chen G , Shi Y .

Topological conjugacy between induced non-autonomous set-valued systems and subshifts of finite

Type Qual Theor Dyn Syst, 2020, 19 (1): 295- 308

DOI:10.1007/s12346-020-00369-2      [本文引用: 1]

Shao H , Chen G , Shi Y .

Some criteria of chaos in non-autonomous discrete dynamical systems

J Differ Equ Appl, 2020, 7, 1- 14

URL     [本文引用: 1]

Li R S , Zhao Y , Wang H .

Stronger forms of transitivity and sensitivity for non-autonomous discrete dynamical systems and furstenberg families

J Dyn Cont Syst, 2020, 26, 109- 126

DOI:10.1007/s10883-019-09437-6      [本文引用: 1]

卢天秀, 朱培勇, 吴新星.

非自治离散系统的分布混沌性

数学物理学报, 2015, 35A (3): 558- 566

DOI:10.3969/j.issn.1003-3998.2015.03.010      [本文引用: 1]

Lu T X , Zhu P Y , Wu X X .

Distributional chaos in nonautonomous discrete systems

Acta Math Sci, 2015, 35A (3): 558- 566

DOI:10.3969/j.issn.1003-3998.2015.03.010      [本文引用: 1]

卢天秀, 辛邦颖, 毛巍.

关于非自治离散系统中敏感性的一些结论

数学物理学报, 2017, 37A (5): 808- 813

DOI:10.3969/j.issn.1003-3998.2017.05.002      [本文引用: 1]

Lu T X , Xin B Y , Mao W .

Some properties of sensitivity in nonautonomous discrete systems

Acta Math Sci, 2017, 37A (5): 808- 813

DOI:10.3969/j.issn.1003-3998.2017.05.002      [本文引用: 1]

Tang X , Chen G R , Lu T X .

Some iterative properties of F-chaos in non-autonomous discrete systems

Entropy, 2018, 20 (3): 188

DOI:10.3390/e20030188      [本文引用: 1]

Li T Y , Yorke J A .

Period three implies chaos

Amer Math Monthly, 1975, 82 (10): 985- 992

DOI:10.1080/00029890.1975.11994008      [本文引用: 1]

Devaney R L. An Introduction to Chaotic Dynamical Systems. New York: Addison Wesley, 1989

Schweizer B , Smital J .

Measure of chaos and a spectral decomposition of dynamical systems of interval

Trans Amer Math Soc, 1994, 344, 737- 754

DOI:10.1090/S0002-9947-1994-1227094-X     

Wang L D , Huang G , Huan S .

Distributional chaos in a sequence

Nonlinear Anal, 2007, 67, 2131- 2136

DOI:10.1016/j.na.2006.09.005     

Bayart F , Bermudez T . Dynamics of Linear Operators. Cambridge: Cambridge University Press, 2009

Khan M S I , Islam M S .

A chaotic three dimensional non-linear autonomous system beyond lorenz type systems

J Bangladesh Acad Sci, 2012, 36 (2): 159- 170

DOI:10.3329/jbas.v36i2.12959     

Bernardes N C , Bonilla A , Muller V , Peris A .

Distributional chaos for linear operators

J Funct Anal, 2013, 265, 2143- 2163

DOI:10.1016/j.jfa.2013.06.019     

Balibrea F .

On problems of topological dynamics in non-autonomous discrete systems

Appl Math Nonlinear Sci, 2016, 1, 391- 404

DOI:10.21042/AMNS.2016.2.00034     

Li R S , Lu T X , Waseem A .

Sensitivity and transitivity of systems satisfying the large deviations theorem in a sequence

Int J Bifurcation and Chaos, 2019, 29 (9): 420- 431

URL    

Wu X X , Liang S , Ma X , et al.

The mean sensitivity and mean equicontinuity on uniform spaces

Int J Bifurcation and Chaos, 2020, 30 (8): 2050122

DOI:10.1142/S0218127420501229     

Wu X X , Ma X , Chen G R , Lu T X .

A note on the sensitivity of semiflows

Topology Appl, 2020, 271, 107046

DOI:10.1016/j.topol.2019.107046     

Li J , Oprocha P , Wu X X .

Furstenberg families, sensitivity and the space of probability measures

Nonlinearity, 2017, 30, 987- 1005

DOI:10.1088/1361-6544/aa5495     

Li R S , Lu T X , Chen G R , Yang X F .

Further discussion on Kato's chaos in set-valued discrete systems

J Appl Anal Comput, 2020, 10 (6): 2491- 2505

URL     [本文引用: 1]

/