数学物理学报 ›› 2021, Vol. 41 ›› Issue (5): 1545-1554.

• 论文 • 上一篇    下一篇

非自治复合系统的集态敏感性和集态可达性

杨晓芳1(),唐孝2(),卢天秀1,3,*()   

  1. 1 四川轻化工大学数学与统计学院 四川自贡 643000
    2 四川师范大学数学科学学院 成都 610068
    3 企业信息化与物联网测控技术四川省高校重点实验室 四川自贡 643000
  • 收稿日期:2020-09-29 出版日期:2021-10-26 发布日期:2021-10-08
  • 通讯作者: 卢天秀 E-mail:yxf_suse@163.com;80651177@163.com;lubeeltx@163.com
  • 作者简介:杨晓芳, E-mail: yxf_suse@163.com|唐孝, E-mail: 80651177@163.com
  • 基金资助:
    四川省科技计划(19YYJC2845);企业信息化与物联网测控技术四川省高校重点实验室开放基金(2020WZJ01);四川轻化工大学人才引进项目(2020RC24);研究生创新基金项目(Y2020077)

The Collectively Sensitivity and Accessible in Non-Autonomous Composite Systems

Xiaofang Yang1(),Xiao Tang2(),Tianxiu Lu1,3,*()   

  1. 1 College of Mathematics and Statistics, Sichuan University of Science and Engineering, Sichuan Zigong 643000
    2 School of Mathematical Science, Sichuan Normal University, Chengdu 610068
    3 Key Laboratory of Higher Education of Sichuan Province for Enterprise Informationalization and Internet of Things, Sichuan Zigong 643000
  • Received:2020-09-29 Online:2021-10-26 Published:2021-10-08
  • Contact: Tianxiu Lu E-mail:yxf_suse@163.com;80651177@163.com;lubeeltx@163.com
  • Supported by:
    the Science and Technology Plan of Sichuan Province(19YYJC2845);the Key Laboratory of Colleges and Universities Open Fund for Enterprise Information and Internet of Measurement and Control Technology in Sichuan Province(2020WZJ01);the Talent Introduction Program(2020RC24);the Graduate Student Innovation Fund(Y2020077)

摘要:

该文在非自治离散系统中定义了集态敏感, 集态无限敏感, 集态Li-Yorke敏感和集态可达. 首先, 证明了紧度量空间上映射序列(fk)k=1P -混沌的当且仅当nN (N是自然数集且不含0), 映射序列(fk)k=nP -混沌的. 然后, 在f1,一致收敛的条件下, 证明了f1,具有CP -混沌性当且仅当复合系统f[m]1,(mN) 也具有CP -混沌性. 其中, P -混沌表示下面五个性质之一: 传递性、敏感性、无限敏感性、可达性和正合性; CP -混沌性表示下面四个性质之一: 集态敏感性, 集态无限敏感性, 集态Li-Yorke敏感性和集态可达性.

关键词: 非自治离散系统, 复合映射, 传递性, 敏感性, 可达性

Abstract:

In this paper, collectively sensitivity, collectively infinity sensitivity, collectively Li-Yorke sensitivity and collectively accessible are defined in the non-autonomous discrete system. First of all, it is showed that, on compact metric spaces, mapping sequence (fk)k=1 is P-chaos if and only if nN (N is the set of natural numbers and does not contain 0). Then, under the condition that f1, is uniformly convergence, it is proved that f1, is CP-chaos if and only if for any mN, f[m]1, is CP-chaos. Where P-chaos denote one of the five properties: transitivity, sensitivity, infinitely sensitivity, accessibility and exact, CP-chaos denote one of the four properties: collectively sensitivity, collectively infinity sensitivity, collectively Li-Yorke sensitivity and collectively accessible.

Key words: Non-autonomous discrete system, Composite mapping, Transitivity, Sensitivity, Accessibility

中图分类号: 

  • O193