数学物理学报, 2021, 41(5): 1445-1464 doi:

论文

一维非等熵可压缩微极流体的低马赫数极限

刘欣,1, 董小磊,2

1 上海对外经贸大学统计与信息学院 上海 201620

2 东华大学信息科学与技术学院 上海 201620

Low Mach Number Limit to One-Dimensional Non-Isentropic Compressible Viscous Micropolar Fluid Model

Liu Xin,1, Dong Xiaolei,2

1 School of Statistics and Information, Shanghai University of International Business and Economics, Shanghai 201620

2 College of Information Sciences and Technology, Donghua University, Shanghai 201620

通讯作者: 刘欣, E-mail: xinliu120@suibe.edu.cn

收稿日期: 2019-07-24  

基金资助: 国家自然科学基金.  11801357

Received: 2019-07-24  

Fund supported: the NSFC.  11801357

作者简介 About authors

董小磊,E-mail:xld0908@163.com , E-mail:xld0908@163.com

Abstract

In this paper, we consider the one dimensional non-isentropic compressible micropolar fluid model with general initial data, and justify rigorously the low Mach number limit of this system. The limit relies on the uniform estimates including weighted time derivatives and an extended convergence lemma. Moreover, the difference between the states at ±∞ can be arbitrary large in this case.

Keywords: Micropolar fluid model ; Non-isentropic ; Low Mach number limit ; Uniform estimates

PDF (418KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘欣, 董小磊. 一维非等熵可压缩微极流体的低马赫数极限. 数学物理学报[J], 2021, 41(5): 1445-1464 doi:

Liu Xin, Dong Xiaolei. Low Mach Number Limit to One-Dimensional Non-Isentropic Compressible Viscous Micropolar Fluid Model. Acta Mathematica Scientia[J], 2021, 41(5): 1445-1464 doi:

1 引言

微极流体模型, 20世纪60年代由Eringen[8-9]提出. 该模型研究具有微观结构的材料的微观现象. 微极流体的应用涵盖了非常广泛的领域. 例如, 动物血液, 悬浮液和液晶等. 更多详情可参见文献[7, 24-25]. 在欧拉坐标系中, 一维非等熵可压缩微极流体模型可描述如下

$ \begin{equation} \left\{ \begin{array}{rl} &\rho_t+(\rho u)_x = 0, \\ &(\rho u)_t+(\rho u^2+P )_x = ({\lambda u_x})_x, \\ &(\rho w)_t+(\rho u w)_x+A w = ({ A w_x})_x, \\ &E_t+\left(u\big(E+P\big)\right)_x+q_x = \left(\lambda uu_x+ A {ww}_x\right)_x+ A w^2, \end{array}\right. \end{equation} $

其中$ \rho(x, t) $, $ u(x, t) $, $ w(x, t) $, $ P $分别代表密度, 速度, 微旋转速度和压力. $ \lambda $是粘性系数, $ A $是一个正常数. 总能量$ E $由下式给出

我们考虑多方气体, 因此压力函数$ P $和内能函数$ e $分别为

$ \begin{equation} P = R\rho T, \quad\quad e = C_v T, \end{equation} $

热流密度为

$ \begin{equation} q = -\kappa T_x, \end{equation} $

其中参数$ R>0, \; C_v>0 $, $ \kappa $分别为气体常数, 定容热容, 热传导系数. 为了简单起见, 我们我们假设$ \lambda $以及$ \kappa $是正常数, 并将$ R $$ C_v $归一化, 即$ R = 1 $$ C_v = 1 $.

低马赫数近似的目的是要说明压缩对于压力的变化, 可以忽略不计. 这是讨论高亚音速流体力学时常见的假设. 我们先简要回顾一下欧拉方程、纳维-斯托克斯方程、磁流体力学方程和微极流体方程在这方面的研究结果. 对于欧拉方程, 第一个结果来自于Klainerman和Majda[20-21], 他们证明了等熵可压欧拉方程到不可压缩欧拉方程的局部光滑解的不可压缩极限. Ukai[34]利用声波的快速衰减, 验证了一般初值的低马赫数极限. Schochet[30]在有界区域上对准备充分的初值得到了非等熵可压缩欧拉方程到非等熵不可压缩欧拉方程局部光滑解的收敛性. 对于纳维-斯托克斯方程, Alazard[2]在全空间对准备不足的初值证明了低马赫数极限. Huang, Wang和Wang[13]在全空间上分别对准备充分的初值和准备不足的初值, 得到了背景不是恒定状态的一维非等熵纳维-斯托克斯方程的低马赫数极限. 在有界区域, 低马赫数极限由Jiang和Ou[15]以及Dou, Jiang和Ou[6]所证明. 对于磁流体力学方程, Klainerman和Majda[20]在周期区域对准备充分的初值研究了可压缩等熵磁流体力学方程的低马赫数极限. Hu和Wang[12]分别在无界区域, 周期区域和全空间得到了可压缩粘性磁流体力学方程弱解的收敛性. Fan, Gao和Guo[11]研究了具有零热传导系数的非等熵磁流体力学方程的低马赫数极限. Jiang, Ju, Li和Xin[18]在三维空间上建立了具有一般初值的完全可压缩磁流体力学方程的低马赫数极限. Su[32-33]分别对准备充分和准备不足的初值, 得到了三维可压缩微极流体模型的低马赫数极限. 其他有趣的结果, 对欧拉方程, 可参见文献[1, 27-28]. 对纳维-斯托克斯方程, 可参见文献[5, 10, 19, 22, 26-27]. 对磁流体力学方程, 可参见文献[11-12, 14-17, 23]. 对微极流体方程, 可参见文献[4].

本文我们研究背景不是恒定状态的微极流体的低马赫数极限, 即

因为$ T_- $可能不等于$ T_+ $, 所以会造成一些数学上的困难. 为此, 我们引入了一个背景状态函数$ \tilde \theta $来解决这个问题, 详见第2节.

在本文中, 令$ \varepsilon $为可压缩参数, 代表流体的最大马赫数. 和文献[31]一样, 我们设

$ \begin{equation} u(x, t) = \varepsilon u^{\varepsilon}(x, \varepsilon t), \quad w(x, t) = \varepsilon w^{\varepsilon}(x, \varepsilon t), \end{equation} $

考虑物理状态中的压力$ P $满足

$ \begin{equation} P^{\varepsilon} = \overline{P} +O(\varepsilon), \end{equation} $

其中$ \overline{P} $是某个给定的常量, 它被标准化为$ \overline{P} = 1 $. 于是, 系统(1.1)变为

$ \begin{equation} \left\{ \begin{array}{ll} \rho^{\varepsilon}_t+(\rho^{\varepsilon} u^{\varepsilon})_x = 0, \\ { } \rho^{\varepsilon}( u^{\varepsilon}_t+u^{\varepsilon}u^{\varepsilon}_x) +\frac{P^{\varepsilon}_x}{\varepsilon^2} = \lambda^\varepsilon u^{\varepsilon}_{xx}, \\ \rho^{\varepsilon}( w^{\varepsilon}_t+u^{\varepsilon}w^{\varepsilon}_x) + A ^\varepsilon w = A ^\varepsilon w^{\varepsilon}_{xx}, \\ \rho^{\varepsilon}( T^{\varepsilon}_t+u^{\varepsilon}T^{\varepsilon}_x)+P^{\varepsilon}u^{\varepsilon}_x = \kappa T^{\varepsilon}_{xx}+\varepsilon^2\left(\lambda^\varepsilon |u^{\varepsilon}_x|^2+ A ^\varepsilon\big( |w^{\varepsilon}_x|^2+ |w^{\varepsilon}|^2\big)\right), \end{array} \right. \end{equation} $

它的极限系统为

$ \begin{equation} \left\{ \begin{array}{l} (2\overline u-\overline T_x)_x = 0, \quad \overline\rho = \overline T^{-1}, \\ { } \overline\rho( \overline u_t+\overline u \cdot\overline u_x)+\overline\pi_x = \lambda \overline u_{xx}, \\ \overline\rho( \overline w_t+\overline u\cdot\overline w_x) + A \overline w = A \overline w_{xx}, \\ \overline\rho( \overline T_t+\overline u\overline T_x)+\overline u_x = \kappa \overline T_{xx}, \end{array} \right. \end{equation} $

其中$ \overline\pi = \lambda\overline u_x-\overline\rho{\overline u}^2+\frac{\kappa}{2}\frac{\overline\rho_t}{\overline\rho} $, 为方便起见, 我们仍用$ (\lambda, A, \kappa) $代替$ (\overline{\lambda}, \overline{ A }, \overline\kappa) $. 利用系统(1.7), 我们得到如下非线性扩散方程

$ \begin{equation} \rho_t = \left(\frac{\kappa}{2}\frac{\rho_x}{\rho}\right)_x. \end{equation} $

像文献[3]一样, 考虑远场条件$ \lim\limits_{x\rightarrow \pm\infty}\rho = \rho_{\pm} $, 我们得到方程(1.8)的一个唯一的自相似解$ {\mathcal P}(\xi), \;\xi = \frac{x}{\sqrt{1+t}} $满足$ {\mathcal P}(\pm\infty, t) = \rho_{\pm} $.$ \delta = |\rho_+-\rho_{-}| $, 则$ {\mathcal P}(x, t) $满足

为了说明本文的主要结果, 我们考虑了压力$ P^\varepsilon $是给定状态1的一个小扰动的情况. 为了理解热力学的作用, 如文献[2]中所述, 我们引入以下变换来确保$ P^\varepsilon $$ T^\varepsilon $的正性

$ \begin{equation} P^\varepsilon(x, t) = e^{\varepsilon p^\varepsilon(x, t)}, \quad T^\varepsilon(x, t) = e^{\theta^\varepsilon(x, t)}. \end{equation} $

从式(1.2) 和(1.9) 得出$ \rho^{\varepsilon} = e^{\varepsilon p^\varepsilon(x, t)-\theta^\varepsilon(x, t)} $. 在这些变量的变化下, 一维非等熵可压缩微极流体模型(1.6)具有以下等价形式

$ \begin{equation} \left\{ \begin{array}{ll} { } p^{\varepsilon}_t+u^{\varepsilon}p_x+\frac{1}{\varepsilon}\big(2u^{\varepsilon}-\kappa^\varepsilon e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}\theta^{\varepsilon}_x\big)_x = \varepsilon e^{-\varepsilon p^{\varepsilon}}\big(\lambda^\varepsilon|u^{\varepsilon}_x|^2+ A ^\varepsilon |w^{\varepsilon}_x|^2+ A ^\varepsilon |w^{\varepsilon}|^2\big)\\ { }{\qquad}{\qquad}\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\; \; \; \; \; \; \; { } +\kappa e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}p_x^\varepsilon \theta^{\varepsilon}_x, \\ { } e^{-\theta^{\varepsilon}}( u^{\varepsilon}_t+u^{\varepsilon}u^{\varepsilon}_x) +\frac{p^{\varepsilon}_x}{\varepsilon} = e^{-\varepsilon p^{\varepsilon}}\lambda^\varepsilon u^{\varepsilon}_{xx}, \\ { } e^{-\theta^{\varepsilon}}( w^{\varepsilon}_t+u^{\varepsilon}w^{\varepsilon}_x) = e^{-\varepsilon p^{\varepsilon}}\big( A ^\varepsilon w^{\varepsilon}_{xx}- A ^\varepsilon w^{\varepsilon}\big), \\ \theta^{\varepsilon}_t+u^{\varepsilon}\theta^{\varepsilon}_x+u^{\varepsilon}_x = \kappa^\varepsilon e^{-\varepsilon p^{\varepsilon}}\big(e^{\theta^{\varepsilon}} \theta^{\varepsilon}_{x}\big)_x+\varepsilon^2e^{-\varepsilon p^{\varepsilon}}\left(\lambda^\varepsilon |u^{\varepsilon}_x|^2+ A ^\varepsilon\big( |w^{\varepsilon}_x|^2+ |w^{\varepsilon}|^2\big)\right). \end{array} \right. \end{equation} $

我们将研究系统(1.10) 解的极限. 形式上, 当$ \varepsilon\rightarrow 0 $时, 如果$ (p^\varepsilon, u^\varepsilon, w^\varepsilon, \theta^\varepsilon) $强收敛到极限$ (1, \overline u, \overline{w}, \overline \theta) $, 并且$ (\lambda^\varepsilon, A ^\varepsilon, \kappa^\varepsilon) $收敛到一个常数向量$ (\overline{\lambda}, \overline{ A }, \overline\kappa) $, 然后对系统(1.10)取极限, 我们有

$ \begin{equation} \left\{ \begin{array}{ll} (2\overline u-\kappa e^{\overline \theta}\overline \theta_x)_x = 0, \\ e^{-\overline \theta}( \overline u_t+\overline u \cdot\overline u_x)+\overline\pi_x = \lambda \overline u_{xx}, \\ e^{-\overline \theta}( \overline w_t+\overline u\cdot\overline w_x) + A \overline w = A \overline w_{xx}, \\ \overline \theta_t+\overline u\overline\theta_x+\overline u_x = \kappa \big(e^{\overline \theta}\overline \theta_{x}\big)_x. \end{array} \right. \end{equation} $

本文的目的是用一般的初始数值严格建立上述极限过程. 为此, 我们补充系统(1.10)的初始条件如下

$ \begin{equation} \big(p^{\varepsilon}, u^{\varepsilon}, w^{\varepsilon}, \theta^\varepsilon\big)|_{t = 0} = \big(p^{\varepsilon}_{in}, u^{\varepsilon}_{in}, w^{\varepsilon}_{in}, \theta^\varepsilon_{in}\big), \end{equation} $

并且

其中$ \underline{a}, \;\overline{a}, \;\underline{b}, \;\overline{b} $是给定的不依赖于$ \varepsilon $的常数.

本文的布局如下: 在第2节, 我们给出了本文的主要结果和一些注释. 第3节, 我们建立了先验估计, 并在这些估计的帮助下, 证明定理2.1. 在第4节中, 我们通过修改Métivier和Schochet[28]提出的论点来证明定理2.2.

2 主要结果

在本节中, 我们首先给出一些符号, 然后陈述柯西问题(1.10), (1.12)的主要结果. 符号选择如下

我们用$ ||\cdot||_B $表示空间$ B $中的范数, 特别的, 用$ ||f|| $表示$ ||f||_{L^2({\mathbb R}) } $. 对于多索引数$ \alpha = (\alpha_0, \alpha_1) $, 定义$ \partial^\alpha: = (\varepsilon\partial_t)^{\alpha_0}\partial^{\alpha_1}_x $$ |\alpha| = |\alpha_0|+|\alpha_1| $, 在此注释下, 我们设$ \|f\|_{{\mathcal H}^{s}} = \sum\limits_{|\alpha|\leq s}\|\partial^\alpha f(t)\| $.

由于$ \theta_{-} = \ln T_- $可能不等于$ \theta_{+} = \ln T_+ $, 我们需要为$ \theta^\varepsilon $引入一个背景状态函数$ \tilde\theta $. 我们选择$ \tilde\theta = -\ln{\mathcal P} $满足, 当$ x\rightarrow \pm\infty $时, $ \tilde\theta\rightarrow \theta_{\pm} $.$ s\geq 3 $时, 我们定义如下解空间

$ \begin{eqnarray} {{\cal N}}(t):& = &\|(p^{\varepsilon}, u^{\varepsilon}, {w}^{\varepsilon}, \theta^{\varepsilon}-\tilde\theta)(t)\|_{H^{s, \varepsilon}}^2\\ & = &\sum\limits_{|\alpha| = 0}^{s}\|\partial^\alpha(p^{\varepsilon}, u^{\varepsilon}, w^{\varepsilon} )(t)\|^2+\sum\limits_{|\alpha| = 0}^{s+1}\|\partial^\alpha(\varepsilon p^{\varepsilon}, \varepsilon u^{\varepsilon}, \varepsilon w^{\varepsilon} )(t)\|^2\\ &\quad&+\|(\theta^{\varepsilon}-\tilde\theta)(t)\|^2 +\sum\limits_{|\alpha| = 0}^{s}\int_0^t\|\partial^\alpha(p^{\varepsilon}_x, u^{\varepsilon}_x, w^{\varepsilon}_x )(\tau)\|^2{\rm d}\tau \\ &\quad&+\sum\limits_{|\alpha| = 0}^{s+1}\|\partial^\alpha\theta^{\varepsilon}(t)\|^2 +\sum\limits_{|\alpha| = 0}^{s+1}\int_0^t\|\partial^\alpha(\theta^{\varepsilon}_x, \varepsilon u^{\varepsilon}_x, \varepsilon w^{\varepsilon}_x )(\tau)\|^2{\rm d}\tau. \end{eqnarray} $

现在给出我们的主要结果.

定理2.1   令$ s\geq 3 $是一个整数, 假设初始条件(1.12) 满足

$ \begin{equation} \|\big(p^{\varepsilon}_{in}, u^{\varepsilon}_{in}, w^{\varepsilon}_{in}, \theta^\varepsilon_{in}\big)\|_{H^{s, \varepsilon}}^2\leq C_0<\infty, \quad \varepsilon \in (0, 1], \end{equation} $

其中$ C_0 $不依赖于$ \varepsilon $. 则存在仅依赖$ C_0 $$ |\theta_+-\theta_-| $的正常数$ T_0 $$ \varepsilon_0 $使得柯西问题(1.10), (1.12) 有唯一的光滑解$ (p^{\varepsilon}, u^{\varepsilon}, w^{\varepsilon}, \theta^\varepsilon) $满足

$ \begin{equation} \|(p^{\varepsilon}, u^{\varepsilon}, w^{\varepsilon}, \theta^\varepsilon)\|_{H^{s, \varepsilon}}^2\leq \tilde{C_0} , \end{equation} $

其中$ \tilde{C_0}>0 $仅依赖于$ C_0 $$ |\theta_+-\theta_-| $.

注2.1   波的强度$ |\theta_+-\theta_{-}| $允许较大, 但是$ T_0 $$ \varepsilon_0 $可能依赖波的强度.

定理2.2(低马赫数极限)   假设初始条件(1.12) 满足

$ \begin{eqnarray} &&\big(p^{\varepsilon}_{in}, u^{\varepsilon}_{in}, w^{\varepsilon}_{in}, \theta^\varepsilon_{in}-\tilde\theta\big)\rightarrow \big(p_{in}, u_{in}, w_{in}, \theta_{in}-\tilde\theta\big), \;{\rm in}\quad H^s({ \mathbb R})\quad {\rm as} \quad\varepsilon \rightarrow 0, \end{eqnarray} $

$ \begin{eqnarray} &&|\theta_{in}-\theta_+|\leq C x^{-1-\sigma}, \quad x\in [1, +\infty), \end{eqnarray} $

这里$ \sigma $$ C $是正常数, 则有定理2.1知, 系统(1.10)的解$ (p^{\varepsilon}, u^{\varepsilon}, w^{\varepsilon}, \theta^\varepsilon) $$ L^2(0, T_0; H_{\rm loc}^{s'}(\mathbb R)) $中对所有的$ s'<s $强收敛到$ (0, u, w, \theta) $, 其中$ ( u, w, \theta) $是具有初始条件$ (u^{\varepsilon}_{in}, w^{\varepsilon}_{in}, \theta^\varepsilon_{in}) $的系统(1.9) 的唯一解.

注2.2  当$ x\in (-\infty, -1] $时, 条件(2.5) 可以被$ |\theta_{in}-\theta_{-}|\leq C x^{-1-\sigma} $替换.

3 一致估计

为方便起见, 我们省略了变量的上标$ \varepsilon $, 并令

$ \begin{equation} a(\varepsilon p) = e^{-\varepsilon p}, \quad b(\theta) = e^{\theta} \end{equation} $

$ \begin{equation} \left\{ \begin{array}{rl} &{\mathcal Q}(t): = \sup \limits_{0\leq \tau\leq t}\big(\|(p, u, w)\|_{{\mathcal H}^{s}}+\|(\varepsilon p, \varepsilon u, \varepsilon w)\|_{{\mathcal H}^{s+1}}\\ &\quad\quad\quad\quad +\|\theta-\tilde\theta\|_{L^2} +\|((\varepsilon\partial_t)\theta, \theta_x)\|_{{\mathcal H}^{s}}\big), \\ &{\mathcal S}(t): = \|(p_x, u_x, w_x)\|_{{\mathcal H}^{s}}+\|(\theta_x, \varepsilon u_x, \varepsilon w_x)\|_{{\mathcal H}^{s+1}}. \end{array} \right. \end{equation} $

我们也假设以下的估计成立

$ \begin{equation} 0<\frac{1}{2}\underline{a}\leq e^{-\varepsilon p^{\varepsilon}_{in}}\leq 2\overline{a}, \quad 0<\frac{1}{2}\underline{b}\leq e^{ \theta^{\varepsilon}_{in}}\leq 2\overline{b}, \quad {\rm on }\quad t\in [0, T]. \end{equation} $

定理2.1的证明取决于下面的关键命题

命题3.1   对任意给定的$ s \geq 3 $$ \varepsilon \in (0, 1] $, 令$ (p_x, u_x, w_x, \theta_x) $是柯西问题(1.10), (1.12)的经典解. 若式(3.3)成立, 则

$ \begin{equation} {\mathcal N}(t)\leq C[1+\Lambda({\mathcal Q}(0))]+C(t^{\frac{1}{2}}+\varepsilon)\Lambda({\mathcal N}(t)), \end{equation} $

其中$ {\mathcal N}(t) $由式(2.1)定义, 常数$ C>0 $依赖于$ \underline a, \;\overline a, \;\underline b $$ \overline b $, $ \Lambda(\cdot) $是有限阶多项式.

3.1 $ (\varepsilon p, \varepsilon u, \varepsilon w, \theta) $$ {\mathcal H}^{s} $估计

引理3.1   当$ s\geq 3 $, 成立

$ \begin{equation} \|\theta-\tilde \theta\|^2+\sum\limits_{|\alpha| = 1}^{s}\|\partial^\alpha\theta\|^2 +\sum\limits_{|\alpha| = 0}^{s}\int_0^t\|\partial^\alpha\theta_x\|^2{\rm d}\tau \leq C+{\mathcal Q}(0)+\int_0^t\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{equation} $

  方程$ (1.10)_4 $能转化为

$ \begin{eqnarray} &&(\theta-\tilde \theta)_t + u(\theta-\tilde \theta)_x+u_x-\kappa e^{-\varepsilon p}(e^\theta(\theta-\tilde \theta)_x) = \kappa e^{-\varepsilon p}(e^\theta \tilde \theta_x)_x\\ &&+\varepsilon^2e^{-\varepsilon p}\left(\lambda|u_x|^2+ A \big(| w_x|^2+|w|^2\big)\right)-u\tilde \theta_x-\tilde \theta_t. \end{eqnarray} $

将式(3.6)两边乘以$ \theta-\tilde \theta $, 然后关于$ x $$ {\mathbb R} $上积分(以下关于$ x $的积分都在$ {\mathbb R} $上), 我们有

$ \begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\int |\theta-\tilde \theta|^2{\rm d}x+\kappa\int a(\varepsilon p)b(\theta)|(\theta-\tilde \theta)_x|^2{\rm d}x +\int\kappa a(\varepsilon p)b(\theta)\varepsilon p_x(\theta-\tilde \theta)(\theta-\tilde \theta)_x{\rm d}x\\ &\leq& C\|u_x\|_{L^\infty}\|\theta-\tilde \theta\|^2+C\|u_x\|^2\|\theta-\tilde \theta\| +C\varepsilon^2\|\theta-\tilde \theta\|_{L^\infty}\big(\|u_x\|^2+\| w_x\|^2+\|w\|^2\big)\\ &&+\|\tilde \theta\|_{L^\infty}\big(\|u_x\|^2+\|p_x\|^2\big)\|\theta-\tilde \theta\|+C\|\theta-\tilde \theta\|^2+C\|\tilde \theta_t\|\\ &\leq& C\Lambda({\mathcal Q}(t)). \end{eqnarray} $

将式(3.7)在$ [0, t] $上积分, 我们得到

$ \begin{equation} \|\theta(t)-\tilde \theta\|^2+\int_0^t \|(\theta-\tilde \theta)_x(\tau)\|^2{\rm d}\tau\leq C+\|(\theta-\tilde \theta)(0)\|^2+\int_0^t\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{equation} $

$ \theta_\alpha = \partial^\alpha\theta $, 其中$ 1\leq |\alpha|\leq s $. 将式$ (1.10)_5 $$ \alpha $阶导, 我们得到

$ \begin{eqnarray} &&\partial_t\theta_\alpha+u\partial_x\theta_\alpha+\partial^\alpha u_x-\kappa a(\varepsilon p)(b(\theta)\partial_x\theta_\alpha)_x {}\\ & = &\varepsilon^2\partial^\alpha\big(a(\varepsilon p)(\lambda|u_x|^2+ A | w_x|^2+ A |w|^2)\big)\\ &&-(\partial^\alpha, u)\theta_x+\kappa\Big\{\partial^\alpha\big(b(\theta)\theta_x\big)_x-a(\varepsilon p)(b(\theta) \partial_x\theta_\alpha)_x\Big\}. \end{eqnarray} $

将式(3.9)两边乘以$ \theta_\alpha $, 并关于$ x $求积分, 我们有

$ \begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\int |\theta_\alpha|^2{\rm d}x+\kappa\int a(\varepsilon p)b(\theta)|\partial_x\theta_\alpha|^2{\rm d}x +\frac{1}{2}\int u\partial_x(|\theta_\alpha|^2){\rm d}x+\int\theta_\alpha\partial_\alpha u_x{\rm d}x\\ &\leq &C\bigg|\int a(\varepsilon p)b(\theta)\varepsilon p_x\theta_\alpha\partial_x\theta_\alpha {\rm d}x\bigg|+C\|\theta_\alpha\|\|\partial^\alpha\big(a(\varepsilon p)(\lambda|\varepsilon u_x|^2+ A |\varepsilon w_x|^2+ A |\varepsilon w|^2)\big)\\ &&+C\|\theta_\alpha\|\|(\partial^\alpha, u)\theta_x\|^2+C\bigg|\int \theta_\alpha\big[\partial^\alpha(a(\varepsilon p)(b(\theta)\partial_x\theta)_x)-a(\varepsilon p)(b(\theta)\partial_x\theta_\alpha)_x\big]\bigg|{\rm d}x. \end{eqnarray} $

利用柯西不等式, 我们得到

$ \begin{eqnarray} &&\int u\partial_x(|\theta_\alpha|^2){\rm d}x+\int\theta_\alpha\partial_\alpha u_x{\rm d}x\\ &\leq& C\big(\|u_x\|_{L^\infty}\|\theta_\alpha\|^2+\|u_\alpha\|^2+\|\partial_x\theta_\alpha\|^2\big)\leq C\big(\|u\|_{H^2}\|\theta_\alpha\|^2+\|u_\alpha\|^2+\|\partial_x\theta_\alpha\|^2\big)\\ &\leq& C\Lambda({\mathcal Q}(t)), \end{eqnarray} $

$ \begin{eqnarray} &&\bigg|\int a(\varepsilon p)b(\theta)\varepsilon p_x\theta_\alpha\partial_x\theta_\alpha {\rm d}x\bigg|\\ &\leq &C\big(\|\varepsilon p_x\|_{L^\infty}^2\|\theta_\alpha\|^2+\|\partial_x\theta_\alpha\|^2\big)\leq C\big(\|\varepsilon p\|_{H^2}^2\|\theta_\alpha\|^2+\|\partial_x\theta_\alpha\|^2\big)\\ &\leq &C\Lambda({\mathcal Q}(t)). \end{eqnarray} $

注意到

$ \begin{equation} (\partial^\alpha, u)\theta_x = \sum\limits_{1\leq |\beta|\leq \alpha}C_{\alpha, \beta}\partial^\beta u\partial^{\alpha-\beta}\theta_x, \end{equation} $

于是有

$ \begin{equation} \|(\partial^\alpha, u)\theta_x\|\leq C\big(\|u\|_{W^{1, \infty}}\|\theta_x\|_{{\mathcal H}^{s-1}}+\|u\|_{{\mathcal H}^{s}}\|\theta_x\|_{L^\infty}\big)\leq \Lambda({\mathcal Q}(t)). \end{equation} $

另一方面, 我们易知

$ \begin{eqnarray} &&\|\partial^\alpha\big(a(\varepsilon p)(\lambda|\varepsilon u_x|^2+ A |\varepsilon w_x|^2+ A |\varepsilon w|^2)\big)\|\\ &\leq& C\|\partial^\alpha\big(\lambda|\varepsilon u_x|^2+ A |\varepsilon w_x|^2\big)\|+ C\Lambda(\|\varepsilon p\|_{{\mathcal H}^{s}})\|\big(|\varepsilon u_x|^2, |\varepsilon w_x|^2\big)\|_{{\mathcal H}^{s-1}}\\ &\leq& C\|\big(\varepsilon u_x, \varepsilon w_x\big)\|_{{\mathcal H}^{s}}+ C\Lambda(\|\varepsilon p\|_{{\mathcal H}^{s}})\|\big(|\varepsilon u_x|^2, |\varepsilon w_x|^2\big)\|_{{\mathcal H}^{s-1}}\\ &\leq &C\Lambda({\mathcal Q}(t)). \end{eqnarray} $

$ \begin{eqnarray} &&\|\partial^\alpha(a(\varepsilon p)(b(\theta)\partial_x\theta)_x)-a(\varepsilon p)(b(\theta)\partial_x\theta_\alpha)_x\|\\ &\leq& C\sum\limits_{1\leq |\beta|\leq |\alpha|}\Big\{\|\partial^\alpha(a(\varepsilon p))\partial^{\alpha-\beta}\big(b(\theta)\theta_{xx}+b(\theta)\theta_x^2\big)\| +\|\partial^\alpha\big(b(\theta)\theta_x\big)\partial^{\alpha-\beta}\theta_x\|\\ &\quad&+ \|\partial^\alpha\big(b(\theta)\big)\partial^{\alpha-\beta}\theta_{xx}\|\Big\}\\ &\leq& C\Lambda(\|\varepsilon p\|_{{\mathcal H}^{s}})\big(\|\theta_{xx}\|_{{\mathcal H}^{s-1}}+\Lambda(\|\theta_{x}\|_{{\mathcal H}^{s}})\big) +C\Lambda(\|\theta_{x}\|_{{\mathcal H}^{s}})\big(1+\|\theta_{xx}\|_{{\mathcal H}^{s-1}}\big)\\ &\leq& C\Lambda({\mathcal Q}(t)). \end{eqnarray} $

将式(3.11)–(3.12) 和(3.14)–(3.16) 带入式(3.10), 并关于$ t $积分, 我们得到

$ \begin{equation} \|\partial^\alpha\theta\|^2 +\int_0^t\|\partial^\alpha\theta_x\|^2{\rm d}\tau \leq C+\int_0^t\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{equation} $

由式(3.8) 和(3.17), 我们得到了式(3.5).

引理3.2   当$ s\geq 3 $, 成立

$ \begin{equation} \|(\varepsilon p, \varepsilon u, \varepsilon w)\|_{{\mathcal H}^{s}}^2+ \int_0^t\|(\varepsilon u_x, \varepsilon w_x)\|^2_{{\mathcal H}^{s}}{\rm d}\tau \leq C{\mathcal Q}^2(0)+C\int_0^t\Lambda({\mathcal Q}(\tau))\big[1+{\mathcal S(\tau)}\big]{\rm d}\tau. \end{equation} $

  对满足$ 0\leq |\alpha|\leq s $$ \alpha $, 令

我们易知

$ \begin{equation} \left\{ \begin{array}{ll} \partial_t \check p+u\partial_x \check p+\big(2u-\kappa a(\check p)b(\theta)\theta_x\big)_x\\ = \kappa a(\check p)b(\theta)\theta_x\partial_x \check p +a(\check p)\big(\lambda|\partial_x \check u|^2+ A (|\partial_x \check w|^2+ |\check w|^2)\big), \\ b(-\theta)( \partial_t \check u+u\partial_x \check u) +p_x = \lambda a(\check p)\partial_{xx} \check u, \\ b(-\theta)(\partial_t \check w+u\partial_x \check w)+ A a(\check p)\check w = A a(\check p)\partial_{xx} \check w. \end{array} \right. \end{equation} $

对式(3.19)关于$ \alpha $求导, 我们得到

$ \begin{equation} \left\{ \begin{array}{ll} \partial_t \check p_{\alpha}+u\partial_x \check p_{\alpha} = h_1+h_2+h_3+h_4, \\ b(-\theta)( \partial_t \check u_{\alpha}+u\partial_x \check u_{\alpha}) +\partial^\alpha p_x-\lambda a(\check p)\partial_{xx} \check u_{\alpha} = h_5+h_6+h_7, \\ b(-\theta)(\partial_t \check w_{\alpha}+u\partial_x \check w_{\alpha})+ A a(\check p)\check w_{\alpha}- A a(\check p)\partial_{xx} \check w_{\alpha} = h_8+h_{9}+h_{10}+h_{11}, \end{array} \right. \end{equation} $

其中

$ \begin{equation} \left\{ \begin{array}{ll} h_1 = -[\partial^\alpha, u]\partial_x\check p, \;h_2 = -\partial^\alpha\big(2u-\kappa a(\check p)b(\theta)\theta_x\big)_x, \\ h_3 = \partial^\alpha(\kappa a(\check p)b(\theta)\theta_x\partial_x \check p), \\ h_4 = \partial^\alpha\left[a(\check p)\big(\lambda|\partial_x \check u|^2+ A |\partial_x \check w|^2+ A |\check w|^2\big)\right], \\ h_5 = -[\partial^\alpha, b(-\theta)]\partial_t\check u, \;h_6 = -[\partial^\alpha, b(-\theta)u]\partial_x\check u, \\ h_7 = \lambda[\partial^\alpha, a(\check p)]\partial_{xx}\check u, \ h_8 = -[\partial^\alpha, b(-\theta)]\partial_t\check w, \\ h_{9} = -[\partial^\alpha, b(-\theta)u]\partial_x\check w, \ h_{10} = A [\partial^\alpha, a(\check p)]\partial_{xx}\check w, \\ h_{11} = -A [\partial^\alpha, a(\check p)]\check w. \end{array} \right. \end{equation} $

将式$ (3.20)_1 $乘以$ \check p_\alpha $, 并关于$ x $积分, 我们得到

$ \begin{equation} \frac{1}{2}\frac{\rm d}{{\rm d}t}\int |\check p_\alpha|^2{\rm d}x = \frac{1}{2}\int u_x|\check p_\alpha|^2{\rm d}x+\int \big(h_1+h_2+h_3+h_4\big)\check p_\alpha {\rm d}x. \end{equation} $

利用式(3.2), 我们推得

$ \begin{equation} \left|\int u_x|\check p_\alpha|^2{\rm d}x\right|\leq C\|u\|_{L^\infty}\|\check p_\alpha\|^2\leq C\Lambda({\mathcal Q}(t)). \end{equation} $

$ \begin{equation} \|h_1\| = \|[\partial^\alpha, u]\partial_x\check p\|\leq C\big(\|u\|_{W^{1, \infty}}\|\partial_x\check p\|_{{\mathcal H}^{s-1}}+\|u\|_{{\mathcal H}^{s}}\|\partial_x\check p\|_{L^\infty}\big)\leq C\Lambda({\mathcal Q}(t)). \end{equation} $

类似的, 我们有

结合式(3.24), 我们得到

$ \begin{equation} \left|\int \big(h_1+h_3+h_4\big)\check p_\alpha {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t)). \end{equation} $

利用Sobolev不等式, 有

$ \begin{equation} \left|\int h_2\check p_\alpha {\rm d}x\right|\leq C\left({\mathcal S}(t)+\Lambda({\mathcal Q}(t))\right). \end{equation} $

由式(3.22)–(3.23) 和(3.25)–(3.26), 我们得到

$ \begin{equation} \|\check p_\alpha(t)\|^2\leq \|\check p_\alpha(0)\|^2+C\int_0^t\Lambda({\mathcal Q}(\tau))\big(1+{\mathcal S}(\tau)\big){\rm d}\tau. \end{equation} $

将式$ (3.20)_2 $乘以$ \check u_\alpha $, 然后关于$ x $积分, 得到

$ \begin{equation} \frac{1}{2}\frac{\rm d}{{\rm d}t}\int b(-\theta)|\check u_\alpha|^2{\rm d}x-\lambda\int a(\check p)\check u_{\alpha}\partial_{xx} \check u_{\alpha}{\rm d}x\leq\int \big(h_5+h_6+h_7\big)\check u_\alpha {\rm d}x, \end{equation} $

这里我们使用了下面的两个估计

由式(3.2), 我们得到

于是有

$ \begin{equation} \left|\int \big(h_5+h_6+h_7\big)\check u_\alpha {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t)). \end{equation} $

另一方面, 我们有

结合式(3.28)–(3.29), 得到

$ \begin{equation} \|\varepsilon u(t)\|^2_{{\mathcal H}^{s}}+\int_0^t\|\varepsilon u_x(t)\|^2_{{\mathcal H}^{s}}(\tau) {\rm d}\tau\leq C\|\varepsilon u(0)\|^2_{{\mathcal H}^{s}}+C\int_0^t\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{equation} $

将式$ (3.20)_3 $乘以$ \check w_\alpha $并关于$ x $积分, 我们有

$ \begin{eqnarray} && \frac{1}{2}\frac{\rm d}{{\rm d}t}\int b(-\theta)|\check w_\alpha|^2{\rm d}x- A \int a(\check p)\check w_{\alpha}\partial_{xx} \check w_{\alpha}{\rm d}x+ A \int a(\check p)\check w_{\alpha}^2{\rm d}x {}\\ &\leq&\int \big(h_8+h_{9}+h_{10}+h_{11}\big)\check w_\alpha {\rm d}x, \end{eqnarray} $

从式(3.2)知

于是有

$ \begin{equation} \left|\int \big(h_8+h_9+h_{10}+h_{11}\big)\check w_\alpha {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t)), \end{equation} $

类似于式(3.30), 我们得到

$ \begin{eqnarray} \|\varepsilon w(t)\|^2_{{\mathcal H}^{s}}+\int_0^t\|\varepsilon w_x(t)\|^2_{{\mathcal H}^{s}}(\tau){\rm d}\tau\leq C\|\varepsilon w(0)\|^2_{{\mathcal H}^{s}}+C\int_0^t\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{eqnarray} $

整合式(3.27), (3.30) 和(3.33), 我们得到了式(3.18).

接下来, 我们将推导$ \|(p, u, w)\|_{{\mathcal H}^{s}} $的估计. 为此, 我们需要控制$ \partial^{s+1}(\varepsilon p, \varepsilon u, \varepsilon w, \theta) $$ (\partial_t)^s(p, u, w) $两项. 我们先对$ \|(\varepsilon p, \varepsilon u, \varepsilon w, \theta)\|_{{\mathcal H}^{s+1}} $进行估计.

3.2 $ (\varepsilon p, \varepsilon u, \varepsilon w, \theta) $$ {\mathcal H}^{s+1} $估计

引理3.3   当$ s\geq 3 $, 成立

$ \begin{eqnarray} &&\sum\limits_{|\alpha| = s+1}\|\partial^\alpha(\varepsilon p, \varepsilon u, \varepsilon w, \theta)(t)\|^2 +\sum\limits_{|\alpha| = s+1}\int_0^t\|\partial^\alpha(\varepsilon p_x, \varepsilon u_x, \varepsilon w_x, \theta_x)(t)\|^2{\rm d}\tau \\ &\leq& C{\mathcal Q}^2(0)+C\int_0^t\big[1+{\mathcal S(\tau)}\big]\Lambda({\mathcal Q}(\tau)){\rm d}\tau. \end{eqnarray} $

   令$ \hat p = \varepsilon p-\theta $, 则$ (\hat p, \check u, \check w, \theta) $满足

$ \begin{equation} \left\{ \begin{array}{ll} { } \partial_t \hat p+u\partial_x \hat p+\frac{1}{\varepsilon}\partial_x \check u = 0, \\ { } b(-\theta)( \partial_t \check u+u\partial_x \check u) +\frac{1}{\varepsilon}(\partial_x \hat p+\theta_x) = \lambda a(\varepsilon p)\partial_{xx} \check u, \\ { } b(-\theta)(\partial_t \check w+u\partial_x \check w)+ A a(\varepsilon p)\check w = A a(\varepsilon p)\partial_{xx} \check w, \\ { } \theta_t+u\theta_x+\frac{1}{\varepsilon}\partial_x \check u = a(\varepsilon p)(b(\theta)\theta_x)_x+\varepsilon^2a(\varepsilon p)\big(\lambda|\partial_x \check u|^2+ A |\partial_x \check w|^2+ A | \check w|^2\big). \end{array} \right. \end{equation} $

$ \alpha $满足$ |\alpha| = s+1 $时, 令

将式(3.35)关于$ \alpha $求导, 我们得到

$ \begin{equation} \left\{ \begin{array}{ll} { } \partial_t \hat p_\alpha+u\partial_x \hat p_\alpha+\frac{1}{\varepsilon}\partial_x \check u_\alpha = h_{12}, \\ { } b(-\theta)( \partial_t \check u_\alpha+u\partial_x \check u_\alpha) +\frac{1}{\varepsilon}(\partial_x \hat p_\alpha+\partial_x\theta_\alpha) = \lambda a(\varepsilon p)\partial_{xx} \check u_\alpha+h_{13}, \\ { } b(-\theta)(\partial_t \check w_\alpha+u\partial_x \check w_\alpha)+ A a(\varepsilon p)\check w = A a(\varepsilon p)\partial_{xx} \check w+h_{14}, \\ { } \partial_t\theta_\alpha+u\partial_x\theta_\alpha+\frac{1}{\varepsilon}\partial_x \check u_\alpha = a(\varepsilon p)(b(-\theta)\partial_x\theta_\alpha)_x+h_{15}, \end{array} \right. \end{equation} $

其中

分别将式$ (3.36)_1 $$ (3.36)_4 $乘以$ \hat p_\alpha, \check u_\alpha, \check w_\alpha, \theta_\alpha $, 相加并关于$ x $积分, 我们得到

$ \begin{eqnarray} &&\frac{1}{2}\frac{\rm d}{{\rm d}t}\int\left(|\hat p_{\alpha}|^2+b(-\theta)|\check u_\alpha|^2+b(-\theta)|\check w_\alpha|^2 +|\theta_\alpha|^2\right){\rm d}x\\ &&+\frac{3}{4}\int\left[a(\varepsilon p)\big(\lambda|\partial_x \check u_\alpha|^2+ A |\partial_x \check w_\alpha|^2+ A | \check w_\alpha|^2\big)+a(\varepsilon p)b(\theta)|\partial_x \theta_\alpha|^2\right]{\rm d}x\\ &\leq& C\Lambda({\mathcal Q}(t))+\int\big(h_{12}\hat p_{\alpha}+h_{13}\check u_{\alpha}+h_{14}\check w_{\alpha}+h_{15}\theta_{\alpha}\big) {\rm d}x, \end{eqnarray} $

这里我们用到了以下估计

从式(1.10)可以得到

于是

$ \begin{eqnarray} \|\varepsilon \partial_t u(t)\|^2_{{\mathcal H}^{s}}&\leq& C\Lambda({\mathcal Q}(t))\left[1+\|\partial_x(\varepsilon u)(t)\|^2_{{\mathcal H}^{s}}+\|\partial_xp(t)\|^2_{{\mathcal H}^{s}}+\|\partial_{xx}(\varepsilon u)(t)\|^2_{{\mathcal H}^{s}}\right]\\ &\leq &C\Lambda({\mathcal Q}(t))\left[1+{\mathcal S}(t)\right], \end{eqnarray} $

$ \begin{equation} \|\varepsilon \partial_t w(t)\|^2_{{\mathcal H}^{s}}\leq C\Lambda({\mathcal Q}(t))\left[1+{\mathcal S}(t)\right], \end{equation} $

利用式(3.2)和(3.39), 我们得到

利用Hölder不等式, 可得

$ \begin{equation} \left|\int h_{12}\hat p_\alpha {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t))\left[1+{\mathcal S}(t)\right]. \end{equation} $

另一方面, 我们得到

结合式(3.40), 有

$ \begin{equation} \left|\int h_{13}\check u_\alpha {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t))\left[1+{\mathcal S}(t)\right]. \end{equation} $

类似的, 我们得到

$ \begin{equation} \left|\int \big(h_{14}\check w_\alpha+h_{15}\theta_\alpha\big) {\rm d}x\right|\leq C\Lambda({\mathcal Q}(t))\left[1+{\mathcal S}(t)\right]. \end{equation} $

利用式(3.37)和(3.40)–(3.42), 我们得到了式(3.34).

3.3 $ (\varepsilon\partial_t p, \varepsilon\partial_t u, \varepsilon\partial_t w) $$ {\mathcal H}^{s} $估计

在本小节, 我们估计$ (\partial_t)^s(p, u, w) $. 为此, 对于给定的状态$ (\underline p, \underline u, \underline{ w}, \underline\theta) $, 我们给出式(1.10)的下述线性系统的$ L^2 $估计

$ \begin{equation} \left\{ \begin{array}{ll} { } \partial_t p+\underline u\partial_x p+\frac{1}{\varepsilon}\big(2u-\kappa a(\varepsilon\underline p)b(\underline \theta) \theta_x\big)_x\\ { } = \kappa a(\varepsilon\underline p)b(\underline \theta){\underline p}_x\theta_x +\varepsilon a(\varepsilon\underline p)\big(\lambda {\underline u}_x u_x+ A {\underline { w}}_x w_x+ A {\underline w} w\big)+f_1, \\ { } b(-\underline\theta)( \partial_t u+\underline u\partial_x u) +\frac{1}{\varepsilon}p_x = \lambda a(\varepsilon\underline p)\partial_{xx} u+f_2, \\ { } b(-\underline\theta)(\partial_t w+\underline u\partial_x w)+ A a(\varepsilon\underline p) w = A a(\varepsilon\underline p)\partial_{xx} w+f_3, \\ { } \partial_t\theta+\underline u\partial_x \theta+\partial_x u = \kappa a(\varepsilon\underline p)(b(-\underline\theta)\theta_x)_x+\varepsilon^2 a(\varepsilon\underline p)\big(\lambda {\underline u}_x u_x+ A {\underline { w}}_x w_x+ A {\underline w} w\big)+f_4, \end{array} \right. \end{equation} $

其中$ f_i, \;i = 1, 2, \cdots, 5 $是本源项.

引理3.4   令$ (p, u, w, \theta) $是系统(3.43)的解, 并假设

$ \begin{equation} 0<\frac{1}{2}\underline{a}\leq a(\varepsilon \underline p)\leq 2\overline{a}, \quad 0<\frac{1}{2}\underline{b}\leq b(\underline \theta)\leq 2\overline{b}, \quad \quad t\in [0, T], \end{equation} $

于是, 对$ 0<t\leq T $, 成立

$ \begin{eqnarray} &&\|(p, u, w)(t)\|^2+\int_0^t \|(u_x, w_x)(\tau)\|^2{\rm d}\tau{}\\ &\leq& \|(p, u, w)(0)\|^2+C\sup\limits_{0\leq \tau\leq t}\|\theta_x(\tau)\|^2\\ &&+ C\Lambda({\mathcal R}_0)\bigg\{\int_0^t \|(\varepsilon u_x, \varepsilon w_x, \theta_{xx})(\tau)\|^2{\rm d}\tau+\int_0^t \|(p, u, w, \theta_x)(\tau)\|^2{\rm d}\tau\\ &&+\int_0^t \|f_4(\tau)\|^2{\rm d}\tau+\left(\int_0^t \|(p, u, w, \theta_x)(\tau)\|^2{\rm d}\tau\right)^{\frac{1}{2}}\left(\int_0^t \|(f_1, f_2, f_3)(\tau)\|^2{\rm d}\tau\right)^{\frac{1}{2}}\bigg\}, \end{eqnarray} $

其中$ {\mathcal R}_0 = \sup\limits_{0\leq \tau\leq t}\left\{\|\partial_t\underline\theta(\tau)\|_{L^{\infty}}+ \|(\underline p, \underline u, \underline{ w}, \underline\theta)(\tau)\|_{W^{1, \infty}}\right\} $.

  设$ \textbf{u}: = 2u-\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x $, 则式(3.43) 变为

$ \begin{equation} \left\{ \begin{array}{ll} { } p_t+\underline up_x+\frac{1}{\varepsilon}{{\bf u}}_x = \kappa a(\varepsilon\underline p)b(\underline \theta){\underline p}_x\theta_x +\frac{\lambda}{2}\varepsilon a(\varepsilon\underline p)\underline u{ {\bf u}}_x+\frac{\lambda}{2}\varepsilon a(\varepsilon\underline p){\underline u}_x\big(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x\big)_x \\ { } \quad+\varepsilon a(\varepsilon\underline p)\big( A {\underline { w}}_x w_x+ A {\underline w}w\big)+f_1, \\ { } b(-\underline\theta)( { {\bf u}}_t+\underline u{ {\bf u}}_x) +\frac{1}{\varepsilon}p_x-\frac{\lambda}{2} a(\varepsilon\underline p){{\bf u}}_{xx} = \frac{1}{2}b(\underline \theta)\big(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x\big)_{xx}\\ { } \quad-\frac{1}{2}b(-\underline \theta)\big[(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x)_t+\underline u(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x)_x\big] +f_2, \\ { } b(-\underline\theta)( w_t+\underline u w_x)+ A a(\varepsilon\underline p)w = A a(\varepsilon\underline p) w_{xx}+f_3, \\ { } \theta_t+\underline u\theta_x+ \frac{1}{2}{\mathcal {\bf u}}_x +\big[\frac{\kappa}{2} a(\varepsilon\underline p)b(\underline \theta)\theta_x\big]_x -\kappa a(\varepsilon\underline p)\big(b(\underline \theta)\theta_x\big)_x = \frac{\lambda}{2}\varepsilon^2 a(\varepsilon\underline p)\underline u{\mathcal {\bf u}}_x\\ { } \quad+\frac{\lambda}{2}\varepsilon^2 a(\varepsilon\underline p){\underline u}_x\big(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x\big)_x+\varepsilon^2 a(\varepsilon\underline p)\big( A {\underline { w}}_x w_x+ A {\underline w}w\big)+f_4, \end{array} \right. \end{equation} $

将式$ \partial_x(3.46)_4 $乘以$ \frac{\kappa}{2}a(\varepsilon\underline p) $, 再加上式$ (3.46)_2 $, 我们得到

$ \begin{eqnarray} &&\quad\frac{1}{2}b(-\underline\theta)( { {\bf u}}_t+\underline u{ {\bf u}}_x) +\frac{1}{\varepsilon}p_x-\frac{\kappa}{4} a(\varepsilon\underline p){ {\bf u}}_{xx}-\frac{\lambda}{2} a(\varepsilon\underline p){ {\bf u}}_{xx}\\ && = \frac{\lambda}{2} a(\varepsilon\underline p)\big(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x\big)_{xx}+f_2-\frac{1}{2}b(-\underline \theta)\big[(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x)_t+\underline u(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x)_x\big]\\ &&\quad-\frac{\kappa}{2} a(\varepsilon\underline p)\big[\kappa a(\varepsilon\underline p)(b(\underline \theta)\theta_x)_x\big]_x-\frac{\kappa}{4} a(\varepsilon\underline p)\big[\lambda \varepsilon^2 a(\varepsilon\underline p){\underline u}_x{ {\bf u}}_x)_x\big]-\frac{\kappa}{2} a(\varepsilon\underline p)\partial_xf_4\\ &&\quad-\frac{\lambda}{4}\varepsilon^2\kappa a(\varepsilon\underline p)\big[{\underline u}_x(\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x)_x\big]_x +\frac{\kappa}{4} a(\varepsilon\underline p)\big[\kappa a(\varepsilon\underline p)b(\underline \theta)\theta_x\big]_{xx}+\frac{1}{2}a(\varepsilon\underline p){\underline u}_x\theta_x\\ && = g+f_2-\frac{\kappa}{2} a(\varepsilon\underline p)\partial_xf_4 \end{eqnarray} $

将式$ (3.46)_1 $$ (3.46)_3 $分别乘以$ p, \textbf{u}, w $, 相加, 并关于$ x $积分, 我们得到

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left(\int\big(\frac{1}{2}|p|^2+\frac{1}{4}b(-\theta)|\textbf{u}|^2 +\frac{1}{2}b(-\theta)| w|^2\big){\rm d}x\right)\\ &&+\int\bigg[(\frac{\kappa}{4} +\frac{\lambda}{2}) a(\varepsilon\underline p)|\textbf{u}_x|^2+a(\varepsilon\underline p) \big(| w_x|^2\big)\bigg]{\rm d}x\\ &\leq &\frac{1}{8}\int\big((\frac{\kappa}{4}+\frac{\lambda}{2}\big) a(\varepsilon\underline p)|\textbf{u}_x|^2{\rm d}x+ \frac{1}{2}\int a(\varepsilon\underline p) \big(| w_x|^2+|w|^2\big)\bigg]{\rm d}x+\|f_5\|^2+\int g\textbf{u}{\rm d}x\\ &&+\int\left(f_1p+f_2\textbf{u}+f_3 w\right){\rm d}x+C\Lambda({\mathcal R}_0)\|(p, u, w, \theta_x, \theta_{xx})\|^2. \end{eqnarray} $

直接计算得

结合式(3.48), 我们得到了式(3.45).

接下来我们利用引理3.4去估计$ \|(\varepsilon \partial_t)^k(p, u, w)\|, \;1\leq k\leq s $.

引理3.5   令$ s\geq 3 $$ 0\leq k\leq s $时, 成立

$ \begin{eqnarray} &&\|(\varepsilon\partial_t)^k(p, u, w)(t)\|^2+\int_0^t \|(\varepsilon\partial_t)^k(u_x, w_x)(\tau)\|^2{\rm d}\tau {}\\ &\leq& \|(\varepsilon\partial_t)^k(p, u, w)(0)\|^2 +C\sup\limits_{0\leq \tau\leq t}\|\theta_x(\tau)\|^2_{{\mathcal H}^k} +Ct^{\frac{1}{2}}\Lambda({\mathcal N}_0)+ C\Lambda({\mathcal R})\int_0^t \|\theta_{xx}(\tau)\|^2_{{\mathcal H}^k}{\rm d}\tau, {\qquad}{\quad} \end{eqnarray} $

其中$ {\mathcal R} = \sup\limits_{0\leq \tau\leq t}\left\{\|\partial_t\theta(\tau)\|_{L^{\infty}}+\{\|( p, u, { w}, \theta)(\tau)\|_{W^{1, \infty}}\right\} $.

  设$ (p_k, u_k, w_k, \theta_k) = (\varepsilon\partial_t)^k(p, u, w, \theta) $, 将$ (\varepsilon\partial_t)^k $应用到式(1.10), 得到

$ \begin{equation} \left\{ \begin{array}{ll} { } \partial_t p_k+u\partial_x p_k+\frac{1}{\varepsilon}\big(2u_k-\kappa a(\varepsilon p)b( \theta)\partial_x\theta_k\big)_x \\ { } = \kappa a(\varepsilon p)b( \theta){ p}_x\theta_x +\varepsilon a(\varepsilon p)\big(\lambda \partial_x{u} \partial_x u_k+ A \partial_x{{ w}}\partial_x w_k+ A ww_k\big)+f_{k1}, \\ { } b(-\theta)( \partial_t u_k+ u\partial_x u_k) +\frac{1}{\varepsilon}\partial_x p_k = \lambda a(\varepsilon p)\partial_{xx} u_k+f_{k2}, \\ { } b(-\theta)(\partial_t w_k+ u\partial_x w_k)-a(\varepsilon p) A w_k = A a(\varepsilon p)\partial_{xx} w_k+f_{k3}, \\ { } \partial_t\theta_k+u\partial_x \theta_k+\partial_x u_k = \kappa a(\varepsilon p)(b(-\theta)\partial_{x}\theta_k)_x\\ +\varepsilon^2 a(\varepsilon p)\big(\lambda \partial_{x}{u} \partial_{x}u_k+ A \partial_{x}{{ w}} \partial_{x} w_k+ A {w}w_k\big)+f_{k4}, \end{array} \right. \end{equation} $

利用引理3.4, 得到

$ \begin{eqnarray} &&\|(\varepsilon\partial_t)^k(p, u, w)(t)\|^2+\int_0^t \|(\varepsilon\partial_t)^k(u_x, w_x)(\tau)\|^2{\rm d}\tau{}\\ &\leq& \|(\varepsilon\partial_t)^k(p, u, w)(0)\|^2+C\sup\limits_{0\leq \tau\leq t}\|\theta_x(\tau)\|^2_{{\mathcal H}^k}\\&& +C\Lambda({\mathcal R})\bigg[\int_0^t \|(\varepsilon\partial_t)^k\theta_{xx}(\tau)\|^2{\rm d}\tau+\int_0^t \|(p_k, u_k, w_k, \partial_x\theta_k)\|^2{\rm d}\tau\\ &&+\int_0^t \|f_{k4}(\tau)\|^2{\rm d}\tau +t^{\frac{1}{2}}\Lambda({\mathcal Q}(\tau))\left(\int_0^t\|(f_{k1}, f_{k2}, f_{k3})(\tau)\|^2{\rm d}\tau\right)^{\frac{1}{2}}\bigg], \end{eqnarray} $

其中

接下来我们估计$ (f_{k1}, f_{k2}, f_{k3}, f_{k4}) $. 首先, 对$ f_{k1} $, 我们有

$ \begin{equation} \left(\big[(\varepsilon\partial_t)^k, a(\varepsilon p)b(\theta)\big]\theta_x\right)_x = \big[(\varepsilon\partial_t)^k, a(\varepsilon p)b(\theta)\big]\theta_{xx}+\big[(\varepsilon\partial_t)^k, \big(a(\varepsilon p)b(\theta)\big)_x\big]\theta_x, \end{equation} $

其中

$ \begin{eqnarray} &&\frac{1}{\varepsilon}\|\big[(\varepsilon\partial_t)^k, a(\varepsilon p)b(\theta)\big]\theta_{xx}\| = \|\big[(\varepsilon\partial_t)^{k-1}\partial_t, a(\varepsilon p)b(\theta)\big]\theta_{xx}\|\\ &\leq &\|\big[(\varepsilon\partial_t)^{k-1}, a(\varepsilon p)b(\theta)\big]\theta_{txx}\|+\|\big[(\varepsilon\partial_t)^{k-1}, \big(a(\varepsilon p)b(\theta)\big)_t\big]\theta_{xx}\|\\ &\leq& C\Lambda({\mathcal Q}(t))\left(1+\|\theta_{tx}\|_{{\mathcal H}^{s-1}}+\|\theta_{x}\|_{{\mathcal H}^{s}}\right), \end{eqnarray} $

$ \begin{eqnarray} &&\frac{1}{\varepsilon}\|\big[(\varepsilon\partial_t)^k, \big(a(\varepsilon p)b(\theta)\big)_x\big]\theta_x\| = \|\big[(\varepsilon\partial_t)^{k-1}\partial_t, \big(a(\varepsilon p)b(\theta)\big)_x\big]\theta_{x}\|\\ &\leq &\|\big[(\varepsilon\partial_t)^{k-1}, \big(a(\varepsilon p)b(\theta)\big)_{tx}\big]\theta_{x}\|+\|\big[(\varepsilon\partial_t)^{k-1}, \big(a(\varepsilon p)b(\theta)\big)_x\big]\theta_{tx}\|\\ &\leq& C\Lambda({\mathcal Q}(t))\left(1+\|\theta_{tx}\|_{{\mathcal H}^{s-1}}+\|p_{x}\|_{{\mathcal H}^{s}}\right). \end{eqnarray} $

另一方面, 我们易知

$ \begin{eqnarray} &&\|\big[(\varepsilon\partial_t)^{k}, u\big]p_x\|+\|\big[(\varepsilon\partial_t)^k, \kappa a(\varepsilon p)b(\theta)p_x\big]\theta_x\|+\|\varepsilon\big[(\varepsilon\partial_t)^k, \lambda\varepsilon a(\varepsilon p)u_x\big]u_x\|\\ && +\|\varepsilon\big[(\varepsilon\partial_t)^k, A \varepsilon a(\varepsilon p) w_x\big] w_x\|+\|\varepsilon\big[(\varepsilon\partial_t)^k, A \varepsilon a(\varepsilon p)w\big]w\|\\ &\leq& C\Lambda({\mathcal Q}(t))\left(1+\|p_{x}\|_{{\mathcal H}^{s}}\right), \end{eqnarray} $

结合式(3.52)–(3.54), 得到

$ \begin{equation} \|f_{k1}\|\leq C\Lambda({\mathcal Q}(t))\big(1+\|\theta_{tx}\|_{{\mathcal H}^{s-1}}+\|p_{x}\|_{{\mathcal H}^{s}}\big). \end{equation} $

$ \|f_{k2}\| $, 我们注意到

于是得到

$ \begin{equation} \|\big[(\varepsilon\partial_t)^{k}, b(-\theta)\big]u_t\|\leq C\Lambda({\mathcal Q}(t))\big(1+\|\theta_{t}\|_{{\mathcal H}^{k-1}}+\Lambda\left(\|\theta_{t}\|_{{\mathcal H}^{k-2}}\right)\big). \end{equation} $

另外, 我们易知

结合式(3.57), 得到

$ \begin{equation} \|f_{k2}\|\leq C\Lambda({\mathcal Q}(t))\big(1+\|\theta_{t}\|_{{\mathcal H}^{k-1}}+\Lambda\left(\|\theta_{t}\|_{{\mathcal H}^{k-2}}\right)\big). \end{equation} $

类似的, 我们得到

$ \begin{eqnarray} &&\|f_{k3}\|\leq C\Lambda({\mathcal Q}(t))\big(1+\|\theta_{t}\|_{{\mathcal H}^{k-1}}+\Lambda\left(\|\theta_{t}\|_{{\mathcal H}^{k-2}}\right)\big), \end{eqnarray} $

$ \begin{eqnarray} &&\|f_{k4}\|\leq C\Lambda({\mathcal Q}(t)). \end{eqnarray} $

从式$ (1.10)_4 $和(3.2), 我们有

$ \begin{equation} \|\theta_{t}\|_{{\mathcal H}^{s-1}}\leq C\Lambda({\mathcal Q}(t)), \quad \|\theta_{tx}\|_{{\mathcal H}^{s-1}}\leq C\Lambda({\mathcal Q}(t))\big(1+\|(u_x, w_x, \theta_{xx})\|_{{\mathcal H}^{s}}\big), \end{equation} $

于是, 利用式(3.56)和(3.58)–(3.61), 我们得到

$ \begin{equation} \|(f_{k1}, f_{k2}, f_{k3})\|\leq C\Lambda({\mathcal Q}(t))\big(1+\|(p_x, u_x, w_x, \theta_{xx})\|_{{\mathcal H}^{s}}\big). \end{equation} $

将式(3.62)带入式(3.51), 我们得到了式(3.49).

利用引理3.1, 引理3.3和引理3.5, 我们易知

推论3.1  对$ s\geq 3, \; 0\leq k\leq s-1 $, 成立

$ \begin{eqnarray} &&\quad\|(\varepsilon\partial_t)^k(p, u, w)(t)\|^2+\int_0^t \|(\varepsilon\partial_t)^k(u_x, w_x)(\tau)\|^2{\rm d}\tau\\ &&\leq C\left(1+{\mathcal Q}^2(0)\right)+ Ct^{\frac{1}{2}}\Lambda({\mathcal N}(t)) \end{eqnarray} $

$ \begin{eqnarray} &&\quad\|(\varepsilon\partial_t)^s(p, u, w)(t)\|^2+\int_0^t \|(\varepsilon\partial_t)^s(u_x, w_x)(\tau)\|^2{\rm d}\tau\\ &&\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ Ct^{\frac{1}{2}}\Lambda({\mathcal N}(t))+ C\Lambda({\mathcal R}(t)). \end{eqnarray} $

3.4 $ ( p, u, w) $$ {\mathcal H}^{s} $估计

在本小节, 我们将使用推论3.1估计$ \|(p, u, w)\|_{{\mathcal H}^{s}} $.

引理3.6   对$ s\geq 3 $, 成立

$ \begin{equation} \|(p, u, w)\|_{{\mathcal H}^{s}}\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{equation} $

  从式$ (1.10)_1 $, 引理3.1–3.3和推论3.1可知

$ 0\leq k\leq s-2 $, 我们有

$ \begin{eqnarray} \|(\varepsilon\partial_t)^ku_x\|&\leq&C\Big\{\|(\varepsilon\partial_t)^{k+1} p\|+\Lambda\left(\|(\varepsilon p_x, \varepsilon u_x, \varepsilon w_{x})\|_{{\mathcal H}^k}+\|\theta_{xx}\|_{{\mathcal H}^k}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)) \end{eqnarray} $

$ \begin{eqnarray} \|(\varepsilon\partial_t)^{s-1}u_x\|&\leq&C\Big\{\|(\varepsilon\partial_t)^{s} p\|+\Lambda\left(\|(\varepsilon p, \varepsilon u, \varepsilon w)\|_{{\mathcal H}^{s+1}}+\|(\varepsilon \theta_t, \theta_{xx})\|_{{\mathcal H}^{s}}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t))+C\Lambda({\mathcal R}(t)), \end{eqnarray} $

类似的, 对$ 0\leq k\leq s-2 $, 我们有

$ \begin{eqnarray} \|(\varepsilon\partial_t)^kp_x\|&\leq&C\Big\{\|(\varepsilon\partial_t)^{k+1} u\|+\Lambda\left(\|(\varepsilon p, \varepsilon u, , \varepsilon \textbf{b})\|_{{\mathcal H}^{k+1}}+\|\varepsilon\theta_t, u_{xx}\|_{{\mathcal H}^k}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)) \end{eqnarray} $

$ \begin{eqnarray} \|(\varepsilon\partial_t)^{s-1}p_x\|&\leq&C\Big\{\|(\varepsilon\partial_t)^{s} u\|+\Lambda\left(\|(\varepsilon p, \varepsilon u, , \varepsilon \textbf{b})\|_{{\mathcal H}^{s}}+\|\varepsilon\theta_t, u_{xx}\|_{{\mathcal H}^{s-1}}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t))+C\Lambda({\mathcal R}(t)). \end{eqnarray} $

利用Sobolev不等式, 可得

$ \begin{eqnarray} \|(\varepsilon\partial_t)^kw_x\|&\leq&C\Big\{\|(\varepsilon\partial_t)^{k+1} w\|+\Lambda\left(\|(\varepsilon w, \varepsilon w_{xx})\|_{{\mathcal H}^{k}}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)) \end{eqnarray} $

$ \begin{eqnarray} \|(\varepsilon\partial_t)^{s-1}w_x\|&\leq& C\Big\{\|(\varepsilon\partial_t)^{s} w\|+\Lambda\left(\|(\varepsilon w, \varepsilon w_{xx})\|_{{\mathcal H}^{s}}\right)\Big\}\\ &\leq &C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t))+C\Lambda({\mathcal R}(t)). \end{eqnarray} $

$ 0\leq k\leq s-3 $, 从式(1.10), (3.66), (3.68)和(3.70)我们得到

$ \begin{equation} \|(\varepsilon\partial_t)^k(p_{xx}, u_{xx}, w_{xx})\|\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)) \end{equation} $

$ \begin{equation} \|(p, u, w)\|_{{\mathcal H}^{s-1}}\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)), \end{equation} $

结合式$ (1.10)_4 $和(3.5), 就得到

$ \begin{equation} {\mathcal R}(t)\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{equation} $

利用式(1.10), (3.64), (3.67), (3.69), (3.71)和(3.73)–(3.74), 我们就得到了式(3.65).

引理3.7   对$ s\geq 3 $成立

$ \begin{equation} \int_0^t\|(p_x, u_x, w_x)(\tau)\|^2_{{\mathcal H}^{s}}{\rm d}\tau\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{equation} $

  首先, 从式(3.64)和(3.74)我们得到

$ \begin{equation} \int_0^t\|(\varepsilon\partial_t)^su_x(\tau)\|^2{\rm d}\tau\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)), \end{equation} $

结合式$ (1.10)_1 $, 就有

$ \begin{eqnarray} \int_0^t\|(\varepsilon \partial_t)^{s+1}p(\tau)\|^2{\rm d}\tau&\leq& C\int_0^t\|(\partial_t)^su_x(\tau)\|^2{\rm d}\tau \big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t))\\ &\leq& C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{eqnarray} $

另一方面, 从式$ (1.10)_2 $可知

$ \begin{equation} (\varepsilon \partial_t)^{s}p_x = -\varepsilon b(-\theta)(\varepsilon \partial_t)^{s}u_t+(\varepsilon \partial_t)^{s}\Big[-\varepsilon b(-\theta)uu_x+\lambda\varepsilon a(\varepsilon p)u_{xx}\Big]. \end{equation} $

将式(3.78) 乘以$ (\varepsilon \partial_t)^{s}p_x $, 并将结果关于$ x $积分, 得

$ \begin{eqnarray} \|(\varepsilon \partial_t)^{s}p_x\|^2& = &\int b(-\theta)(\varepsilon \partial_t)^{s}p_x(\varepsilon \partial_t)^{s}\big(-\varepsilon b(-\theta)uu_x+\lambda\varepsilon a(\varepsilon p)u_{xx}\big)\\ &&-\varepsilon \int b(-\theta)(\varepsilon \partial_t)^{s}u_t(\varepsilon \partial_t)^{s}p_x{\rm d}x \\ &\leq& -\frac{\rm d}{{\rm d}t}\int b(-\theta)(\varepsilon \partial_t)^{s}u(\varepsilon \partial_t)^{s}p_x{\rm d}x+\int b(-\theta)(\varepsilon \partial_t)^{s}u(\varepsilon \partial_t)^{s+1}p_x{\rm d}x\\ &&+\int \partial_tb(-\theta)(\varepsilon \partial_t)^{s}u(\varepsilon \partial_t)^{s}(\varepsilon p)_x{\rm d}x+\frac{1}{8}\|(\varepsilon \partial_t)^{s}p_x\|^2\\ &&+\int \Big|(\varepsilon \partial_t)^{s}\left[-\varepsilon b(-\theta)uu_x+\lambda\varepsilon a(\varepsilon p)u_{xx}\right]\Big|^2{\rm d}x. \end{eqnarray} $

将式(3.79)关于$ t $积分, 利用式(3.76)–(3.77), 引理3.1–3.3和引理3.6, 我们得到

$ \begin{equation} \int_0^t\|(\varepsilon\partial_t)^sp_x(\tau)\|^2{\rm d}\tau\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)), \end{equation} $

结合式(3.79), 有

$ \begin{eqnarray} \int_0^t\|(\varepsilon\partial_t)^{s-1}p_{xx}(\tau)\|^2{\rm d}\tau&\leq& C\int_0^t\|(\varepsilon\partial_t)^sp_x(\tau)\|^2{\rm d}\tau+C\big(1+\Lambda({\mathcal Q}(0))\big)\\ &\quad&+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t))\\ &\leq& C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{eqnarray} $

由(3.79)和(3.81)式, 可得

$ \begin{equation} \int_0^t\|p_x(\tau)\|^2_{{\mathcal H}^s}{\rm d}\tau\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{equation} $

类似可得

$ \begin{equation} \int_0^t\|(u_x, w_x)(\tau)\|^2_{{\mathcal H}^s}{\rm d}\tau\leq C\big(1+\Lambda({\mathcal Q}(0))\big)+ C\big(t^{\frac{1}{2}}+\varepsilon\big)\Lambda({\mathcal N}(t)). \end{equation} $

将式(3.82)和(3.83)相加就得到了式(3.65).

命题3.1的证明   利用引理3.1–3.3, 引理3.6和引理3.7, 我们立即就得到了命题3.1.

定理2.1的证明   利用命题3.1, 局部存在性定理和拔靴带方法, 我们就得到了定理2.1.

4 低马赫数极限

在本节中, 我们将通过修改Métivier和Schochet[28]提出的论点来证明定理2.2, 也可参见文献[1-2, 13, 22].

从定理2.1, 我们得到

$ \begin{equation} \sup\limits_{0\leq \tau\leq T_0}\|(p^\varepsilon, u^\varepsilon, w^\varepsilon)\|_{{\mathcal H}^s}+\sup\limits_{0\leq \tau\leq T_0}\|(\theta^\varepsilon-\tilde\theta)\|_{{\mathcal H}^{s+1}}< \infty. \end{equation} $

因此, 在提取子序列后, 当$ \varepsilon\rightarrow 0 $, 我们得到

$ \begin{equation} \left\{ \begin{array}{ll} (p^\varepsilon, u^\varepsilon, w^\varepsilon)\rightharpoonup (\overline p, \overline u, \overline w), \; \; &L^{\infty}\left(0, T_0; {\mathcal H}^{s}(\mathbb R)\right), \\ \theta^\varepsilon-\tilde\theta\rightharpoonup\overline\theta-\tilde\theta, \; \; &L^{\infty}\left(0, T_0; {\mathcal H}^{s+1}(\mathbb R)\right), \end{array} \right. \end{equation} $

其中$ \rightharpoonup $为相应空间上的弱$ \ast $收敛.

$ w^\varepsilon, \theta^\varepsilon $的方程和式(4.1), 我们得到

$ \begin{equation} w^\varepsilon_t, \theta^\varepsilon_t\in C\left(0, T_0; {\mathcal H}^{s-2}(\mathbb R)\right), \end{equation} $

结合Aubin-Lions引理易知, 当$ s'<s $

$ \begin{equation} \left\{ \begin{array}{ll} w^\varepsilon\rightarrow \overline w, \; &L^{\infty}\big(0, T_0; {\mathcal H}^{s'}(\mathbb R)\big), \\ \theta^\varepsilon \rightarrow \overline\theta-\tilde\theta, \; \;&L^{\infty}\big(0, T_0; {\mathcal H}^{s'+1}({\mathbb R})\big), \end{array} \right. \end{equation} $

其中$ \rightarrow $为相应空间上的强收敛, 后文出现的$ \rightarrow $代表相同含义.

为了获得极限系统(1.11), 我们需要$ (p^\varepsilon, u^\varepsilon) $$ L^{2}\big(0, T_0; {\mathcal H}^{s'}({\mathbb R})\big), s'<s $的强收敛性. 为此, 我们将得到$ p^\varepsilon $$ \big(2u^{\varepsilon}-\kappa e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}\theta^{\varepsilon}_x\big)_x $$ \varepsilon\rightarrow 0 $时强收敛于0. 事实上, 式$ (1.10)_1 $$ (1.10)_2 $能转化为

$ \begin{equation} \left\{ \begin{array}{ll} { }\varepsilon p^{\varepsilon}_t\big(2u^{\varepsilon}-\kappa e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}\theta^{\varepsilon}_x\big)_x = \varepsilon f^\varepsilon, \\ { } \varepsilon e^{-\theta^{\varepsilon}}u^{\varepsilon}_t +{p^{\varepsilon}_x} = \varepsilon g^\varepsilon. \end{array} \right. \end{equation} $

从式(2.3)可知, $ f^\varepsilon, g^\varepsilon $$ C\big(0, T_0; {\mathcal H}^{s-1}({\mathbb R})\big) $中有界, $ p^{\varepsilon} $$ L^\infty\big(0, T_0; L^\infty({\mathbb R})\big) $中一致有界. 在式(4.5)中取弱极限, 我们有$ {\overline p}_x = 0 $, 并且$ (2\overline u-\kappa e^{\overline\theta}{\overline\theta}_x\big)_x = 0 $. 因为$ {\overline p}\in L^\infty\left(0, T_0; {\mathcal H}^{s}({\mathbb R})\right) $, 我们能得到$ {\overline p} = 0 $. 另外, 类似于文献[2, 13], 我们可以得到$ \overline \theta $满足以下估计

$ \begin{equation} |\overline \theta-\theta_+|\leq Cx^{-1-\sigma}, \quad x\in [1, +\infty). \end{equation} $

为了获得$ u^\varepsilon $$ p^\varepsilon $的强收敛性, 我们需要以下命题

命题4.1   令式(2.3) 和(4.6) 成立, 则对$ s'<s $, 有

$ \begin{equation} \left\{ \begin{array}{ll} p^\varepsilon\rightarrow 0, \; \;&L^{2}\big(0, T_0; {\mathcal H}^{s'}({\mathbb R})\big), \\ (2u^{\varepsilon}-\kappa e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}\theta^{\varepsilon}_x\big)_x\rightarrow 0, \; \; &L^{2}\big(0, T_0; {\mathcal H}^{s'-1}({\mathbb R})\big). \end{array} \right. \end{equation} $

命题4.1的证明基于Métivier和Schochet[28]在波动方程中的色散估计, 并在文献[2] 被重新表述.

引理4.1   令$ T>0 $, $ v^\varepsilon $$ C([0, T], H^2({\mathbb R}^d)) $上的有界序列, $ \varepsilon\partial_tv^\varepsilon $$ L^2(0, T; L^2({\mathbb R}^d)) $上有界, 且满足

$ \begin{equation} \varepsilon^2\partial_t\big(a^\varepsilon \partial_t v^\varepsilon\big)-\nabla\cdot(b^\varepsilon\nabla v^\varepsilon) = c^\varepsilon, \end{equation} $

其中$ c^\varepsilon $$ L^2(0, T; L^2({\mathbb R}^d)) $上收敛于0. 假设对$ k>1 +\frac{d}{2} $, $ (a^\varepsilon, b^\varepsilon) $为正, 在$ C\left(0, T; H^{k}_{\rm loc}({\mathbb R}^d)\right) $上有界, 在$ C\left(0, T; H^{k}_{\rm loc}({\mathbb R}^d)\right) $上收敛于$ (a, b) $且满足, 对任意的$ \tau \in {\mathbb R} $, 有

$ \begin{equation} a\tau^2 + \nabla \cdot(b\nabla)\rightarrow {0}, \quad {\rm in}\; L^2({\mathbb R}^d), \end{equation} $

则序列$ v^\varepsilon $$ L^2(0, T; L^2_{\rm loc}({\mathbb R}^d)) $上强收敛于0.

命题4.1的证明   将$ \varepsilon\partial_t $应用到式$ (4.5)_1 $, 将$ \partial_x $应用到$ e^{\theta^\varepsilon}\times (4.5)_2 $, 我们得到

$ \begin{equation} \frac{1}{2}\varepsilon^2p_{tt}^\varepsilon-\big(e^{\theta^\varepsilon}p_{x}^\varepsilon\big)_x = \varepsilon F^\varepsilon(p^\varepsilon, u^\varepsilon, w^\varepsilon, \theta^\varepsilon), \end{equation} $

其中$ F^\varepsilon(p^\varepsilon, u^\varepsilon, w^\varepsilon, \theta^\varepsilon) $是一个光滑函数, 并且$ F(\textbf{0}) = 0 $. 从式(2.3)可知, 当$ \varepsilon\rightarrow 0 $时, $ \varepsilon F^\varepsilon $$ L^2(0, T; L^2({\mathbb R})) $强收敛于0.

利用$ \theta^\varepsilon $的强收敛性, 初始条件(2.5)和文献[2]中第8.1节的结论, 我们可以证明式(4.10)中的系数满足引理4.1的条件. 因此, 应用引理4.1, 我们得到

$ \begin{equation} p^\varepsilon\rightarrow 0\;\; L^2(0, T; L^2_{\rm loc}({\mathbb R})). \end{equation} $

因为$ \theta^\varepsilon $$ C([0, T_0], H^s({\mathbb R})) $上一致有界, 利用插值定理可得

$ \begin{equation} p^\varepsilon\rightarrow 0\;\; L^2(0, T; H^{s'}_{\rm loc}({\mathbb R})), \quad s'<s. \end{equation} $

类似的, 我们得到$ (2u^{\varepsilon}-\kappa e^{-\varepsilon p^{\varepsilon}+\theta^{\varepsilon}}\theta^{\varepsilon}_x\big)_x $的收敛性.

定理2.2的证明   如果命题4.1成立, 在方程(1.10)中对$ (p^\varepsilon, u^\varepsilon, w^\varepsilon, \theta^\varepsilon) $求极限, 我们证得, 极限$ (0, \overline u, \overline w, \overline \theta) $是方程(1.11)在分布意义上的解. 另一方面, 根据文献[28]中的参数, 可以得到$ (\overline u, \overline w, \overline \theta) $满足初始条件

$ \begin{equation} (\overline u, \overline w, \overline \theta)|_{t = 0} = (u_{in}, w_{in}, \theta_{in}), \end{equation} $

其中$ u_{in} $$ u_{in} = \frac{1}{2}\kappa e^{\theta_{in}}(\theta_{in})_x $确定. 此外, 可以通过能量法得到具有初始数据(4.13)的极限系统(1.11)的解的唯一性, 以上结论对整个序列$ (\overline u, \overline w, \overline \theta) $成立.

参考文献

Alazard T .

Incompressible limit of the nonisentropic euler equations with the solid wall boundary conditions

Adv Differential Equations, 2005, 10, 19- 44

URL     [本文引用: 2]

Alazard T .

Low Mach number limit of the full Navier-Stokes equations

Arch Ration Mech Anal, 2006, 180, 1- 73

DOI:10.1007/s00205-005-0393-2      [本文引用: 6]

Atkinson F , Peletier L .

Similarity solutions of the nonlinear diffusion equation

Arch Ration Mech Anal, 1974, 54, 373- 392

DOI:10.1007/BF00249197      [本文引用: 1]

Chen M , Xu X , Zhang J .

The zero limits of angular and micro-rotational viscosities for the two-dimensional micropolar fluid equations with boundary effect

Z Angew Math Phys, 2014, 65 (2): 687- 710

URL     [本文引用: 1]

Danchin R .

Low Mach number limit for viscous compressible flows

ESAIM Math Model Numer Anal, 2005, 39, 459- 475

DOI:10.1051/m2an:2005019      [本文引用: 1]

Dou C , Jiang S , Ou Y .

Low Mach number limit of full Navier-Stokes equations in a 3D bounded domain

J Differential Equations, 2015, 258, 379- 398

DOI:10.1016/j.jde.2014.09.017      [本文引用: 1]

Duan R .

Global solutions for a one-dimensional compressible micropolar fluid model with zero heat conductivity

J Math Anal Appl, 2018, 463, 417- 495

URL     [本文引用: 1]

Eringen C A .

Linear theory of micropolar elasticity

J Math Mech, 1966, 15, 909- 923

URL     [本文引用: 1]

Eringen C A .

Theory of micropolar fluids

J Math Mech, 1966, 16, 1- 16

[本文引用: 1]

Feireisl E , Novotny A . Singular Limits in Thermodynamics of Viscous Fluids. Basel: Birkhäuser, 2009

[本文引用: 1]

Fan J , Gao H , Guo B .

Low Mach number limit of the compressible magnetohydrodynamic equations with zero thermal conductivity coefficient

Math Methods Appl Sci, 2011, 34, 2181- 2188

DOI:10.1002/mma.1515      [本文引用: 2]

Hu X , Wang D .

Low Mach number limit of viscous compressible magnetohydrodynamic flows

SIAM J Math Anal, 2009, 41, 1272- 1294

DOI:10.1137/080723983      [本文引用: 2]

Huang F , Wang T , Wang Y .

Diffusive wave in the low Mach limit for compressible Navier-Stokes equations

Adv Math, 2017, 319, 348- 395

DOI:10.1016/j.aim.2017.08.004      [本文引用: 3]

Jiang S , Ju Q , Li F .

Incompressible limit of the compressible magnetohydrodynamic equations with vanishing viscosity coefficients

SIAM J Math Anal, 2010, 42, 2539- 2553

DOI:10.1137/100785168      [本文引用: 1]

Jiang S , Ou Y .

Incompressible limit of the non-isentropic Navier-Stokes equations with well-prepared initial data in three-dimensional bounded domains

J Math Pures Appl, 2011, 96, 1- 28

DOI:10.1016/j.matpur.2011.01.004      [本文引用: 1]

Jiang S , Ju Q , Li F .

Low Mach number limit for the multi-dimensional full magnetohydrodynamic equations

Nonlinearity, 2012, 15, 1351- 1365

URL    

Jiang S , Ju Q , Li F .

Incompressible limit of the non-isentropic ideal magnetohydrodynamic equations

SIAM J Math Anal, 2016, 48 (1): 302- 319

DOI:10.1137/15M102842X      [本文引用: 1]

Jiang S , Ju Q , Li F , Xin Z .

Low Mach number limit for the full compressible magnetohydrodynamic equations with general initial data

Adv Math, 2014, 259, 384- 420

DOI:10.1016/j.aim.2014.03.022      [本文引用: 1]

Kim H , Lee J .

The incompressible limits of viscous polytropic fluids with zero thermal conductivity coefficient

Comm Partial Differential Equations, 2005, 30, 1169- 1189

DOI:10.1080/03605300500257560      [本文引用: 1]

Klainerman S , Majda A .

Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids

Comm Pure Appl Math, 1981, 34, 481- 524

DOI:10.1002/cpa.3160340405      [本文引用: 2]

Klainerman S , Majda A .

Compressible and incompressible fluids

Comm Pure Appl Math, 1982, 35, 629- 653

DOI:10.1002/cpa.3160350503      [本文引用: 1]

Levermore C , Sun W , Trivisa K .

A low Mach number limit of a dispersive Navier-Stokes system

SIAM J Math Anal, 2012, 44, 1760- 1807

DOI:10.1137/100818765      [本文引用: 2]

Li Y .

Convergence of the compressible magnetohydrodynamic equations to incompressible magnetohydrodynamic equations

J Differential Equations, 2012, 252, 2725- 2738

DOI:10.1016/j.jde.2011.10.002      [本文引用: 1]

Liu Q , Yin H .

Stability of contact discontinuity for 1-D compressible viscous micropolar fluid model

Nonlinear Anal, 2017, 149, 41- 55

DOI:10.1016/j.na.2016.10.009      [本文引用: 1]

Liu Q , Zhang P .

Optimal time decay of the compressible micropolar fluids

J Differential Equations, 2016, 260, 7634- 7664

DOI:10.1016/j.jde.2016.01.037      [本文引用: 1]

Liu Y .

Diffusive wave in the low Mach limit for non-viscous and heat-conductive gas

J Differential Equations, 2018, 264, 6933- 6958

DOI:10.1016/j.jde.2018.02.003      [本文引用: 1]

Masmoudi N .

Examples of singular limits in hydrodynamics

Handbook of Differential Equations: Evolutionary Equations, 2007, 3, 195- 275

URL     [本文引用: 2]

Métivier G , Schochet S .

The incompressible limit of the non-isentropic Eulere quations

Arch Ration Mech Anal, 2001, 158, 61- 90

DOI:10.1007/PL00004241      [本文引用: 5]

Métivier G , Schochet S .

Averaging theorems for conservative systems and the weakly compressible Euler equations

J Differential Equations, 2003, 187, 106- 183

DOI:10.1016/S0022-0396(02)00037-2     

Schochet S .

The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit

Comm Math Phys, 1986, 104, 49- 75

DOI:10.1007/BF01210792      [本文引用: 1]

Schochet S. The mathematical theory of the incompressible limit in fluid dynamics// Friedlander S, Serre D. Handbook of Mathematical Fluid Dynamics. Vol Ⅳ. Amsterdam: Elsevier, 2007

[本文引用: 1]

Su J .

Incompressible limit of a compressible micropolar fluid model with general initial data

Nonlinear Anal, 2016, 132, 1- 24

DOI:10.1016/j.na.2015.10.020      [本文引用: 1]

Su J .

Low Mach number limit of a compressible micropolar fluid model

Nonlinear Anal RWA, 2017, 38, 21- 34

DOI:10.1016/j.nonrwa.2017.04.005      [本文引用: 1]

Ukai S .

The incompressible limit and the initial layer of the compressible Euler equation

J Math Kyoto Univ, 1986, 26, 323- 331

URL     [本文引用: 1]

/