数学物理学报, 2021, 41(5): 1382-1395 doi:

论文

带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性

贾哲1, 杨作东,2,3

1 临沂大学数学与统计学院 山东临沂 276005

2 南京师范大学教师教育学院 南京 210097

3 南京信息工程大学教师教育学院 南京 210044

Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production

Jia Zhe1, Yang Zuodong,2,3

1 School of Mathematics and Statistics, Linyi University, Shandong Linyi 276005

2 School of Teacher Education, Nanjing Normal University, Nanjing 210097

3 School of Teacher Education, Nanjing University of Information Science and Technology, Nanjing 210044

通讯作者: 杨作东, E-mail: zdyang jin@263.net

收稿日期: 2020-03-24  

基金资助: 国家自然科学基金.  11571093
江苏省教育委员会自然科学基金.  19KJB110016
临沂大学科研启动基金.  LYDX2020BS014

Received: 2020-03-24  

Fund supported: the NSFC.  11571093
the NSF of Jiangsu Education Commission.  19KJB110016
the Scientific Research Foundation of Linyi University.  LYDX2020BS014

Abstract

This paper is concerned with an initial-boundary value problem for the following chemotaxis-haptotaxis modelunder homogenous Neumann boundary condition in a bounded domain $ \Omega \subset \mathbb{R} ^{3} $, with $ \chi, \xi, \mu,\lambda,$$\gamma >0$, $k>1$, $a \in \mathbb{R} $, and $D(u)\geq C_{D} (u+1)^{m-1}$ for $C_{D}>0, m\in \mathbb{R} $. It is shown that(i) For $0<\gamma\leq\frac{2}{3}$, if $\alpha>\gamma-k+1$ and $\beta>1-k$, there is a classical solution $(u, v, w)$ which is globally bounded to the above problem.(ii) For $\frac{2}{3}<\gamma\leq1$, if $\alpha>\gamma-k+\frac{1}{e}+1$ and or $\alpha>\gamma-k+1$ andthere is a classical solution $(u, v, w)$ which is globally bounded to the above problem.

Keywords: Global existence ; Boundedness ; Chemotaxis-haptotaxis ; Nonlinear diffusion

PDF (375KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

贾哲, 杨作东. 带非线性扩散项和信号产生项的趋化-趋触模型解的整体有界性. 数学物理学报[J], 2021, 41(5): 1382-1395 doi:

Jia Zhe, Yang Zuodong. Global Boundedness in a Chemotaxis-Haptotaxis Model with Nonlinear Diffusion and Signal Production. Acta Mathematica Scientia[J], 2021, 41(5): 1382-1395 doi:

1 背景

本文研究如下趋化-趋触模型

$ \begin{align} \left\{ \begin{array}{ll} u_{t} = \nabla\cdot (D(u) \nabla u)- \nabla\cdot (H(u)\nabla v)-\nabla\cdot(S(u)\nabla w)+u(a-\mu u^{k-1}-\lambda w), \\ v_{t} = \triangle v-v+g(u), \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega, \;t>0, \\ w_{t} = -v w, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega, \;t>0, \\ { } D(u)\frac{\partial u}{\partial\nu}-H(u)\frac{\partial v}{\partial\nu}-S(u)\frac{\partial w}{\partial\nu} = \frac{\partial v}{\partial\nu} = 0, \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \partial\Omega, t>0, \\ u(x, 0) = u_{0}(x), \;v(x, 0) = v_{0}(x), \;w(x, 0) = w_{0}(x), \;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;x\in \Omega \end{array}\right. \end{align} $

古典解的整体存在性和有界性.其中$ \Omega\subset {{\Bbb R}} ^{3} $是带光滑边界的有界域, 函数$ u, v, w $分别代表癌细胞密度、基质降解酶浓度和细胞外基质浓度. $ D(u), H(u), S(u), g(u) $分别代表肿瘤细胞通过细胞外基质的密度依赖性运动、趋化敏感项、趋触敏感项和非线性信号产生项. 在本文中假设$ D, H, S\in C^{2}([0, \infty)) $满足如下条件

$ \begin{align} \begin{array}{ll} D(s)\geq C_{D} (s+1)^{m-1}, \;\; \forall\; s\geq 0, \end{array} \end{align} $

$ \begin{align} \begin{array}{ll} 0\leq H(s)\leq \chi s(s+1)^{-\alpha}, \; \forall\; s\geq 0 \;\mbox{并且}\; H(0) = 0, \end{array} \end{align} $

$ \begin{align} \begin{array}{ll} 0\leq S(s)\leq \xi s(s+1)^{-\beta}, \; \forall\; s\geq 0 \;\mbox{并且}\; S(0) = 0, \end{array} \end{align} $

其中$ C_{D}, \chi, \xi>0 $$ m, \alpha, \beta\in{{\Bbb R}} $. 函数$ g\in C^{1}([0, \infty)) $满足

$ \begin{align} \begin{array}{ll} 0\leq g(s)\leq C_{g}s^{\gamma}, \; \forall\; s\geq 0 , \end{array} \end{align} $

其中$ C_{g}, \gamma>0 $. 另外, 假设初值满足

$ \begin{align} \left\{ \begin{array}{ll} u_{0}\in W^{1, \infty}(\Omega), \;u_{0}\geq0, \;\;\;x\in \Omega, \\ v_{0}\in W^{1, \infty}(\Omega), \;\;v_{0}\geq0, \;\;\;x\in \Omega, \\ { } w_{0}\in C^{2, \theta}(\overline{\Omega})\;\mbox{其中}\;\theta\in (0, 1), w_{0}\geq 0\; \mbox{在$\Omega$上}, \; \frac{\partial w_{0}}{\partial \nu} = 0 \;\mbox{在$\partial\Omega $上}. \end{array}\right. \end{align} $

$ w\equiv 0 $时, 问题(1.1) 化简为如下经典的Keller–Segel模型

$ \begin{align} \left\{ \begin{array}{ll} u_{t} = \nabla\cdot (D(u) \nabla u)- \nabla\cdot (H(u)\nabla v)+f(u), &x\in \Omega, t>0, \\ v_{t} = \triangle v-v+g(u), &x\in \Omega, \;t>0, \\ { } \frac{\partial u}{\partial \nu} = \frac{\partial v}{\partial \nu} = 0, &x\in \partial\Omega, t>0, \\ u(x, 0) = u_{0}(x), \;\;v(x, 0) = v_{0}(x), &x\in \Omega. \end{array}\right. \end{align} $

在过去的四十年里, 模型(1.7) 已经被许多作者广泛研究. 关于该模型探讨的主要问题是解的整体存在性及爆破性质(见文献[1-19]). 若问题(1.7) 中的信号产生项为线性表示(即$ g(u) = u $)时, 有如下结果: 当$ f(u) = 0 $并且对任意的$ u>1 $以及$ \alpha >\frac{2}{N} $, 条件$ \frac{H(u)}{D(u)}\geq cu^{\alpha} $成立, 则问题(1.7) 在球形区域上具有限时间或无限时间爆破的光滑解; 若对任意的$ u>1 $以及$ \alpha <\frac{2}{N} $, 条件$ \frac{H(u)}{D(u)}\leq cu^{\alpha} $成立, Tao和Winkler [2]证得问题(1.7) 在凸区域上存在整体有界解. 不久, 该结论又被Ishida等[3]延拓到非凸性区域. 之后, Cieślak和Stinner[4]找到一个临界值$ m_{*} $, 使得当问题(1.7) 的初始质量小于临界值$ m_{*} $时, 解是有界的, 而当初始质量超过$ m_{*} $时, 解是无界的. 当$ f(u) = a u-\mu u^{k} $并且$ D(u), H(u) $满足(1.2), (1.3)式时, 若$ 0<2-\alpha-m<\max\{k-m, \frac{2}{N}\} $或者$ 2-\alpha = k $并且$ \mu $充分大, Zheng [5]证得问题(1.7) 存在整体有界的古典解. 若问题(1.7) 中的信号产生项为非线性表示(即$ g(u) = u^{\gamma} $), 则有如下结果: 当$ 1+\gamma-\alpha<k $或者$ 1+\gamma-\alpha = k $并且$ \mu $充分大时, Tao等[6]证明了问题(1.7) 存在整体有界的古典解. 之后, Ding等[7]得到当$ 1-\alpha-m+\gamma<\frac{2}{N} $时, 古典解整体存在并且有界. 再而他们还得到, 当logistic阻尼足够强时, 该古典解会最终收敛到常数稳态解. 另外, Zeng [20]和Ren等[21]研究了带非线性扩散项和信号生成项的吸引–排斥趋化系统古典解的整体有界性和渐近行为, 以及Winkler [22]在三维空间上讨论了带非线性扩散项和一般灵敏度的趋化–斯托克斯系统解的一致有界性和大时间行为.

$ \chi = 0 $时, 问题(1.1) 被称为趋触模型, 关于该模型解的整体存在性和大时间行为结果可以参考文献[23-24]. 与趋触模型相比, 趋化–趋触模型的结果相对较少. 而在现实情况中, 基质降解酶的扩散速率远远大于癌细胞的扩散速率. Chaplain和Lolas [25]提出, 肿瘤细胞的运动依赖于随机扩散、趋触运动和基质降解酶的扩散梯度, 并引入了下面的趋化-趋触模型

$ \begin{align} \left\{ \begin{array}{ll} u_{t} = \triangle u- \chi\nabla\cdot (u\nabla v)-\xi\nabla\cdot(u\nabla w)+u(a-\mu u^{k-1}-\lambda w), &x\in \Omega, t>0, \\ v_{t} = \triangle v-v+u, &x\in \Omega, \;t>0, \\ w_{t} = -v w, &x\in \Omega, \;t>0. \end{array}\right. \end{align} $

$ k = 2, a = \lambda = \mu $时, Tao, Wang[26]和Tao[27]研究了$ N = 1, 2 $时古典解的整体稳定性, 以及Tao[28]研究了二维空间上解的一致有界性. 而对于$ N = 3 $的情形, 若$ \frac{\mu}{\chi} $充分大时, 可知解是整体存在并且一致有界的[26, 29], 而当$ \frac{\mu}{\chi} $比较小时, 还没有相关结果. 最近, Zheng和Ke[30]证明了当$ k>2 $或者$ k = 2 $, 并且$ \mu $充分大时, 问题(1.8) 存在整体有界的古典解. 另外, 当$ \mu $充分大时, 问题(1.8) 的解将指数衰减到常数稳态解$ ((\frac{a}{\mu})^{\frac{1}{k-1}}, (\frac{a}{\mu})^{\frac{1}{k-1}}, 0) $.

最近几年, 许多学者开始研究带非线性扩散项的趋化-趋触模型, 如下

$ \begin{align} \left\{ \begin{array}{ll} u_{t} = \nabla\cdot(D(u)\nabla u)- \chi\nabla\cdot (u\nabla v)-\xi\nabla\cdot(u\nabla w)+\mu u(1-u-w), &x\in \Omega, t>0, \\ v_{t} = \triangle v-v+u, &x\in \Omega, \;t>0, \\ w_{t} = -v w, &x\in \Omega, \;t>0, \end{array}\right. \end{align} $

其中$ D(u) $满足对任意的$ u>0 $, $ D(u)\geq C_{D}(u+1)^{m-1} $成立. Tao和Winkler[31]得到当$ N\leq 8 $并且$ m>\frac{2N^{2}+4N-4}{N(N+4)} $或者$ N\geq 9 $并且$ m>\frac{2N^{2}+3N+2-\sqrt{8N (N+1)}}{N(N+2)} $时, 问题(1.9) 存在整体解. 后来, Li, Wang等[32-33]研究了$ m>2-\frac{2}{N} $时解的整体有界性. 之后, Wang等[34, 35]以及Liu等[36]优化了文献[32-33] 中的结果. 另外, Jin[37]在对$ \frac{\chi}{\mu} $加上小的假设性条件后, 得到对任意的$ m>0 $, 问题(1.9) 均存在整体有界解.

接下来讨论问题(1.1)的特殊情形$ (g(u) = u, k = 2, a = \lambda = \mu) $的相关结果: Liu等[38]证得当$ N = 2 $$ \max \{1-\alpha, 1-\beta\}< m+\frac{2}{N}-1 $或者$ N\geq 3 $并且$ \max\{1-\alpha, 1-\beta\}< m+\frac{2}{N}-1 $, 其中$ m>2-\frac{2}{N} $$ m\leq 1 $时, 解是整体存在并且一致有界的; 之后, Xu等[39]在三维空间上研究表明, 当$ m>0, \alpha>0, \beta\geq0 $时, 弱解是整体有界的; 随后, 他们还讨论了解的大时间行为. 对于带非线性信号产生项(即$ g(u) = u^{\gamma} $) 的问题(1.1), Dai和Liu[40]得到当$ \max\{1-\alpha+\gamma, 1-\beta+\gamma\}-m<\frac{2}{N} $, 或者$ \max\{1-\alpha+\gamma, 1-\beta+\gamma\}<k $, 或者$ \max\{1-\alpha+\gamma, 1-\beta+\gamma\} = k $并且$ \mu>0 $比较大时, 问题(1.1) 存在整体有界的古典解. 此外, 他们在文献中还讨论了解的渐近行为.

本文的目标是探究非线性扩散项和信号产生项对解的整体有界性的影响, 主要结果如下.

定理 1.1   记$ \Omega\subset{{\Bbb R}} ^{3} $是具光滑边界的有界域并且初值$ (u_{0}, v_{0}, w_{0}) $满足条件(1.6). 假设$ D, H, S $$ g $满足条件(1.2)–(1.5), 则

$ \rm(i) $$ 0<\gamma\leq\frac{2}{3} $时, 若$ \alpha>\gamma-k+1 $并且$ \beta>1-k $, 问题(1.1) 存在整体有界的古典解$ (u, v, w) $.

(ii) 当$ \frac{2}{3}<\gamma\leq1 $时, 若$ \alpha>\gamma-k+\frac{1}{e}+1 $并且$ \beta>\max\{\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1, \frac{(3\gamma-2)(\gamma+\frac{1}{e})}{3}-k+1\} $, 或者$ \alpha>\gamma-k+1 $并且$ \beta>\max\{\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1, \frac{(3\gamma-2)(\alpha+k-1)}{3}-k+1\} $, 问题(1.1) 存在整体有界的古典解$ (u, v, w) $.

2 预备知识

首先, 我们给出古典解的局部存在性结果.

引理 2.1[31, 38]   记$ \Omega\subset{{\Bbb R}} ^{N} (N\geq1) $是具光滑边界的有界域. 假设定理1.1的条件成立, 则存在常数$ T_{\max}\in (0, \infty] $以及局部古典解$ (u, v, w) $满足

$ \begin{align} \left\{ \begin{array}{ll} u\in C^{0}(\overline{\Omega}\times [0, T_{\max}))\cap C^{2, 1}(\overline{\Omega}\times [0, T_{\max})), \\ v\in C^{0}(\overline{\Omega}\times [0, T_{\max}))\cap C^{2, 1}(\overline{\Omega}\times [0, T_{\max})), \\ w\in C^{2, 1}(\overline{\Omega}\times [0, T_{\max})), \end{array}\right. \end{align} $

其中$ u, v\geq0 $$ \Omega\times (0, T_{\max}) $上, 并且$ 0\leq w\leq \|w\|_{L^{\infty}(\Omega)} $. 另外, 若$ T_{\max}<\infty $, 则

接下来我们继续给出一个引理, 可参考文献[41-42].

引理 2.2   假设$ z_{0}\in W^{2, p}(\Omega) $并且$ f\in L^{p}(0, T; L^{p}(\Omega)) $, 则下面的问题

$ \begin{align} \left\{ \begin{array}{ll} z_{t} = \triangle z-z+f, \;\;\;\\ { }\frac{\partial z}{\partial \nu} = 0, \\ v(x, 0) = v_{0}(x), \end{array}\right. \end{align} $

存在唯一解$ z\in L^{p}_{loc}((0, +\infty); W^{2, p}(\Omega)) $满足$ z_{t}\in L^{p}_{loc}((0, +\infty); L^{p}(\Omega)) $, 并且对于$ t_{0}\in (0, T) $, 都有

$ \begin{align} \int_{t_{0}}^{T}\int_{\Omega}{\rm e}^{pt}|\triangle z|^{p}{\rm d}x{\rm d}t\leq C_{p}\int_{t_{0}}^{T}\int_{\Omega}{\rm e}^{pt}|f|^{p}{\rm d}x{\rm d}t+C_{p}\|z(\cdot, t_{0})\|^{p}_{W^{2, p}(\Omega)}, \end{align} $

其中$ C_{p} $是不依赖于$ t_{0} $的常数.

下面的引理介绍了问题(1.1) 解的一些基本性质, 其主要想法来自于文献[32].

引理 2.3   假设$ (u, v, w) $是问题(1.1) 的解, 并且$ D, H, S $$ g $满足条件(1.2)–(1.5), 其中$ 0<\gamma\leq 1 $, 则下面结论成立

$ \rm(i) $存在常数$ C>0 $使得

$ \begin{align} \begin{array}{ll} \|u(\cdot, t)\|_{L^{1}(\Omega)}\leq C\mu^{-\frac{1}{k-1}} , \;\forall\;t\in (0, T_{\max}). \end{array} \end{align} $

$ \rm(ii) $对任意$ s\in [1, \frac{N}{(N \gamma-2)_{+}}) $, 都存在常数$ C_{s}>0 $使得

$ \begin{align} \begin{array}{ll} \|v(\cdot, t)\|_{L^{s}(\Omega)}\leq C_{s} , \;\forall\;t\in (0, T_{\max}), \end{array} \end{align} $

其中$ (N \gamma-2)_{+}: = \max\{N \gamma-2, 0\} $.

$ \rm(iii) $假设$ p>\max\{\frac{N\gamma}{2}, \gamma\} $并且$ \|u(\cdot, t)\|_{L^{p}(\Omega)}\leq C $, 则存在常数$ C_{p}>0 $使得

$ \begin{align} \begin{array}{ll} \|v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{p} , \;\forall\;t\in (0, T_{\max}). \end{array} \end{align} $

$ \rm(iv) $假设$ q>Nr $并且$ \|u(\cdot, t)\|_{L^{q}(\Omega)}\leq C $, 则存在常数$ C_{q}>0 $使得

$ \begin{align} \begin{array}{ll} \|\nabla v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{q} , \;\forall\;t\in (0, T_{\max}). \end{array} \end{align} $

   对问题(1.1) 的第一个方程在$ \Omega $上进行积分, 可得

$ \begin{align} \frac{\rm d}{{\rm d}t}\int_{\Omega}u(x, t){\rm d}x\leq a\int_{\Omega}u(x, t){\rm d}x-\mu\int_{\Omega} u^{k}(x, t){\rm d}x. \end{align} $

Young不等式表明

$ \begin{align} \frac{\rm d}{{\rm d}t}\int_{\Omega}u(x, t){\rm d}x+\int_{\Omega}u(x, t){\rm d}x \leq (|a|+1)^{\frac{k}{k-1}}|\Omega|\mu^{-\frac{1}{k-1}}, \end{align} $

这蕴含着(2.4) 式成立. 利用Neumann热半群的连续性质, 再结合$ (1.1)_{2} $式和(1.5) 式可得

$ \begin{align} v = {\rm e}^{t(\triangle-1)}v_{0}+\int^{t}_{0}{\rm e}^{t(\triangle-1)}g(u){\rm d}s\leq {\rm e}^{t(\triangle-1)}v_{0}+C_{g}\int^{t}_{0}{\rm e}^{t(\triangle-1)}u^{\gamma}{\rm d}s. \end{align} $

$ s\in [1, \frac{N}{(N \gamma-2)_{+}}) $, 由(2.10) 式以及[42, 引理1.3(i)] 可知对任意的$ t\in (0, T_{\max}) $,

$ \begin{align}{l} \|v(\cdot, t)\|_{L^{s}(\Omega)}\leq&{ } \|{\rm e}^{t(\triangle-1)}v_{0}\|_{L^{s}(\Omega)}+C_{g}\int^{t}_{0}\|{\rm e}^{(t-\tau)(\triangle-1)}(u^{\gamma}-\overline{u^{\gamma}}+\overline{u^{\gamma}})(\cdot, \tau)\|_{L^{s}(\Omega)}{\rm d}\tau\\ \leq &{ } C_{1}\|v_{0}\|_{L^{\infty}(\Omega)} +C_{1} \int^{t}_{0}{\rm e}^{-(t-\tau)}\| \overline{u^{\gamma} } (\cdot, \tau)\|_{L^{s}(\Omega)}{\rm d}\tau \\ &{ } +C_{1} \int^{t}_{0}(1+(t-\tau)^{-\frac{N}{2}(\gamma-\frac{1}{s})})\|u^{\gamma}(\cdot, \tau)-\overline{u^{\gamma}}(\cdot, \tau)\|_{L^{\frac{1}{\gamma}}(\Omega)} {\rm e}^{-\lambda_{1}(t-\tau)}{\rm d}\tau, \end{align} $

其中$ C_{1}>0 $是一个常数, $ \overline{u^{\gamma} } (\tau) = \frac{1}{|\Omega|}\int_{\Omega}u^{\gamma}(x, \tau){\rm d}x $.$ 0<\gamma\leq1 $

$ \begin{align} (u^{\gamma}-\overline{u^{\gamma}})^{\frac{1}{\gamma}}\leq(u^{\gamma}+\overline{u^{\gamma}})^{\frac{1}{\gamma}}\leq C_{2}(u+1), \end{align} $

其中$ C_{2}>0 $. 因此, 通过(2.12) 式和(2.4) 式可知

$ \begin{align} \|u^{\gamma}(\cdot, \tau)-\overline{u^{\gamma}}(\cdot, \tau)\|_{L^{\frac{1}{\gamma}}(\Omega)}\leq C_{3}, \end{align} $

其中$ C_{3} $是一个正常数. 将(2.13) 式代入(2.11) 式, 可得

$ \begin{align} \|v(\cdot, t)\|_{L^{s}(\Omega)}\leq C_{4}, \;\forall\;t\in (0, T_{\max}), \end{align} $

这表明(2.5) 式成立. 利用类似的方法也可以得到(2.6) 式和(2.7) 式. 证毕.

引理 2.4[28]   假设$ (u, v, w) $是问题(1.1) 的解, 则对任意的$ (x, t)\in \Omega\times (0, T_{\max}) $, 成立

$ \begin{align} -\triangle w(x, t) \leq \|w_{0}\|_{L^{\infty}(\Omega)}v(x, t)+M, \end{align} $

其中

$ \begin{align} M: = \|w_{0}\|_{L^{\infty}(\Omega)}+4\|\nabla\sqrt{w_{0}}\|^{2}_{L^{\infty}(\Omega)}+\frac{\|w_{0}\|_{L^{\infty}(\Omega)}}{e}. \end{align} $

3 定理1.1的证明

为证明问题(1.1) 存在整体有界的古典解, 首先给出下面的引理. 为方便起见, 记$ T: = T_{\max} $.

引理 3.1  假设$ D, H, S $以及$ g $满足条件(1.2)–(1.5), 其中$ \beta>1-k $, 则有如下结果

$ \rm(i) $$ \alpha>\gamma-k+\frac{1}{e}+1 $$ p>\max\{1, \beta, \frac{3\gamma}{2}+1-k, \gamma-k+\frac{1}{e}+1\} $. 若存在常数$ C_{p}>0 $满足

$ \begin{equation} \|v(\cdot, t)\|_{L^{\frac{p+k-1}{\beta+k-1}}(\Omega)}\leq C_{p}, \;\forall\; t\in (0, T), \end{equation} $

$ \begin{equation} \|u(\cdot, t)\|_{L^{p}(\Omega)}\leq C, \;\forall\; t\in (0, T), \end{equation} $

其中$ C>0 $与常数$ C_{p}, \mu $有关.

$ \rm(ii) $$ \alpha>\gamma-k+1 $$ p>\max\{1, \alpha, \beta\} $. 若存在常数$ C_{p}>0 $满足

$ \begin{equation} \|v(\cdot, t)\|_{L^{\frac{p+k-1}{\beta+k-1}}(\Omega)}\leq C_{p}, \;\forall\; t\in (0, T), \end{equation} $

$ \begin{equation} \|u(\cdot, t)\|_{L^{p}(\Omega)}\leq C, \;\forall\; t\in (0, T), \end{equation} $

其中$ C >0 $与时间$ T $无关.

   在问题(1.1) 的第一个方程两边同乘$ (1+u)^{p-1} $, 并且在$ \Omega $上积分, 则有

$ \begin{array}{l} \frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(u+1)^{p}{\rm d}x\\\leq -(p-1)C_{D}\int_{\Omega}(u+1)^{m+p-3}|\nabla u|^{2}{\rm d}x+(p-1)\int_{\Omega}(u+1)^{p-2}H(u)\nabla u\cdot \nabla v{\rm d}x\\+(p-1)\int_{\Omega}(u+1)^{p-2}S(u)\nabla u\cdot \nabla w{\rm d}x+\int_{\Omega}(u+1)^{p-1}u(a-\mu u^{k-1}-\lambda w){\rm d}x. \end{array} $

因为$ (u+1)^{k}\leq 2^{k-1}(u^{k}+1) $, 所以

$ \begin{array}{l}\int_{\Omega}(u+1)^{p-1}u(a-\mu u^{k-1}-\lambda w){\rm d}x\\\leq |a|\int_{\Omega}(u+1)^{p}{\rm d}x-\frac{\mu}{2^{k-1}}\int_{\Omega}(u+1)^{k+p-1}{\rm d}x+\mu\int_{\Omega}(u+1)^{p-1}{\rm d}x\\\leq-\frac{5\mu}{6\cdot 2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x +C_{0}, \end{array} $

其中$ C_{0} = (3\cdot2^{k+1})^{\frac{p}{k-1}}a^{\frac{p+k-1}{k-1}}|\Omega|\mu^{-\frac{p}{k-1}}+ (3\cdot2^{k+1})^{\frac{p-1}{k}}|\Omega|\mu $. 结合(3.5) 式和(3.6) 式可知

$ \begin{array} {l}\frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(u+1)^{p}{\rm d}x\\\leq(p-1)\int_{\Omega}(u+1)^{p-2}H(u)\nabla u\cdot \nabla v{\rm d}x+(p-1)\int_{\Omega}(u+1)^{p-2}S(u)\nabla u\cdot \nabla w{\rm d}x\\-\frac{5\mu}{6\cdot 2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x +C_{0}. \end{array} $

定义

(1.3) 式表明

这意味着对任意的$ z\geq0 $, 都有

$ \begin{eqnarray} \varphi(z)\leq \left\{ \begin{array}{ll} { } \frac{2\chi}{|p-\alpha|}, &\mbox{若}\;\;p<\alpha, \\ \chi\ln (1+z), &\mbox{若}\;\;p = \alpha, \\ { } \frac{\chi}{p-\alpha}(1+z)^{p-\alpha}, &\mbox{若}\;\; p>\alpha. \end{array}\right. \end{eqnarray} $

通过分部积分可知

$ \begin{eqnarray} (p-1)\int_{\Omega}(1+u)^{p-2}H(u)\nabla u\cdot\nabla v{\rm d}x & = &(p-1)\int_{\Omega}\nabla \varphi(u)\cdot \nabla v {\rm d}x\\\leq(p-1)\int_{\Omega}\varphi(u)|\triangle v| {\rm d}x. \end{eqnarray} $

情形(i)   结合(3.8) 式和(3.9) 式, 当$ \gamma-k+\frac{1}{e}+1<p<\alpha $时, 有

$ \begin{eqnarray} (p-1)\int_{\Omega}(1+u)^{p-2}H(u)\nabla u\cdot\nabla v{\rm d}x \leq\frac{2\chi(p-1)}{|p-\alpha|}\int_{\Omega}|\triangle v|\\\leq \frac{2\chi(p-1)}{|p-\alpha|}\int_{\Omega}|\triangle v|^{\frac{3}{2}}+ C_{1}, \end{eqnarray} $

其中$ C_{1} = \frac{2\chi(p-1)|\Omega|}{|p-\alpha|} $.$ p>\alpha $时, 有

$ \begin{array}{l} (p-1)\int_{\Omega}(1+u)^{p-2}H(u)\nabla u\cdot\nabla v{\rm d}x \leq\frac{\chi(p-1)}{p-\alpha}\int_{\Omega}(1+u)^{p-\alpha}|\triangle v|{\rm d}x\\\leq\frac{\mu}{3\cdot 2^{k}}\int_{\Omega}(1+u)^{p+k-1}+ C_{2}\int_{\Omega}|\triangle v|^{\frac{p+k-1}{k+\alpha-1}}, \end{array} $

其中$ C_{2} = (3\cdot 2^{k})^{\frac{p-\alpha}{\alpha+k-1}}(\frac{\chi (p-1)}{p-\alpha})^{\frac{p+k-1}{\alpha+k-1}}\mu^{-\frac{p-\alpha}{\alpha+k-1}} $.$ p = \alpha $时, 有

$ \begin{array} {l}(p-1)\int_{\Omega}(1+u)^{p-2}H(u)\nabla u\cdot\nabla v{\rm d}x\\\leq(p-1)\chi\int_{\Omega}\ln(1+u)|\triangle v|{\rm d}x\\\leq(p-1)\chi\int_{\Omega}(1+u)^{\frac{1}{e}}|\triangle v|{\rm d}x\\\leq \frac{\mu}{3\cdot 2^{k}}\int_{\Omega}(1+u)^{p+k-1}+\widetilde{C}_{2}\int_{\Omega}|\triangle v|^{\frac{e(p+k-1)}{e(p+k-1)-1}}, {\qquad} \end{array} $

其中$ \widetilde{C}_{2} = (3\cdot 2^{k})^{\frac{1}{e(p+k-1)-1}}(\chi (p-1))^{\frac{e(p+k-1)}{e(p+k-1)-1}}\mu^{-\frac{1}{e(p+k-1)-1}} $.

对任意的$ z\geq0 $, 定义函数$ \psi(z) = \int^{z}_{0}(1+\sigma)^{p-2}S(\sigma){\rm d}\sigma $. 结合(1.4) 式和$ p>\beta $可知

注意到引理2.4以及$ \beta>1-k $, 则有

$ \begin{array}{l} (p-1)\int_{\Omega}(1+u)^{p-2}S(u)\nabla u\cdot\nabla w{\rm d}x\\=-(p-1)\int_{\Omega}\psi(u)\cdot\triangle w{\rm d}x\\\leq (p-1)\|w_{0}\|_{L^{\infty}(\Omega)}\int_{\Omega}\psi(u)v{\rm d}x+(p-1)M\int_{\Omega}\psi(u){\rm d}x\\\leq \frac{\xi(p-1)}{p-\beta}\|w_{0}\|_{L^{\infty}(\Omega)}\int_{\Omega}(1+u)^{p-\beta}v {\rm d}x+ \frac{\xi M(p-1)}{p-\beta}\int_{\Omega}(1+u)^{p-\beta}{\rm d}x\\\leq \frac{\mu}{3\cdot 2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x +C_{3} \int_{\Omega}v^{\frac{p+k-1}{\beta+k-1}}{\rm d}x +C_{4}, \end{array} $

其中

$ \begin{equation} \begin{array}{l} { } C_{3} = (3\cdot 2^{k})^{\frac{p-\beta}{\beta+k-1}}(\frac{\xi (p-1)}{p-\beta}\|w_{0}\|_{L^{\infty}(\Omega)})^{\frac{p+k-1}{\beta+k-1}}\mu^{-\frac{p-\beta}{\beta+k-1}}, \\ { } C_{4} = (3\cdot 2^{k})^{\frac{p-\beta}{\beta+k-1}}(\frac{\xi k(p-1)}{p-\beta})^{\frac{p+k-1}{\beta+k-1}}|\Omega|\mu^{-\frac{p-\beta}{\beta+k-1}}. \end{array} \end{equation} $

$ \gamma-k+\frac{1}{e}+1<p<\alpha $时, 由(3.1), (3.7), (3.10)式以及(3.13) 式可推出

$ \begin{eqnarray} \frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(1+u)^{p}\leq -\frac{\mu}{2^{k}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x+\frac{2\chi(p-1)}{|p-\alpha|}\int_{\Omega}|\triangle v|^{\frac{3}{2}}{\rm d}x+C_{5}, \end{eqnarray} $

其中$ C_{5} = C_{3}C_{0}^{\frac{p+k-1}{\beta+k-1}}+C_{4}+C_{0}+C_{1} $. 又因为

$ \begin{eqnarray} \frac{3}{2p}\int_{\Omega}(1+u)^{p}{\rm d}x\leq \frac{\mu}{3\cdot 2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x+C_{6}, \end{eqnarray} $

其中$ C_{6} = (\frac{1}{p})^{\frac{p+k-1}{k-1}}(3\cdot 2^{k-1})^{\frac{p}{k-1}}|\Omega|\mu^{-\frac{p}{k-1}} $. 所以结合(3.15) 式和(3.16) 式, 有

$ \begin{array} {l}\frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(1+u)^{p}{\rm d}x+\frac{3}{2p}\int_{\Omega}(1+u)^{p}{\rm d}x\\\leq - \frac{\mu}{3\cdot 2^{k}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x +\frac{2\chi(p-1)}{|p-\alpha|}\int_{\Omega}|\triangle v|^{\frac{3}{2}}{\rm d}x+C_{7}, \end{array} $

其中$ C_{7} = C_{5}+C_{6} $. 常数变化公式表明

$ \begin{array}{l} \frac{1}{p}\int_{\Omega}(1+u)^{p}{\rm d}x \leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s\\+\frac{2\chi(p-1)}{|p-\alpha|}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}|\triangle v|^{\frac{3}{2}}{\rm d}x{\rm d}s \\+\frac{{\rm e}^{-\frac{3}{2}(t-t_{0})}}{p}\int_{\Omega}(1+u(\cdot, t_{0}))^{p}{\rm d}x+C_{7}\int^{t}_{t_{0}}{\rm e}^{-\frac{3}{2}(t-s)}{\rm d}s\\\leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s \\+\frac{2\chi(p-1)}{|p-\alpha|}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}|\triangle v|^{\frac{3}{2}}{\rm d}x {\rm d}s +\frac{M_{0}}{p}+C_{7}, \end{array} $

其中$ M_{0} = \int_{\Omega}(1+u(\cdot, t_{0}))^{p}{\rm d}x $. 因为$ p>\frac{3\gamma}{2}+1-k $, 通过引理2.2, Young不等式和(1.5) 式可得

$ \begin{array} {l}\frac{2\chi(p-1)}{|p-\alpha|}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}|\triangle v|^{\frac{3}{2}}{\rm d}x{\rm d}s\\\leq\frac{2\chi(p-1)C}{|p-\alpha|}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}u^{\frac{3\gamma}{2}}{\rm d}x {\rm d}s+\frac{2\chi(p-1)C}{|p-\alpha|}\|v(\cdot, t_{0})\|_{W^{2, \frac{3}{2}}(\Omega)}^{\frac{3}{2}}\\\leq \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\frac{3}{2}(t-s)}(u+1)^{p+k-1}{\rm d}x{\rm d}s+C_{8}, \end{array} $

其中$ C_{8} $是一个正常数. 结合(3.18) 式可得

$ \begin{eqnarray} \frac{1}{p}\int_{\Omega}(1+u(\cdot, t))^{p}{\rm d}x\leq C_{9}, \;\forall\; t\in (0, T), \end{eqnarray} $

其中$ C_{9} = \frac{M_{0}}{p}+C_{7}+C_{8} $.

$ p>\alpha $时, 注意到(3.1), (3.7), (3.11)和(3.13) 式, 则有

$ \begin{eqnarray} \frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(1+u)^{p}{\rm d}x\leq -\frac{\mu}{3\cdot2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x+C_{2}\int_{\Omega}|\triangle v|^{\frac{p+k-1}{\alpha+k-1}}{\rm d}x+C_{5}, \end{eqnarray} $

其中$ C_{5} = C_{3}C_{0}^{\frac{p+k-1}{\beta+k-1}}+C_{4}+C_{0} $. 定义

我们由(3.21) 式得到

$ \begin{array} {l}\frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(1+u)^{p}{\rm d}x+\frac{m}{p}\int_{\Omega}(1+u)^{p}{\rm d}x\\\leq - \frac{\mu}{3\cdot 2^{k}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x +C_{2}\int_{\Omega}|\triangle v|^{m}{\rm d}x+C_{10}, \end{array} $

其中$ C_{10} = C_{5}+(3\cdot 2^{k})^{\frac{p}{k-1}}(\frac{m}{p})^{\frac{p+k-1}{k-1}}|\Omega|\mu^{-\frac{p}{k-1}} $. 回顾引理2.2, 再综合(3.22) 式可得

$ \begin{array}{l} \frac{1}{p}\int_{\Omega}(1+u)^{p}{\rm d}x \leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s \\+C_{2}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}|\triangle v|^{m}{\rm d}x{\rm d}s +\frac{{\rm e}^{-m(t-t_{0})}}{p}\int_{\Omega}(1+u(\cdot, t_{0}))^{p}{\rm d}x\\+C_{10}\int^{t}_{t_{0}}{\rm e}^{-m(t-s)}{\rm d}s\\\leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s \\+C_{2}C_{m}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{m\gamma}{\rm d}x{\rm d}s \\+C_{2}C_{m}\|v(\cdot, t_{0})\|_{W^{2, m}(\Omega)}^{m}+ \frac{M_{0}}{p}+C_{10}. \end{array} $

因为$ \alpha> \gamma-k+\frac{1}{e}+1 $, 所以$ m\gamma<p+k-1 $. 利用Young不等式计算可得

$ \begin{equation} C_{2}C_{m}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{m\gamma}{\rm d}x{\rm d}s \leq \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{p+k-1}{\rm d}x{\rm d}s+C_{11}, \end{equation} $

其中$ C_{11} = \frac{1}{m}(3\cdot 2^{k})^{\frac{m\gamma}{p+k-1-m\gamma}}(C_{2}C_{m})^{\frac{p+k-1}{p+k-1-m\gamma}}|\Omega|\mu^{-\frac{m\gamma}{p+k-1-m\gamma}} $. 将(3.24) 式代入(3.23) 式, 可知

$ \begin{eqnarray} \frac{1}{p}\int_{\Omega}(1+u(\cdot, t))^{p}{\rm d}x\leq C_{12}, \;\forall\;t\in (0, T), \end{eqnarray} $

其中$ C_{12} = C_{2}C_{m}\|v(\cdot, t_{0})\|_{W^{2, m}(\Omega)}^{m}+\frac{M_{0}}{p}+C_{10}+C_{11} $.

$ p = \alpha $时, 综合(3.1) 式, (3.7) 式, (3.12) 式和(3.13) 式可得

$ \begin{equation} \frac{1}{p}\frac{\rm d}{{\rm d}t}\int_{\Omega}(1+u)^{p}{\rm d}x\leq -\frac{\mu}{3\cdot2^{k-1}}\int_{\Omega}(1+u)^{p+k-1}{\rm d}x+\widetilde{C}_{2}\int_{\Omega}|\triangle v|^{\frac{e(p+k-1)}{e(p+k-1)-1}}{\rm d}x+C_{5}. \end{equation} $

定义

类似(3.23) 式, 通过计算容易证明

$ \begin{eqnarray} \frac{1}{p}\int_{\Omega}(1+u)^{p}{\rm d}x \leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\widetilde{m}(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s \\+\widetilde{C}_{2}C_{\widetilde{m}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\widetilde{m}(t-s)}(1+u) ^{\widetilde{m}\gamma}{\rm d}x{\rm d}s \\+\widetilde{C}_{2}C_{\widetilde{m}}\|v(\cdot, t_{0})\|_{W^{2, \widetilde{m}}(\Omega)}^{\widetilde{m}} +\frac{M_{0}}{p}+\widetilde{C}_{10}, \end{eqnarray} $

其中$ \widetilde{C}_{10} = C_{5}+(3\cdot 2^{k})^{\frac{p}{k-1}}(\frac{\widetilde{m}}{p})^{\frac{p+k-1}{k-1}}|\Omega|\mu^{-\frac{p}{k-1}} $. 由于$ \alpha = p> \gamma-k+\frac{1}{e}+1 $, 则有$ \widetilde{m}\gamma<p+k-1 $. Young不等式表明

$ \begin{array}{l} \widetilde{C}_{2}C_{\widetilde{m}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\widetilde{m}(t-s)}(1+u)^{\widetilde{m} \gamma}{\rm d}x{\rm d}s \\\leq\frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-\widetilde{m}(t-s)}(1+u)^{p+k-1}{\rm d}x{\rm d}s+\widetilde{C}_{11}, \end{array} $

其中$ \widetilde{C}_{11} = \frac{1}{\widetilde{m}}(3\cdot 2^{k})^{\frac{\widetilde{m}\gamma}{p+k-1-\widetilde{m}\gamma}} (\widetilde{C}_{2}C_{\widetilde{m}})^{\frac{p+k-1}{p+k-1-\widetilde{m}\gamma}}|\Omega|\mu^{ -\frac{\widetilde{m}\gamma}{p+k-1-\widetilde{m}\gamma}} $. 将(3.28) 式代入(3.27) 式, 可得

$ \begin{eqnarray} \frac{1}{p}\int_{\Omega}(1+u(\cdot, t))^{p}{\rm d}x\leq \widetilde{C}_{12}, \;\forall\;t\in (0, T), \end{eqnarray} $

其中$ \widetilde{C}_{12} = \widetilde{C}_{2}C_{\widetilde{m}}\|v(\cdot, t_{0})\|_{W^{2, \widetilde{m}}(\Omega)}^{\widetilde{m}}+\frac{M_{0}}{p}+\widetilde{C}_{10}+\widetilde{C}_{11} $.

情形(ii)   当$ p>\alpha $并且$ \alpha> \gamma-k+1 $时, 定义

$ \begin{eqnarray} m: = \frac{p+k-1}{\alpha+k-1}, \end{eqnarray} $

类似(3.23) 式, 容易证明

$ \begin{eqnarray} \frac{1}{p}\int_{\Omega}(1+u)^{p}{\rm d}x \leq - \frac{\mu}{3\cdot 2^{k}}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{p+k-1}{\rm d}x {\rm d}s\\ +C_{2}C_{m}\int^{t}_{t_{0}}\int_{\Omega}{\rm e}^{-m(t-s)}(1+u)^{m\gamma}{\rm d}x{\rm d}s \\+C_{2}C_{m}\|v(\cdot, t_{0})\|_{W^{2, m}(\Omega)}^{m} +\frac{M_{0}}{p}+C_{10}. \end{eqnarray} $

$ \alpha> \gamma-k+1 $, 可得$ m\gamma<p+k-1 $, 再利用(3.31) 式可知

$ \begin{align} \frac{1}{p}\int_{\Omega}(1+u(\cdot, t))^{p}{\rm d}x\leq C_{13}, \;\forall\;t\in (0, T), \end{align} $

其中$ C_{13}>0 $是一个常数. 证毕.

引理 3.2   假设$ D, H, S $$ g $满足条件(1.2)–(1.5). 则下面结论成立

$ \rm(I) $$ 0<\gamma\leq\frac{2}{3} $, $ \alpha>\gamma-k+1 $并且$ \beta>1-k $, 则存在常数$ C>0 $, 使得对任意$ t\in (0, T) $, 都有$ \|v(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq C $.

$ \rm(II) $$ \frac{2}{3}<\gamma\leq1 $, $ \alpha>\gamma-k+\frac{1}{e}+1 $并且$ \beta>\max\{\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1, \frac{(3\gamma-2)(\gamma+\frac{1}{e})}{3}-k+1\} $, 或者$ \alpha>\gamma-k+1 $并且$ \beta>\max\{\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1, \frac{(3\gamma-2)(\alpha+k-1)}{3}-k+1\} $, 则存在常数$ C>0 $, 使得对任意$ t\in (0, T) $, 都有$ \|v(\cdot, t)\|_{W^{1, \infty}(\Omega)}\leq C $.

   对于$ 0<\gamma\leq\frac{2}{3} $的情形, 由引理2.3(i), (ii) 可得对任意的$ s\geq 1 $, 有

$ \begin{align} \begin{array}{ll} \|v(\cdot, t)\|_{L^{s}(\Omega)}\leq C_{14}, \;\forall\;t\in (0, T). \end{array} \end{align} $

$ p_{1}>\max\{\frac{3\gamma}{2}, 1, \alpha, \beta\} $, 这意味着$ \frac{p_{1}+k-1}{\beta+k-1}>1 $, 因此由(3.33) 式可得

$ \begin{align} \begin{array}{ll} \|v(\cdot, t)\|_{L^{\frac{p_{1}+k-1}{\beta+k-1}}(\Omega)}\leq C_{15}, \;\forall\;t\in (0, T). \end{array} \end{align} $

再结合引理3.1(ii), 可知

$ \begin{align} \begin{array}{ll} \|u(\cdot, t)\|_{L^{p_{1}}(\Omega)}\leq C_{16}, \;\forall\;t\in (0, T). \end{array} \end{align} $

由于$ p_{1}>\frac{3\gamma}{2} $, 因此可以通过引理2.4(iii) 得到

$ \begin{align} \begin{array}{ll} \|v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{17}, \;\forall\;t\in (0, T). \end{array} \end{align} $

再次利用引理3.1(ii) 并且令$ p_{2}>\max\{3\gamma, 1, \alpha, \beta\} $, 可得

$ \begin{align} \begin{array}{ll} \|u(\cdot, t)\|_{L^{p_{2}}(\Omega)}\leq C_{18}, \;\forall\;t\in (0, T). \end{array} \end{align} $

引理2.3(iv) 表明

$ \begin{align} \begin{array}{ll} \|\nabla v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{19}, \;\forall\;t\in (0, T), \end{array} \end{align} $

这蕴含了情形(Ⅰ) 成立.

对于$ \frac{2}{3}<\gamma\leq1 $的情形, 由于$ \beta>\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1 $并且$ \beta>\frac{(3\gamma-2)(\gamma+\frac{1}{e})}{3}-k+1 $, 可知

$ \begin{align} \begin{array}{ll} { } \frac{3\gamma}{2}<\frac{3}{3r-2}(\beta+k-1)+1-k, \\ { } \gamma-k+\frac{1}{e}+1<\frac{3}{3\gamma-2}(\beta+k-1)+1-k, \\ { } \beta<\frac{3}{3r-2}(\beta+k-1)+1-k. \end{array} \end{align} $

$ \max\{\frac{3\gamma}{2}, \gamma-k+\frac{1}{e}+1, \beta\}< p_{3}< \frac{3}{3r-2}(\beta+k-1)+1-k $, 则有

$ \begin{align} \frac{p_{3}+k-1}{\beta+k-1}\in (1, \frac{3}{3\gamma-2}). \end{align} $

通过引理2.3(ii), 可以得到

$ \begin{align} \|v(\cdot, t)\|_{L^{\frac{p_{3}+k-1}{\beta+k-1}}(\Omega)}\leq C_{20}, \;\forall\;t\in (0, T). \end{align} $

结合引理3.1(i) 以及$ k>1 $, 可知

$ \begin{align} \|u(\cdot, t)\|_{L^{p_{3}}(\Omega)}\leq C_{21}, \;\forall\;t\in (0, T). \end{align} $

由于$ p_{3}>\frac{3\gamma}{2} $, 利用引理2.4(iii), 可以得到

$ \begin{align} \|v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{22}, \;\forall\;t\in (0, T). \end{align} $

再次使用引理3.1(i) 并且令$ p_{4}>\max\{3\gamma, \gamma-k+\frac{1}{e}+1, \beta\} $, 不难证明

$ \begin{align} \|u(\cdot, t)\|_{L^{p_{4}}(\Omega)}\leq C_{23}, \;\forall\;t\in (0, T). \end{align} $

结合引理2.3(iv), 可知

$ \begin{align} \|\nabla v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{24}, \;\forall\;t\in (0, T). \end{align} $

类似地, 若$ \beta>\max\{\frac{(3\gamma-2)(3\gamma+2k-2)}{6}-k+1, \frac{(3\gamma-2)(\alpha+k-1)}{3}-k+1\} $, 选取$ p_{5} $满足条件

$ \begin{align} \max\{\frac{3\gamma}{2}, \alpha, \beta\}< p_{5}< \frac{3}{3r-2}(\beta+k-1)+1-k, \end{align} $

则有$ \frac{p_{5}+k-1}{\beta+k-1}\in (1, \frac{3}{3\gamma-2}) $. 引理2.3(iii) 和引理3.1(ii) 表明$ \|u\|_{L^{p_{5}}(\Omega)}\leq C_{25} $$ \|v\|_{L^{\infty}(\Omega)}\leq C_{26} $. 再次利用引理3.1(ii) 并且令$ p_{6}>\max\{3\gamma, \alpha, \beta\} $, 可知$ \|u(\cdot, t)\|_{L^{p_{6}}(\Omega)}\leq C_{27} $. 再而, 通过引理2.3(iv)可得$ \|\nabla v(\cdot, t)\|_{L^{\infty}(\Omega)}\leq C_{28} $, 这蕴含了情形(Ⅱ) 成立. 证毕.

定理1.1的证明   利用引理3.2, 再结合著名的Moser-Alikakos迭代技术[32-33, 39]可知$ \|u\|_{L^{\infty}(\Omega)} $的一致有界性. 再结合引理2.1, 便可完成定理1.1的证明.

参考文献

Winkler M .

Does a 'volume-filling effect' always prevent chemotactic collapse?

Math Methods Appl Sci, 2010, 33, 12- 24

DOI:10.1002/mma.1146      [本文引用: 1]

Tao Y , Winkler M .

Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity

J Differential Equations, 2012, 252, 692- 715

DOI:10.1016/j.jde.2011.08.019      [本文引用: 1]

Ishida S , Seki K , Yokota T .

Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains

J Differential Equations, 2014, 256, 2993- 3010

DOI:10.1016/j.jde.2014.01.028      [本文引用: 1]

CieśLak T , Stinner C .

New critical exponents in a fully parabolic quasilinear Keller-Segel and applications to volume filling models

J Differential Equations, 2015, 258, 2080- 2113

DOI:10.1016/j.jde.2014.12.004      [本文引用: 1]

Zheng J .

Boundedness of solutions to a quasilinear parabolic-parabolic Keller-Segel system with a logistic source

J Math Anal Appl, 2015, 431, 867- 888

DOI:10.1016/j.jmaa.2015.05.071      [本文引用: 1]

Tao X , Zhou A , Ding M .

Boundedness of solutions to a quasilinear parabolic-parabolic chemotaxis model with nonlinear signal production

J Math Anal Appl, 2019, 474, 733- 747

DOI:10.1016/j.jmaa.2019.01.076      [本文引用: 1]

Ding M , Wang W , Zhou S , Zheng S .

Asymptotic stability in a fully parabolic quasilinear chemotaxis model with general logistic source and signal production

J Differential Equations, 2020, 268 (11): 6729- 6777

DOI:10.1016/j.jde.2019.11.052      [本文引用: 1]

Winkler M .

Finite-time blow-up in low-dimensional Keller-Segel systems with logistic-type superlinear degradation

Z Angew Math Phys, 2018, 69, 40

DOI:10.1007/s00033-018-0935-8     

Cieslak T , Stinner C .

Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions

J Differential Equations, 2012, 252, 5832- 5851

DOI:10.1016/j.jde.2012.01.045     

Cieslak T , Winkler M .

Finite-time blow-up in a quasilinear system of chemotaxis

Nonlinearity, 2008, 21, 1057- 1076

DOI:10.1088/0951-7715/21/5/009     

Herrero M , Velázquez J .

A blow-up mechanism for a chemotaxis model

Ann Sc Norm Super Pisa Cl Sci, 1997, 24 (4): 633- 683

URL    

Nagai T .

Blow-up of nonradial solutions to parabolic-elliptic systems modeling chemotaxis in two-dimensional domains

J Inequal Appl, 2001, 6, 37- 55

URL    

Osaki K , Tsujikawa T , Yagi A , Mimura M .

Exponential attractor for a chemotaxis-growth system of equations

Nonlinear Anal, 2002, 51, 119- 144

DOI:10.1016/S0362-546X(01)00815-X     

Painter K J , Hillen T .

Volume-filling and quorum-sensing in models for chemosensitive movement

Can Appl Math Q, 2002, 10, 501- 543

URL    

Wang L , Li Y , Mu C .

Boundedness in a parabolic-parabolic quasilinear chemotaxis system with logistic source

Discrete Contin Dyn Syst Ser A, 2014, 34, 789- 802

URL    

Winkler M .

Chemotaxis with logistic source: very weak global solutions and their boundedness properties

J Math Anal Appl, 2008, 348, 708- 729

DOI:10.1016/j.jmaa.2008.07.071     

Winkler M .

Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source

Comm Partial Differ Equ, 2010, 35, 1516- 1537

DOI:10.1080/03605300903473426     

Winkler M .

Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction

J Math Anal Appl, 2011, 384, 261- 272

DOI:10.1016/j.jmaa.2011.05.057     

Zhuang M , Wang W , Zheng S .

Boundedness in a fully parabolic chemotaxis system with logistic-type source and nonlinear production

Nonlinear Analysis: Real World Appl, 2019, 47, 473- 483

DOI:10.1016/j.nonrwa.2018.12.001      [本文引用: 1]

Zeng Y .

Existence of global bounded classical solution to a quasilinear attraction-repulsion chemotaxis system with logistic source

Nonlinear Anal, 2017, 161, 182- 197

DOI:10.1016/j.na.2017.06.003      [本文引用: 1]

Ren G , Liu B .

Global boundedness and asymptotic behavior in a quasilinear attraction-repulsion chemotaxis model with nonlinear signal production and logistic-type source

Math Models Methods Appl Sci, 2020, 30 (13): 2619- 2689

DOI:10.1142/S0218202520500517      [本文引用: 1]

Winkler M .

Boundedness and large time behavior in a three-dimensional chemotaxis-Stokes system with nonlinear diffusion and general sensitivity

Calc Var Partial Differ Equ, 2015, 54, 3789- 3828

DOI:10.1007/s00526-015-0922-2      [本文引用: 1]

Litcanu G , Morales-Rodrigo C .

Asymptotic behavior of global solutions to a model of cell invasion

Math Models Methods Appl Sci, 2010, 20 (9): 1721- 1758

DOI:10.1142/S0218202510004775      [本文引用: 1]

Marciniak-Czochra A , Ptashnyk M .

Boundedness of solutions of a haptotaxis model

Math Models Methods Appl Sci, 2010, 20 (3): 449- 476

DOI:10.1142/S0218202510004301      [本文引用: 1]

Chaplain M , Lolas G .

Mathematical modelling of cancer invasion of tissue: Dynamic heterogeneity

Netw Heterogen Media, 2016, 1, 399- 439

URL     [本文引用: 1]

Tao Y , Wang M .

Global solution for a chemotactic-haptotactic model of cancer invasion

Nonlinearity, 2008, 21, 2221- 2238

DOI:10.1088/0951-7715/21/10/002      [本文引用: 2]

Tao Y .

Global existence of classical solutions to a combined chemotaxis-haptotaxis model with logistic source

J Math Anal Appl, 2009, 354, 60- 69

DOI:10.1016/j.jmaa.2008.12.039      [本文引用: 1]

Tao Y. Boundedness in a two-dimensional chemotaxis-haptotaxis system. 2014, arXiv: 1407.7382

[本文引用: 2]

Cao X .

Boundedness in a three-dimensional chemotaxis-haptotaxis model

Z Angew Math Phys, 2016, 67, 11

DOI:10.1007/s00033-015-0601-3      [本文引用: 1]

Zheng J , Ke Y .

Large time behavior of solutions to a fully parabolic chemotaxis-haptotaxis model in $ N $ dimensions

J Differential Equations, 2019, 266, 1969- 2018

DOI:10.1016/j.jde.2018.08.018      [本文引用: 1]

Tao Y , winkler M .

A chemotaxis-haptotaxis model: the roles of nonlinear diffusion and logistic source

SIAM J Math Anal, 2011, 43, 685- 704

DOI:10.1137/100802943      [本文引用: 2]

Li Y , Lankeit J .

Boundedness in a chemotaxis-haptotaxis model with nonlinear diffusion

Nonlinearity, 2016, 29, 1564- 1595

DOI:10.1088/0951-7715/29/5/1564      [本文引用: 4]

Wang Y .

Boundedness in the higher-dimensional chemotaxis-haptotaxis model with nonlinear diffusion

J Differential Equations, 2016, 260, 1975- 1989

DOI:10.1016/j.jde.2015.09.051      [本文引用: 3]

Wang Y .

Boundedness in a multi-dimensional chemotaxis-haptotaxis model with nonlinear diffusion

Appl Math Lett, 2016, 59, 122- 126

DOI:10.1016/j.aml.2016.03.019      [本文引用: 1]

Zheng P , Mu C , Song X .

On the boundedness and decay of solutions for a chemotaxis-haptotaxis system with nonlinear diffusion

Discrete Contin Dyn Syst Ser A, 2016, 36, 1737- 1757

URL     [本文引用: 1]

Liu L , Zheng J , Li Y , Yan W .

A new (and optimal) result for boundedness of solution of a quasilinear chemotaxis-haptotaxis model (with logistic source)

J Math Anal Appl, 2020, 491, 124231

DOI:10.1016/j.jmaa.2020.124231      [本文引用: 1]

Jin C .

Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion

Discrete Contin Dyn Syst Ser B, 2018, 23 (4): 1675- 1688

URL     [本文引用: 1]

Liu J , Zheng J , Wang Y .

Boundedness in a quasilinear chemotaxis-haptotaxis system with logistic source

Z Angew Math Phys, 2016, 67, 21

DOI:10.1007/s00033-016-0620-8      [本文引用: 2]

Xu H , Zhang L , Jin C .

Global solvability and large time behavior to a chemotaxis-haptotaxis model with nonlinear diffusion

Nonlinear Anal: Real World Appl, 2019, 46, 238- 256

DOI:10.1016/j.nonrwa.2018.09.019      [本文引用: 2]

Dai F , Liu B .

Asymptotic stability in a quasilinear chemotaxis-haptotaxis model with general logistic source and nonlinear signal production

J Differential Equations, 2020, 269, 10839- 10918

DOI:10.1016/j.jde.2020.07.027      [本文引用: 1]

Winkler M .

Aggregation vs global diffusive behavior in the higher-dimensional Keller-Segel model

J Differential Equations, 2010, 248, 2889- 2905

DOI:10.1016/j.jde.2010.02.008      [本文引用: 1]

Jin C .

Global classical solution and boundedness to a chemotaxis-haptotaxis model with re-establishment mechanisms

Bull Lond Math Soc, 2018, 50, 598- 618

DOI:10.1112/blms.12160      [本文引用: 1]

/