具有非线性记忆项的半线性双波动方程解的全局非存在性
Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term
通讯作者:
收稿日期: 2021-01-11
基金资助: |
|
Received: 2021-01-11
Fund supported: |
|
In this paper, we investigate the blow-up of solutions to a semilinear double-wave equation with a nonlinear memory term. By establishing some auxiliary functions and using iteration methods associated with a nonlinear integral inequality, the estimate of upper bound for the lifespan is obtained.
Keywords:
本文引用格式
欧阳柏平, 肖胜中.
Ouyang Baiping, Xiao Shengzhong.
1 引言
文献[1]研究了如下具有非线性记忆项的半线性波动方程解的爆破问题
其中
作者运用切片化程序迭代技巧得到了次临界(
也就是说
对于
最近, 文献[27]考虑了一个四阶双曲方程的双波动方程. 需要强调的是, 它与以往的半线性波动方程(比如二阶双曲方程(1.1))具有非常大的不同.
本文研究如下具有非线性记忆项的半线性双波动方程柯西问题解的爆破
其中非线性项
本文结构安排如下: 第
2 主要结果
首先, 引入(0.3)式柯西问题能量解的定义.
定义 2.1 设
使得
其中
(2.1)式中运用分部积分, 有
令
本文有以下定理.
定理 2.1 设
其中
设
其中
3 主要结果的证明
设
取
从而有
对(3.3)式关于时间
由supp
根据(3.4)式及初始值的非负假设, 易知
联立(3.4)–(3.5)式, 有
接下来, 通过对
其中
设
(3.3)式对
运用Hölder不等式于(3.7)式, 有
将测试函数
由分部积分并注意到
其中
联立(3.7)–(3.11)式, 可得
设
积分(3.13)式, 得到
从而有
对(3.15)式求积分, 可得
其中
由(3.16) 式, 存在一个
其中
又由假设有
另外, 由
其中
联立(3.9)式和(3.17)–(3.18)式, 有
其中
由(3.8)–(3.19)式, 可得
其中
对(3.20)式求积分四次, 得到
其中
重记(3.21)式为
其中
接下来, 将运用迭代框架(3.6) 式推出
其中
因而后面的任务变成
联立(3.6)式和(3.23)式, 可得
令
于是, (3.24) 式重记为
上式表明(3.23)式对于
下面研究
易知
因此, 由(3.25)式, 得到
对(3.28)式两边取对数并运用递推方法, 可得
令
于是, 由(3.29)式, 有
其中
联立(3.23), (3.27) 和(3.30)式, 可推出
其中
当
(3.32)式中,
因此, 对于
固定
其中
故对于
(3.32)式中取
从而完成了定理的证明.
4 总结
本文研究了一类具有非线性记忆项的半线性双波动方程解的爆破问题. 运用非线性积分不等式和迭代方法, 通过构造辅助函数, 得到了在次临界情况下该问题解的全局非存在性, 进一步推出了解的生命跨度的上界估计. 后续工作将对该问题在临界情况下解的全局存在性进行研究. 由于是在临界情况下讨论, 所以对辅助函数的构造难度加大, 因此问题变得更加复杂.
参考文献
Blow-up of solutions of nonlinear wave equations in three space dimensions
,DOI:10.1007/BF01647974 [本文引用: 1]
Blow-up of solutions of some nonlinear hyperbolic equations
,
Nonlinear scattering theory at low energy
,DOI:10.1016/0022-1236(81)90063-X
Existence in the large for
Finite-time blow-up for solutions of nonlinear wave equations
,
Nonexistence of global solutions to semilinear wave equations in high dimensions
,DOI:10.1016/0022-0396(84)90169-4
The equation
DOI:10.1017/S0308210500026135 [本文引用: 1]
Interplay effects on blow-up of weakly coupled systems for semilinear wave equations with general nonlinear memory terms
,DOI:10.1016/j.na.2020.112160 [本文引用: 1]
Nonexistence of global solutions for the semilinear Moore-Gibson-Thompson equation in the conservative case
,
Blow-up of solutions to Nakao's problem via an iteration argument
,
A blow-up result for the semilinear Moore-Gibson-Thompson equation with nonlinearity of derivative type in the conservative case
,
Nonexistence of global solutions of nonlinear wave equations with weak time-dependent damping related to Glassey's conjecture
,
Blow-up for semilinear wave equations with the scale invariant damping and super-Fujita exponent
,
Blow-up for a weekly coupled system of semilinear damped wave equations in the scattering case with power nonlinearities
,
Blow-up phenomena for the nonlinear nonlocal porous medium equation under Robin boundary condition
,DOI:10.1016/j.camwa.2013.08.024 [本文引用: 1]
Blow-up phenomena for some nonlinear parabolic problems under mixed boundary conditions
,DOI:10.1016/j.nonrwa.2010.02.011
Blow-up phenomena for a parabolic problem with a gradient nonlinearity under nonlinear boundary conditions
,DOI:10.1016/j.camwa.2013.02.014
Lower bound for the blow-up time for some nonlinear parabolic equations
,
Blow-up analysis for a semi-linear parabolic equation with time-dependent coefficients under nonlinear boundary flux
,
Blow-up phenomena for a nonlinear reaction diffusion system with time dependent coefficients
,DOI:10.1016/j.camwa.2017.07.037
Blow-up phenomena of solutions for a reaction-diffusion equation with weighted exponential nonlinearity
,DOI:10.1016/j.camwa.2018.01.005
Blow-up phenomena for a nonlocal quasilinear parabolic problem equation with time-dependent coefficients under nonlinear boundary flux
,
Blow-up phenomena for a semilinear parabolic equation with weighted with inner absorption under nonlinear boundary flux
,DOI:10.1002/mma.3971
Blow-up analysis for a weakly coupled reaction-diffusion system with gradient sources terms and time-dependent coefficients(in Chinese)
,
Inverse source problem for a double hyperbolic equation describing the three-dimensional time cone model
,DOI:10.1137/15M1018836 [本文引用: 1]
Dissipative higher order hyperbolic equations
,DOI:10.1080/03605302.2017.1390674 [本文引用: 1]
Weakly coupled systems of semilinear elastic waves with different damping mechanisms in 3D
,DOI:10.1002/mma.5370 [本文引用: 1]
/
〈 | 〉 |