带p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性
Existence of Solutions for Anti-Periodic Boundary Value Problems of Fractional Langevin Equation with p(t)-Laplacian Operator
通讯作者:
收稿日期: 2021-01-11
基金资助: |
|
Received: 2021-01-11
Fund supported: |
|
This paper studies the anti-periodic boundary value problems of fractional Langevin equation with p (t)-Laplacian operator. The sufficient conditions for the existence of solutions are obtained by using Schaefer fixed point theorem, and the main result is well illustrated with the aid of an example. The results obtained in this paper extend and enrich the existing related works.
Keywords:
本文引用格式
张纪凤, 张伟, 倪晋波, 任丹丹.
Zhang Jifeng, Zhang Wei, Ni Jinbo, Ren Dandan.
1 引言
Langevin方程描述了布朗运动由于流体分子的碰撞, 颗粒在流体中做无规则运动的动力学行为, 具体模型如下
其中
其中
其中
2017年, Zhou等[8]讨论了带
其中
2018年, Fazli和Nieto[9]讨论了如下分数阶Langevin方程反周期边值问题
其中
2020年, Salem等[16]讨论了如下分数阶Langevin方程多点边值问题
其中
其中
注意到, 变系数Laplacian算子在许多领域中有着广泛的应用, 例如: 非线性弹性力学、电流变流体、图像处理等[23-26]. 显然,
其中
2 预备知识
其中假设右式在
其中
其中
定义 2.3[26] 对任意的
是将有界集映成有界集的连续映射.
引理 2.2(Schaefer不动点定理[28]) 设
3 主要结果
定义空间
引理 3.1 设
在反周期边值条件
下, 有如下形式的解
其中
证 利用算子
上式结合边值条件(3.2) 可得
同理, 运用算子
注意到, 边值条件
将(3.5) 式带入到(3.4) 式, 立知引理结论成立.
基于引理3.1, 定义算子
其中
则由引理3.1, 可知边值问题(1.8) 的解即为算子
接下来, 根据Schaefer不动点定理给出本文主要结果. 为了下文叙述方便, 作如下记号
定理 3.1 设
(H) 存在非负函数
则当
时, 边值问题(1.8) 在
证 关于定理的证明分为两步完成. 第一步. 证明
于是有
注意到
从而
因此,
另一方面, 由于
由Schaefer不动点定理知, 要证明算子
从而有
考虑到不等式
因此
这里
结合(3.7) 式与(3.8) 式可得
由条件(3.6) 以及(3.9) 式可推出存在常数
4 例子
例 4.1 考虑边值问题
对应边值问题(1.8), 这里
取
由定理3.1可知边值问题(4.1) 至少有一个解.
参考文献
Fractional Langevin equation
,DOI:10.1103/PhysRevE.64.051106 [本文引用: 1]
含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性
,DOI:10.3969/j.issn.1003-3998.2020.01.009 [本文引用: 1]
Solvability of BVPs for impulsive fractional Langevin type equations involving three Riemann-Liouville fractional derivatives
DOI:10.3969/j.issn.1003-3998.2020.01.009 [本文引用: 1]
一类分数阶Langevin方程预估校正算法的数值分析
,DOI:10.3969/j.issn.1003-3998.2020.04.017
Numerical analysis of a class of fractional Langevin equation by predictor-corrector method
DOI:10.3969/j.issn.1003-3998.2020.04.017
A study of nonlinear Langevin equation involving two fractional orders in different intervals
,DOI:10.1016/j.nonrwa.2011.07.052 [本文引用: 1]
On fractional Langevin differential equations with anti-periodic boundary conditions
,DOI:10.1140/epjst/e2018-00082-0 [本文引用: 2]
Fractional Langevin equation with anti-periodic boundary conditions
,DOI:10.1016/j.chaos.2018.07.009 [本文引用: 1]
Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions
,DOI:10.1016/j.chaos.2019.109476
Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders
,
On fractional Langevin equation involving two fractional orders
,DOI:10.1016/j.cnsns.2016.05.023
An analytical improvement of a study of nonlinear Langevin equation involving two fractional orders in different intervals
,
Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions
,
Langevin equation involving two fractional orders with three-point boundary conditions
,
Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator
,
Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)-Laplacian operator
,
Existence of solutions for Erdélyi-Kober fractional integral boundary value problems with p(t)-Laplacian operator
,DOI:10.1186/s13662-020-03015-y
The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator
,DOI:10.1007/s12190-019-01264-z
Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator
,DOI:10.1007/s11587-020-00542-4
Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model
,DOI:10.1109/ACCESS.2019.2933865 [本文引用: 1]
Variable exponent, linear growth functionals in image restoration
,DOI:10.1137/050624522 [本文引用: 1]
Averaging of functionals of the calculus of variations and elasticity theory
,
Existence of solutions for weighted p(r)-Laplacian system boundary value problems
,DOI:10.1016/j.jmaa.2006.03.087 [本文引用: 2]
Theory and Applications of Fractional Differential Equations
,
/
〈 | 〉 |