数学物理学报, 2021, 41(4): 1024-1032 doi:

论文

p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性

张纪凤, 张伟,, 倪晋波, 任丹丹

Existence of Solutions for Anti-Periodic Boundary Value Problems of Fractional Langevin Equation with p(t)-Laplacian Operator

Zhang Jifeng, Zhang Wei,, Ni Jinbo, Ren Dandan

通讯作者: 张伟, E-mail: zhangweiazyw@163.com

收稿日期: 2021-01-11  

基金资助: 国家自然科学基金.  11801008
安徽高校自然科学研究项目.  KJ2020A0291
安徽理工大学研究生创新基金项目.  2021CX2117

Received: 2021-01-11  

Fund supported: the NSFC.  11801008
the Key Program of University Natural Science Research Fund of Anhui Province.  KJ2020A0291
the Postgraduate Innovation Fund Project of Anhui University of Science and Technology.  2021CX2117

Abstract

This paper studies the anti-periodic boundary value problems of fractional Langevin equation with p (t)-Laplacian operator. The sufficient conditions for the existence of solutions are obtained by using Schaefer fixed point theorem, and the main result is well illustrated with the aid of an example. The results obtained in this paper extend and enrich the existing related works.

Keywords: Fractional differential equation ; Anti-periodic boundary value problem ; p (t)-Laplacian operator ; Schaefer fixed point theorem

PDF (348KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张纪凤, 张伟, 倪晋波, 任丹丹. p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性. 数学物理学报[J], 2021, 41(4): 1024-1032 doi:

Zhang Jifeng, Zhang Wei, Ni Jinbo, Ren Dandan. Existence of Solutions for Anti-Periodic Boundary Value Problems of Fractional Langevin Equation with p(t)-Laplacian Operator. Acta Mathematica Scientia[J], 2021, 41(4): 1024-1032 doi:

1 引言

Langevin方程描述了布朗运动由于流体分子的碰撞, 颗粒在流体中做无规则运动的动力学行为, 具体模型如下

$ \begin{equation} \frac{{{\rm d}^2}x}{{\rm d}{t^2}} + \gamma \frac{{{\rm d}x}}{{{\rm d}t}} = \Gamma (t), \end{equation} $

其中$ x $是时刻$ t $颗粒的坐标, $ \gamma = ({\alpha \mathord{\left/ {\vphantom {\alpha m}} \right. } m}) $表示单位质量的阻力系数, $ m $为颗粒的质量, 阻力来自介质分子对颗粒的碰撞, $ \Gamma (t) $表示为单位质量的涨落力, 也称为郎之万力[1]. 模型(1) 的建立是基于布朗运动是马尔可夫过程, 不同时刻的$ \Gamma (t) $是相互独立的, 不具有时间相关性和记忆性. 然而, 当布朗颗粒在稠密的黏性流体、具有内部自由度的流体以及在湍流集团中运动时, 郎之万力$ \Gamma (t) $是具有时间相关性, 即布朗运动的过程依赖于历史过程, 具有记忆性, 是非马尔可夫的时间相关过程[2]. 由此, 基于分数阶微分算子的特性(分数阶微分算子具有长程相关性和记忆性), Lutz和Burov等[3-4]引入分数阶微分算子描述布朗颗粒运动过程中记忆性的阻力, 从而得到如下分数阶Langevin方程

$ \begin{equation} x'' + \gamma {}^CD_{0 + }^\alpha x = \Gamma (t), \;0 < \alpha < 1, \end{equation} $

其中$ {}^CD_{0 + }^\alpha $$ \alpha $阶Caputo型分数阶微分算子.

基于分数阶Langevin方程的应用背景, 使得对分数阶Langevin方程初值与边值问题的研究受到学者们广泛的关注[5-16]. 2012年, Ahmad等[7]讨论了如下分数阶Langevin方程三点边值问题

$ \begin{equation} \left\{ \begin{array}{l} {}^CD_{0{\rm{ + }}}^\beta ({}^CD_{0{\rm{ + }}}^\alpha + \lambda )x(t) = f(t, x(t)), \;t \in (0, 1), \\ x(0) = 0, \;\;x(\eta ) = 0, \;\;x(1) = 0, \end{array} \right. \end{equation} $

其中$ 1 < \beta \le 2 $, $ 0 < \alpha \le 1 $, $ {}^CD_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Caputo型分数阶微分算子, $ 0 < \eta < 1 $, $ f \in C([0, 1] \times {{\Bbb R}} , {{\Bbb R}} ) $, $ \lambda \in {{\Bbb R}} $. 作者运用Krasnoselskii不动点定理以及Banach压缩映射定理分别给出了(3)式解的存在性与唯一性的充分性条件.

2017年, Zhou等[8]讨论了带$ p $-Laplacian算子的分数阶Langevin方程反周期边值问题

$ \begin{equation} \left\{ \begin{array}{l} {}^CD_{0{\rm{ + }}}^\beta {\varphi _p}[({}^CD_{0{\rm{ + }}}^\alpha + \lambda )x(t)] = f(t, x(t), {}^CD_{0{\rm{ + }}}^\alpha x(t)), \;t \in (0, 1), \\ x(0) = - x(1), \;\;{}^CD_{0{\rm{ + }}}^\alpha x(0) = - {}^CD_{0{\rm{ + }}}^\alpha x(1), \end{array} \right. \end{equation} $

其中$ 0 < \alpha , \beta \le 1 $, $ {}^CD_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Caputo型分数阶微分算子, $ \lambda \ge 0, $$ {\varphi _p}(s) = |s{|^{p - 2}}s $, $ p>1 $$ p $-Laplacian算子, $ f:[0, 1] \times {{{\Bbb R}} ^2} \to {{\Bbb R}} $满足Carathéodory条件. 作者运用Leray-Schaefer不动点定理给出了(1.4) 式解的存在性的充分条件.

2018年, Fazli和Nieto[9]讨论了如下分数阶Langevin方程反周期边值问题

$ \begin{equation} \left\{ \begin{array}{l} {}^CD_{0{\rm{ + }}}^\beta ({}^CD_{0{\rm{ + }}}^\alpha + \lambda )x(t) = f(t, x(t)), \;t \in (0, 1), \;0 < \alpha \le 1, \;1 < \beta \le 2, \\ x(0) = - x(1), \;{}^CD_{0{\rm{ + }}}^\alpha x(0) = - {}^CD_{0{\rm{ + }}}^\alpha x(1), \;{}^CD_{0{\rm{ + }}}^\alpha {}^CD_{0{\rm{ + }}}^\alpha x(0) = - {}^CD_{0{\rm{ + }}}^\alpha {}^CD_{0{\rm{ + }}}^\alpha x(1), \end{array} \right. \end{equation} $

其中$ {}^CD_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Caputo型分数阶微分算子, $ \lambda \in {{\Bbb R}} , $$ f \in C([0, 1] \times {{\Bbb R}} , {{\Bbb R}} ). $作者运用混合单调算子耦合不动点定理给出了(1.5)式解的存在性以及唯一性的充分条件.

2020年, Salem等[16]讨论了如下分数阶Langevin方程多点边值问题

$ \begin{equation} \left\{ \begin{array}{l} {}^CD_{0{\rm{ + }}}^\beta ({}^CD_{0{\rm{ + }}}^\alpha + \lambda )u(t) = f(t, u(t)), \;t \in (0, 1), \\ u(0) = 0, \;{}^CD_{0{\rm{ + }}}^\alpha u(0) = 0, \;u(1) = \mu u(\eta ), \end{array} \right. \end{equation} $

其中$ 0 < \alpha \le 1 $, $ 1 < \beta \le 2 $, $ {}^CD_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Caputo型分数阶微分算子, $ \mu , \lambda \in {\rm{{{\Bbb R}} }} $, $ 0 < \eta < 1 $满足$ \mu {\eta ^{\alpha + 1}} \ne 1 $, $ f \in {C^1}([0, 1] \times {{\Bbb R}} , {{\Bbb R}} ) $. 作者运用Banach压缩映射定理以及算子不动点定理给出了(1.6) 式解的存在性以及唯一性的充分条件.

近年来, 另一种形式的分数阶微分方程边值问题受到了人们的关注, 即考虑带变系数Laplacian算子的分数阶微分方程边值问题[17-22]. 2016年, Shen和Liu[17]讨论了如下带$ p(t) $-Laplacian算子的分数阶微分方程边值问题

$ \begin{equation} \left\{ \begin{array}{l} D_{0{\rm{ + }}}^\beta {\varphi _{p(t)}}(D_{0{\rm{ + }}}^\alpha x(t)) + f(t, x(t)) = 0, \;t \in (0, 1), \\ x(0) = 0, \;D_{0{\rm{ + }}}^{\alpha - 1}x(1) = \gamma I_{0{\rm{ + }}}^{\alpha - 1}x(\eta ), \;D_{0{\rm{ + }}}^\alpha x(0) = 0, \end{array} \right. \end{equation} $

其中$ 1 < \alpha \le 2 $, $ 0 < \beta \le 1 $, $ D_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Riemann-Liouville型分数阶微分算子, $ \gamma > 0 $, $ 0 < \eta < 1 $, $ f \in C([0, 1] \times {{\Bbb R}} , {{\Bbb R}} ) $, $ {\varphi _{p(t)}}( \cdot ) $$ p(t) $-Laplacian算子, $ p(t) > 1 $, $ p(t) \in {C^1}[0, 1] $ (具体定义参见预备知识). 作者运用Schaefer不动点定理以及Mawhin连续性定理分别给出了问题(1.7)在共振与非共振情形下解存在的充分性条件.

注意到, 变系数Laplacian算子在许多领域中有着广泛的应用, 例如: 非线性弹性力学、电流变流体、图像处理等[23-26]. 显然, $ p(t) $-Laplacian算子是对$ p $-Laplacian算子的推广, 当取$ p(t) \equiv p > 1 $ ($ p $为常数), $ p(t) $-Laplacian算子将退化为$ p $-Laplacian算子. 基于上述工作的启发, 一个自然的想法是考虑带$ p(t) $-Laplacian算子的分数阶Langevin方程边值问题. 为此, 本文研究如下带$ p(t) $-Laplacian算子的分数阶Langevin方程反周期边值问题

$ \begin{equation} \left\{ \begin{array}{l} {}^CD_{0 + }^\beta {\varphi _{p(t)}}[({}^CD_{0 + }^\alpha + \lambda )x(t)] = f(t, x(t), {}^CD_{0 + }^\alpha x(t)), \;t \in (0, 1), \\ x(0) = - x(1), \;\;{}^CD_{0 + }^\alpha x(0) = - {}^CD_{0 + }^\alpha x(1), \end{array} \right. \end{equation} $

其中$ 0 < \alpha , \beta \le 1 $, $ \lambda \ge 0 $, $ 1 < \alpha + \beta \le 2 $, $ {}^CD_{0 + }^\rho $$ \rho (\rho = \alpha , \beta ) $阶Caputo型分数阶微分算子, $ f \in C([0, 1] \times {{\bf{{{\Bbb R}} }}^2}, {\bf{{{\Bbb R}} }}) $, $ {\varphi _{p(t)}}( \cdot ) $$ p(t) $-Laplacian算子, $ p(0) = p(1) $, $ p(t) > 1 $. 注意到, 当$ p(t) \equiv p > 1 $($ p $为常数) 时, 文献[8] 研究的问题是本文的特例.

2 预备知识

定义 2.1[27-28]    函数$ f:(0, + \infty ) \to {{{\Bbb R}} } $$ \alpha (\alpha > 0) $阶Riemann-Liouville型分数阶积分定义为

其中假设右式在$ (0, + \infty ) $上有定义.

定义 2.2[27-28]    函数$ f:(0, + \infty ) \to {{{\Bbb R}} } $$ \alpha (\alpha > 0) $阶Caputo型分数阶导数定义为

其中$ n = [\alpha ] + 1 $, 假设右式在$ (0, + \infty ) $上有定义.

引理 2.1[27-28]    令$ \alpha > 0 $. 假设$ f \in A{C^n}[0, 1] $, 则

其中$ {c_i} \in {{{\Bbb R}} }, \;i = 0, 1, 2, \cdot \cdot \cdot , n - 1, \;n = [\alpha ] + 1. $

定义 2.3[26]    对任意的$ (t, x) \in [0, 1] \times {{{\Bbb R}} } $, $ {\varphi _{p(t)}}(x) = |x{|^{p(t) - 2}}x $是从$ {{{\Bbb R}} } $$ {{{\Bbb R}} } $的同胚映射, 且当$ t $固定时$ {\varphi _{p(t)}}( \cdot ) $是严格单调增的, 其逆映射定义如下

是将有界集映成有界集的连续映射.

引理 2.2(Schaefer不动点定理[28])    设$ X $是Banach空间, 算子$ T:X \to X $为全连续算子, 若集合$ \Omega { = } \left\{ {x \in X|x { = } \mu Tx, \mu \in (0, 1)} \right\} $有界, 则算子$ T $$ \Omega $中至少存在一个不动点.

3 主要结果

定义空间$ X = \{ x:x, {}^CD_{0 + }^\alpha x \in C[0, 1]\} $, 赋予范数$ ||x|{|_X} = ||x|{|_\infty } + ||{}^CD_{0 + }^\alpha x|{|_\infty} $, 其中$ || \cdot |{|_\infty } = \mathop {\max }\limits_{t \in [0, 1]} | \cdot | $, 显然$ (X, || \cdot |{|_X}) $是Banach空间.

引理 3.1    设$ h \in C[0, 1] $, 则分数阶Langevin方程

$ \begin{equation} {}^CD_{0 + }^\beta {\varphi _{p(t)}}[({}^CD_{0 + }^\alpha + \lambda )x(t)] = h(t), \;\;t \in (0, 1), \end{equation} $

在反周期边值条件

$ \begin{equation} x(0) = - x(1), \;{}^CD_{0 + }^\alpha x(0) = - {}^CD_{0 + }^\alpha x(1) \end{equation} $

下, 有如下形式的解

其中

    利用算子$ I_{0 + }^\beta $作用到(3.1) 式的两端, 则由引理2.1以及定义2.3知

$ \begin{equation} ({}^CD_{0 + }^\alpha + \lambda )x(t) = \varphi _{p(t)}^{ - 1}\left( {{c_0} + I_{0 + }^\beta h(t)} \right), \;{c_0} \in {{{\Bbb R}} }, \end{equation} $

上式结合边值条件(3.2) 可得

同理, 运用算子$ I_{0 + }^\alpha $作用到(3.3) 式的两端, 得到

$ \begin{equation} x(t) = {c_1} + I_{0 + }^\alpha \varphi _{p(t)}^{ - 1}(Ah(t) + I_{0 + }^\beta h(t)) - \lambda I_{0 + }^\alpha x(t), \;{c_1} \in {{{\Bbb R}} }, \end{equation} $

注意到, 边值条件$ x(0) = - x(1) $, 可推出

$ \begin{equation} {c_1} = - \frac{1}{2}I_{0 + }^\alpha \varphi _{p(t)}^{ - 1}{\left. {(Ah(t) + I_{0 + }^\beta h(t))} \right|_{t = 1}} + \frac{\lambda }{2}{\left. {I_{0 + }^\alpha x(t)} \right|_{t = 1}} = Bh(t), \end{equation} $

将(3.5) 式带入到(3.4) 式, 立知引理结论成立.

基于引理3.1, 定义算子$ T:C[0, 1] \to C[0, 1] $如下

其中$ N:C[0, 1] \to C[0, 1] $是Nemytskii算子定义为

则由引理3.1, 可知边值问题(1.8) 的解即为算子$ T $的不动点.

接下来, 根据Schaefer不动点定理给出本文主要结果. 为了下文叙述方便, 作如下记号

定理 3.1    设$ f:[0, 1] \times {{{{\Bbb R}} }^2} \to {{{\Bbb R}} } $连续, 且满足条件

(H)     存在非负函数$ \zeta , \phi , \psi \in C[0, 1] $使得

则当

$ \begin{equation} \ell \left( {\frac{{3Q}}{{2\alpha }} + Q\Gamma (\alpha)}\right) + \frac{{3\lambda }}{{2\Gamma (\alpha + 1)}} + \lambda < 1 \end{equation} $

时, 边值问题(1.8) 在$ X $上至少有一个解, 其中

    关于定理的证明分为两步完成. 第一步. 证明$ T $是全连续算子. 事实上, 对任意的$ \delta > 0 $, 定义$ X $上的有界开集$ \Omega = \left\{ {x \in X:{\rm{||}}x{\rm{|}}{{\rm{|}}_X} < \delta } \right\} $.$ f $$ \varphi _{p(t)}^{ - 1}( \cdot ) $的连续性易证$ T $$ [0, 1] $上是连续的, 且存在常数$ M > 0 $使得

于是有

注意到

从而

因此, $ T $$ \bar \Omega $上一致有界. 下证$ T $$ \bar \Omega $上等度连续. 事实上, 对任意的$ x \in \bar \Omega $, $ 0 \le {t_1} < {t_2} \le 1 $, 则有

另一方面, 由于$ \varphi _{p(t)}^{ - 1}(I_{0 + }^\beta Nx(t) + ANx(t)) $$ x(t) $$ [0, 1] $上连续, 从而, $ {}^CD_{0{\rm{ + }}}^\alpha Tx $$ [0, 1] $上一致连续. 进而, $ T $$ \bar \Omega $上是等度连续的. 综上, 根据Arzelà-Ascoli定理知$ T $是全连续算子. 第二步, 证明算子$ T $$ X $上存在不动点. 为此, 我们在$ X $上定义集合

由Schaefer不动点定理知, 要证明算子$ T $$ X $上存在不动点只需说明$ S $有界即可. 事实上, 对任意的$ x \in S $, 由(H) 可得

从而有

考虑到不等式$ {(x + y)^p} \le {2^p}({x^p} + {y^p}) $$ (x, y, p>0) $以及$ {x^k} \le x + 1(k \in [0, 1], x \ge 0) $, 可知对任意的$ t \in [0, 1] $

因此

$ \begin{eqnarray} |x(t)| &{\le}& |I_{{0^ + }}^\alpha \varphi _{p(t)}^{ - 1}(I_{{0^ + }}^\beta Nx(t) + ANx(t))| + |BNx(t)| + \lambda |I_{{0^ + }}^\alpha x(t)|\\ & {\le}& Q\int_0^t {{{(t - s)}^{\alpha {-} 1}}} (||\zeta ||_\infty ^{{1 \mathord{\left/ {\vphantom {1 {(p(s) - 1)}}} \right. } {(p(s) - 1)}}} + {(||\phi |{|_\infty } + ||\psi |{|_\infty })^{{1 \mathord{\left/ {\vphantom {1 {(p(s) - 1)}}} \right. } {(p(s) - 1)}}}}(||x|{|_X} + 1)){\rm d}s\\ &&{+} \frac{Q}{2}\int_0^1 {{{(1 - s)}^{\alpha - 1}}} (||\zeta ||_\infty ^{{1 \mathord{\left/ {\vphantom {1 {(p(s) - 1)}}} \right. } {(p(s) - 1)}}} + {(||\phi |{|_\infty } + ||\psi |{|_\infty })^{{1 \mathord{\left/ {\vphantom {1 {(p(s) - 1)}}} \right. } {(p(s) - 1)}}}}(||x|{|_X} + 1)){\rm d}s\\ & &{+} \frac{{3\lambda }}{{2\Gamma (\alpha {+} 1)}}||x|{|_X}\\ & \le& \frac{{3Q}}{{2\alpha }}\left( {\hbar + \ell (||x|{|_X} + 1)} \right) + \frac{{3\lambda }}{{2\Gamma (\alpha {+} 1)}}||x|{|_X}, \end{eqnarray} $

这里$ \hbar : = \max \left\{ {||\zeta ||_\infty ^{1/({p_m} - 1)}, \;||\zeta ||_\infty ^{1/({p_M} - 1)}} \right\} $. 又因为

$ \begin{eqnarray} {\rm{|}}{}^CD_{0{\rm{ {+} }}}^\alpha x(t){\rm{|}} &\le& \left| {\varphi _{p(t)}^{ - 1}(ANx(t) {+} I_{{0^ + }}^\beta Nx(t))} \right| {+} \left| {\lambda x(t)} \right|\\ & {\le}& \left[ {\frac{3}{{2\Gamma (\beta {+} 1)}}{(||\zeta |{|_\infty } {+} (||\phi |{|_\infty } {+} ||\psi |{|_\infty })||x||_X^{r - 1})}} \right]^{1/(p(t) {-} 1)} {+} \lambda ||x|{|_X}\\ &{\le}& Q\Gamma (\alpha)(||\zeta ||_\infty ^{1/(p(t) {-} 1)} {+} {(||\phi |{|_\infty } {+} ||\psi |{|_\infty })^{1/(p(t) {-} 1)}}(||x|{|_X} {+} 1)){+} \lambda ||x|{|_X}\\ &{\le}& Q\Gamma (\alpha) \left( {\hbar {+} \ell (||x|{|_X} {+} 1)} \right) {+} \lambda ||x|{|_X}. \end{eqnarray} $

结合(3.7) 式与(3.8) 式可得

$ \begin{equation} ||x|{|_X} \le \frac{{3Q}}{{2\alpha }}\left( {\hbar + \ell (||x|{|_X} + 1)} \right) + Q\Gamma (\alpha ) \left( {\hbar + \ell (||x|{|_X} + 1)} \right) + \frac{{3\lambda }}{{2\Gamma (\alpha + 1)}}||x|{|_X} + \lambda ||x|{|_X}. \end{equation} $

由条件(3.6) 以及(3.9) 式可推出存在常数$ m>0 $使得$ ||x|{|_X} \le m $. 根据Schaefer不动点定理, 可知$ T $$ S $中至少存在一个不动点, 即边值问题(1.8) 至少存在一个解.

4 例子

例 4.1    考虑边值问题

$ \begin{equation} \left\{\begin{array}{ll} {}^CD_{0{\rm{ {+} }}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}{\varphi _{( - {t^2} {+} t {+} 2)}}(({}^CD_{0{\rm{ {+} }}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}{\rm{ {+} (}}{1 \mathord{\left/ {\vphantom {1 {10}}} \right. } {10}}{\rm{)}})x(t)) { = } \sin t {+} \frac{3}{{200}}x {+} \frac{1}{{100}}{}^CD_{0{\rm{ {+} }}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}x, t \in (0, 1), \\ x(0) { = } - x(1), \; {}^CD_{0{\rm{ {+} }}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}x(0) { = } - {}^CD_{0{\rm{ {+} }}}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. } 2}}x(1), \end{array}\right. \end{equation} $

对应边值问题(1.8), 这里

$ r = 2, \;\zeta (t) = 1, \;\phi (t) = \frac{3}{{200}}, \;\psi (t) = \frac{1}{{100}}. $易验证

由定理3.1可知边值问题(4.1) 至少有一个解.

参考文献

林宗涵. 热力学与统计物理学. 北京: 北京大学出版社, 2007

[本文引用: 1]

Lin Z H . Thermodynamics and Statistical Physics. Beijing: Peking University Press, 2007

[本文引用: 1]

陈文, 孙洪广, 李西成. 力学与工程问题的分数阶导数建模. 北京: 科学出版社, 2010

[本文引用: 1]

Chen W , Sun H G , Li X C . Fractional Derivative Modeling of Mechanical and Engineering Problems. Beijing: Science Press, 2010

[本文引用: 1]

Lutz E .

Fractional Langevin equation

Phys Rev E, 2001, 64 (5): 051106

DOI:10.1103/PhysRevE.64.051106      [本文引用: 1]

Burov S, Barkai E. The critical exponent of the fractional Langevin equation is ac ≈ 0.402. 2007, arXiv: 0712.3407

[本文引用: 1]

刘玉记.

含三个Riemann-Liouville分数阶导数的脉冲Langevin型方程的边值问题的可解性

数学物理学报, 2020, 40A (1): 103- 131

DOI:10.3969/j.issn.1003-3998.2020.01.009      [本文引用: 1]

Liu Y J .

Solvability of BVPs for impulsive fractional Langevin type equations involving three Riemann-Liouville fractional derivatives

Acta Math Sci, 2020, 40A (1): 103- 131

DOI:10.3969/j.issn.1003-3998.2020.01.009      [本文引用: 1]

蒲琳涓, 杨晓忠, 孙淑珍.

一类分数阶Langevin方程预估校正算法的数值分析

数学物理学报, 2020, 40A (4): 1018- 1028

DOI:10.3969/j.issn.1003-3998.2020.04.017     

Pu L J , Yang X Z , Sun S Z .

Numerical analysis of a class of fractional Langevin equation by predictor-corrector method

Acta Math Sci, 2020, 40A (4): 1018- 1028

DOI:10.3969/j.issn.1003-3998.2020.04.017     

Ahmad B , Nieto J J , Alsaedi A , El-Shahed M .

A study of nonlinear Langevin equation involving two fractional orders in different intervals

Nonlinear Anal Real World Appl, 2012, 13 (2): 599- 606

DOI:10.1016/j.nonrwa.2011.07.052      [本文引用: 1]

Zhou H , Alzabut J , Yang L .

On fractional Langevin differential equations with anti-periodic boundary conditions

Eur Phys J Special Topics, 2017, 226 (16-18): 3577- 3590

DOI:10.1140/epjst/e2018-00082-0      [本文引用: 2]

Fazli H , Nieto J J .

Fractional Langevin equation with anti-periodic boundary conditions

Chaos Solitons Fractals, 2018, 114, 332- 337

DOI:10.1016/j.chaos.2018.07.009      [本文引用: 1]

Wang G T , Qin J F , Zhang L H , Baleanu D .

Explicit iteration to a nonlinear fractional Langevin equation with non-separated integro-differential strip-multi-point boundary conditions

Chaos Solitons Fractals, 2020, 131, 109476

DOI:10.1016/j.chaos.2019.109476     

Zhai C B , Li P P .

Nonnegative solutions of initial value problems for Langevin equations involving two fractional orders

Mediterr J Math, 2018, 15, 164

DOI:10.1007/s00009-018-1213-x     

Baghani O .

On fractional Langevin equation involving two fractional orders

Commun Nonlinear Sci Numer Simul, 2017, 42, 675- 681

DOI:10.1016/j.cnsns.2016.05.023     

Wang J R , Li X Z .

Ulam-Hyers stability of fractional Langevin equations

Appl Math Comput, 2015, 258, 72- 83

URL    

Baghani H .

An analytical improvement of a study of nonlinear Langevin equation involving two fractional orders in different intervals

J Fixed Point Theory Appl, 2019, 21 (4): 95

DOI:10.1007/s11784-019-0734-7     

Zhou Z F , Qiao Y .

Solutions for a class of fractional Langevin equations with integral and anti-periodic boundary conditions

Bound Value Probl, 2018, 2018, 152

DOI:10.1186/s13661-018-1070-3     

Salem A , Alzahrani F , Alghamdi B .

Langevin equation involving two fractional orders with three-point boundary conditions

Differential Integral Equations, 2020, 33 (3/4): 163- 180

[本文引用: 2]

Shen T F , Liu W B .

Existence of solutions for fractional integral boundary value problems with p(t)-Laplacian operator

J Nonlinear Sci Appl, 2016, 9 (7): 5000- 5010

URL     [本文引用: 2]

Xue T T , Liu W B , Shen T F .

Existence of solutions for fractional Sturm-Liouville boundary value problems with p(t)-Laplacian operator

Bound Value Probl, 2017, 2017, 169

DOI:10.1186/s13661-017-0900-z     

Shen X H , Shen T F .

Existence of solutions for Erdélyi-Kober fractional integral boundary value problems with p(t)-Laplacian operator

Adv Difference Equa, 2020, 2020, 565

DOI:10.1186/s13662-020-03015-y     

Tang X S , Wang X C , Wang Z W , Ouyang P C .

The existence of solutions for mixed fractional resonant boundary value problem with p(t)-Laplacian operator

J Appl Math Comput, 2019, 61 (1/2): 559- 572

DOI:10.1007/s12190-019-01264-z     

Tang X S , Luo J Y , Zhou S , Yan C Y .

Existence of positive solutions of mixed fractional integral boundary value problem with p(t)-Laplacian operator

Ric Mat, 2020,

DOI:10.1007/s11587-020-00542-4     

Wang G T , Ren X Y , Zhang L H , Ahmad B .

Explicit iteration and unique positive solution for a Caputo-Hadamard fractional turbulent flow model

IEEE Access, 2019, 7, 109833- 109839

DOI:10.1109/ACCESS.2019.2933865      [本文引用: 1]

Chen Y M , Levine S , Rao M .

Variable exponent, linear growth functionals in image restoration

SIAM J Appl Math, 2006, 66 (4): 1383- 1406

DOI:10.1137/050624522      [本文引用: 1]

Růžička M . Electrorheological Fluids: Modeling and Mathematical Theory. Berlin: Springer-Verlag, 2000

Zhikov V V .

Averaging of functionals of the calculus of variations and elasticity theory

Izv Akad Nauk SSSR Ser Mat, 1986, 50 (4): 675- 710

URL    

Zhang Q H .

Existence of solutions for weighted p(r)-Laplacian system boundary value problems

J Math Anal Appl, 2007, 327 (1): 127- 141

DOI:10.1016/j.jmaa.2006.03.087      [本文引用: 2]

Kilbas A A , Srivastava H M , Trujillo J J .

Theory and Applications of Fractional Differential Equations

Amsterdam: Elsevier, 2006,

URL     [本文引用: 3]

Zhou Y , Wang J R , Zhang L . Basic Theory of Fractional Differential Equations. Second edition. Singapore: World Scientific, 2017

[本文引用: 4]

/