数学物理学报 ›› 2021, Vol. 41 ›› Issue (4): 1024-1032.

• 论文 • 上一篇    下一篇

p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性

张纪凤,张伟*(),倪晋波,任丹丹   

  1. 安徽理工大学数学与大数据学院 安徽淮南 232001
  • 收稿日期:2021-01-11 出版日期:2021-08-26 发布日期:2021-08-09
  • 通讯作者: 张伟 E-mail:zhangweiazyw@163.com
  • 基金资助:
    国家自然科学基金(11801008);安徽高校自然科学研究项目(KJ2020A0291);安徽理工大学研究生创新基金项目(2021CX2117)

Existence of Solutions for Anti-Periodic Boundary Value Problems of Fractional Langevin Equation with p(t)-Laplacian Operator

Jifeng Zhang,Wei Zhang*(),Jinbo Ni,Dandan Ren   

  1. School of Mathematics and Big Data, Anhui University of Science and Technology, Anhui Huainan 232001
  • Received:2021-01-11 Online:2021-08-26 Published:2021-08-09
  • Contact: Wei Zhang E-mail:zhangweiazyw@163.com
  • Supported by:
    the NSFC(11801008);the Key Program of University Natural Science Research Fund of Anhui Province(KJ2020A0291);the Postgraduate Innovation Fund Project of Anhui University of Science and Technology(2021CX2117)

摘要:

该文研究了带pt)-Laplacian算子的分数阶Langevin方程反周期边值问题,通过利用Schaefer不动点定理得出了解存在的充分性条件,并举例说明主要结论.该文所得结果推广和丰富了已有的相关工作.

关键词: 分数阶微分方程, 反周期边值问题, p (t)-Laplacian算子, Schaefer不动点定理

Abstract:

This paper studies the anti-periodic boundary value problems of fractional Langevin equation with p (t)-Laplacian operator. The sufficient conditions for the existence of solutions are obtained by using Schaefer fixed point theorem, and the main result is well illustrated with the aid of an example. The results obtained in this paper extend and enrich the existing related works.

Key words: Fractional differential equation, Anti-periodic boundary value problem, p (t)-Laplacian operator, Schaefer fixed point theorem

中图分类号: 

  • O175.8