数学物理学报, 2021, 41(2): 523-537 doi:

论文

离散的三分量可逆Gray-Scott模型的不变Borel概率测度

肖巧懿,, 李春秋,

Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model

Xiao Qiaoyi,, Li Chunqiu,

通讯作者: 李春秋, E-mail: licqmath@tju.edu.cn

收稿日期: 2019-11-3  

基金资助: 国家自然科学基金.  11871368

Received: 2019-11-3  

Fund supported: the NSFC.  11871368

作者简介 About authors

肖巧懿,E-mail:xiaoqiaoyi1127@139.com , E-mail:xiaoqiaoyi1127@139.com

Abstract

In this paper, we study the Borel probability measures that can be associated to the time averaged observation of the process generated by the nonautonomous three component reversible Gray-Scott model on infinite lattices. We first show that there exists a pullback-$ {\cal D} $ attractor for the process. Furthermore, we establish the existence of a unique family of invariant Borel probability measures carried by this pullback attractor.

Keywords: Invariant measures ; Lattice dynamical system ; Pullback attractor ; Nonautonomous Gray-Scott model

PDF (368KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

肖巧懿, 李春秋. 离散的三分量可逆Gray-Scott模型的不变Borel概率测度. 数学物理学报[J], 2021, 41(2): 523-537 doi:

Xiao Qiaoyi, Li Chunqiu. Invariant Borel Probability Measures for the Discrete Three Component Reversible Gray-Scott Model. Acta Mathematica Scientia[J], 2021, 41(2): 523-537 doi:

1 引言

在本文中, 我们研究如下带有外力的离散三分量可逆Gray-Scott模型

$ \begin{eqnarray} &\dot{u}_{m} = d_1(u_{m+1}+u_{m-1}-2u_m)-(\lambda+k)u_m+u_m^2v_m-\alpha u_m^3+\beta z_m+f_{1m}(t), \end{eqnarray} $

$ \begin{eqnarray} & \dot{v}_{m} = d_2(v_{m+1}+v_{m-1}-2v_m)+\lambda(a_m-v_m)-u_m^2v_m+\alpha u_m^3+f_{2m}(t), \end{eqnarray} $

$ \begin{eqnarray} & \dot{z}_{m} = d_3(z_{m+1}+z_{m-1}-2z_m)+ku_m-(\lambda+\beta)z_m+f_{3m}(t), \end{eqnarray} $

其中, $ m \in{\Bbb Z}, t\geqslant \tau, \tau\in {\Bbb R} $, 满足相应的初始条件

$ \begin{eqnarray} u_{m}(\tau) = u_{m, \tau}, \quad v_{m}(\tau) = v_{m, \tau}, \quad z_{m}(\tau) = z_{m, \tau}, \quad m\in {\Bbb Z}, \end{eqnarray} $

其中, $ d_1, d_2, d_3, k, \alpha, \beta, \lambda $是正数, $ a_m\in {\Bbb R}, f_{im}\in {\Bbb R}, i = 1, 2, 3 $. 该系统可以看作是如下三分量可逆Gray-Scott模型在$ {\Bbb R} $上的离散化

$ \begin{eqnarray} &{ } \frac{\partial u}{\partial t} = d_1u_{xx}-(\lambda+k)u+u^2v-\alpha u^3+\beta z+f_1(x, t), \end{eqnarray} $

$ \begin{eqnarray} &{ } \frac{\partial v}{\partial t} = d_2v_{xx}+ \lambda(a-v)-u^2v+\alpha u^3+f_2(x, t), \end{eqnarray} $

$ \begin{eqnarray} &{ } \frac{\partial z}{\partial t} = d_3z_{xx}+ku-(\lambda+\beta)z+f_3(x, t). \end{eqnarray} $

当没有外力时, 方程组(1.5)-(1.7)可简化为相应的自治Gray-Scott模型, 该方程组由Mahara等[23]首次引入用来描述两种化学物质的等温, 立方自催化连续反馈和扩散反应, 参见文献[28]. 随后, You[28]通过一些无量纲变换将原Gray-Scott模型简化为自治Gray-Scott模型, 并证明在Neumann边界条件下该系统全局吸引子的存在性. 关于连续和离散的Gray-Scott系统在其自治和非自治情形下的初边值和Cauchy问题, 已有许多很好的工作, 参见文献[14-15, 27-29]及其参考文献.

本文主要研究离散系统(1.1)-(1.4) 的不变测度. 精确地讲, 将建立一族关于该系统不变的Borel概率测度的存在性, 该测度由方程组(1.1)-(1.4) 的拉回- $ {\cal D} $吸引子所支撑. 不变测度在理解湍流方面非常有效, 这已经得到证明, 参见文献[11]. 这是因为湍流很多方面的测量是由时间平均量来衡量. 目前, 关于耗散系统的不变测度和统计性质已有一系列重要的工作, 参见文献[8, 11, 17, 19, 21-22, 26, 30]. 特别, 文献[22] 利用广义Banach极限的概念构造了度量空间上一般连续动力系统的不变测度. 随后, 文献[8]改进了[22]中的结果, 并构造了一大类耗散半群的不变测度. 基于上述工作, 文献[21] 进一步构造了完备可分度量空间上非自治过程的不变测度.

最近, 文献[32] 建立了非自治离散Klein-Gordon-Schrödinger方程组的不变Borel概率测度的存在性. 格点动力系统(简称LDSs)是在某些变量上离散化的时空系统, 它出现在许多不同的领域, 如生物学(参见文献[16]), 化学反应理论(参见文献[10]), 电子工程(参见文献[24]) 等. 近年来, 关于整体吸引子、一致吸引子、核截面、拉回吸引子的研究引起了数学家和物理学家的广泛关注, 如关于格点系统(参见文献[1, 2, 4, 31, 33-36]) 和关于连续系统(参见文献[3, 5-7, 9, 18, 20, 25])等. 特别, 关于拉回吸引子, 文献[32] 给出定义在无穷序列Banach空间上过程的拉回- $ {\cal D} $吸引子存在性的充要条件, 这可以看作是文献[33] 结果的推广.

本工作的主要目的是建立非自治三分量可逆Gray-Scott模型在无穷格点上生成过程的拉回吸引子上一族不变Borel概率测度的存在与唯一性. 我们将使用广义Banach极限的概念和Łukaszewicz与Robinson所建立的理论来研究, 具体参见文献[21]. 首先, 证明方程组(1.1)-(1.4) 生成的过程存在一个拉回- $ {\cal D} $吸引子. 拉回- $ {\cal D} $吸引子理论(参见文献[5]) 是由Caraballo等人首次研究. 至今, 该理论已被广泛地应用于许多非线性偏微分方程, 如Navier-Stokes方程组(参见文献[12]), Navier-Stokes-Voigt方程组(参见文献[13]) 等. 在这里, 我们研究的拉回- $ {\cal D} $吸引子有更一般的吸引域, 通常称之为$ {\cal D} $系, 而不仅仅是有界集. 实际上, 相空间中的每个有界集合都属于该系. 而且, 不同的系可以提供不同的吸引域, 然后产生不同的拉回吸引子.

该工作安排如下. 在第2节中, 介绍一些空间和算子. 在第3节中, 证明方程组(1.1)-(1.4) 生成过程的拉回- $ {\cal D} $吸引子的存在性. 第4节主要致力于由该拉回- $ {\cal D} $吸引子所支撑的唯一一族不变Borel概率测度的存在性.

2 预备工作

在这一节中, 研究方程组(1.1)-(1.4) 解的存在性和有界性. 为此, 我们首先介绍一些空间和算子. 令

$ \begin{eqnarray} l^{2} = \bigg\{u = (u_{m})_{m\in {\Bbb Z}}:\ u_{m}\in{\Bbb R}\ \rm{ 并且 }\ \sum\limits_{m\in{\Bbb Z}}u_{m}^{2}<+\infty\bigg\} \end{eqnarray} $

并赋予其内积和范数定义为

其中$ u = (u_m)_{m\in {\Bbb Z}}, \, v = (u_m)_{m\in {\Bbb Z}}\in l^{2}. $$ (l^{2}, (\cdot, \cdot)) $是一个Hilbert空间, 令$ E = l^{2}\times l^{2}\times l^{2} $.$ E $也是一个Hilbert空间. 我们仍使用符号$ (\cdot, \cdot) $$ \|\cdot\| $来分别表示内积和范数.

定义$ l^2 $上的线性算子$ A $, $ B $$ B^* $

$ \begin{eqnarray} & (Au)_{m} = 2u_{m}-u_{m+1}-u_{m-1}, \ m\in {\Bbb Z}, \end{eqnarray} $

$ \begin{eqnarray} & (Bu)_{m} = u_{m+1}-u_{m}, \quad (B^{*}u)_{m} = u_{m-1}-u_{m}, \ m\in {\Bbb Z}. \end{eqnarray} $

易知$ B^* $$ B $的伴随算子. 而且

$ \begin{eqnarray} & (Au, v) = (B^{*}Bu, v) = (Bu, Bv), \, \, (Bu, v) = (u, B^{*}v), \end{eqnarray} $

$ \begin{eqnarray} & \|Bu\|^{2} = \|B^{*}u\|^{2}\leqslant 4\|u\|^{2}, \, \, \|Au\|^{2}\leqslant 16\|u\|^{2}, \end{eqnarray} $

其中$ u, v \in l^2 $.

为简便起见, 令

则方程组(1.1)-(1.4) 可以写成向量形式

$ \begin{eqnarray} &\dot{u} = -d_1 Au-(\lambda+k)u+u^2v-\alpha u^3+\beta z+f_1(t), \end{eqnarray} $

$ \begin{eqnarray} &\dot{v} = -d_2 Av-\lambda v-u^2v+\alpha u^3+\lambda a+f_2(t), \end{eqnarray} $

$ \begin{eqnarray} &\dot{z} = -d_3 Az+ku-(\lambda+\beta)z+f_3(t), \end{eqnarray} $

$ \begin{eqnarray} & u(\tau) = u_\tau, \quad v(\tau) = v_\tau, \quad z(\tau) = z_\tau. \end{eqnarray} $

进一步, 方程组(2.6)-(2.9) 可以表示为$ E $上抽象的一阶常微分方程

$ \begin{equation} \left\{ \begin{array}{ll} \dot{\varphi}+\Theta\varphi = G(\varphi, t), \quad & t>\tau, \\ \varphi(\tau) = \varphi_{\tau} = (u_\tau, v_\tau, z_\tau)^{T}, \quad & \tau\in {\Bbb R}, \end{array}\right. \end{equation} $

其中$ \varphi = (u, v, z)^{T} $, 并且

在本工作中, 我们总是假设方程组(2.6)-(2.9) 中的参数$ \alpha, \lambda, \beta, k $满足如下条件.

(H1)   假设$ a = (a_m)_{m\in{\Bbb Z}}\in l^2 $并且

其中$ \mu = k/\beta $.

$ {\cal C}({\Bbb R}, l^2) $表示从$ {\Bbb R} $$ l^2 $的连续函数空间. 那么当$ f\in {\cal C}({\Bbb R}, l^2) $, 有

引理2.1  令$ f_i(t) = (f_{im}(t))_{m\in {{\Bbb Z}}}\in {\mathcal C}({{\Bbb R}}, l^2), i = 1, 2, 3. $则对于任何初值$ \varphi_{\tau} = (u_\tau, v_\tau, z_\tau)^T\in E $, 系统(2.10) 有唯一的解$ \varphi(t) = (u(t), v(t), z(t))^T, t\geqslant \tau $满足

其中$ T_0>\tau $. 而且, 如果$ T_0<+\infty, $$ \lim\limits_{t{\rightarrow} T_0^-}\|{\varphi}(t)\|_E = +\infty $.

  引理2.1的证明与文献[15, 引理2.1]中的证明类似, 在这里我们略去.

在下面, 给出方程组(2.10) 解的主要估计. 为简便起见, 令

则方程组(2.6)-(2.8) 可以转化为如下等价形式

$ \begin{eqnarray} & \dot{u} = -d_1 Au-(\lambda+k)u+u^2v-\alpha u^3+k Z+f_1(t), \end{eqnarray} $

$ \begin{eqnarray} &\dot{v} = -d_2 Av-\lambda v-u^2v+\alpha u^3+\lambda a+f_2(t), \end{eqnarray} $

$ \begin{eqnarray} & \mu\dot{Z} = -d_3\mu AZ+ku-(\mu\lambda+k)Z+f_3(t) . \end{eqnarray} $

引理2.2  假设$ f_i(t) = (f_{im}(t))_{m\in {{\Bbb Z}}}\in {\mathcal C}({{\Bbb R}}, l^2), i = 1, 2, 3. $$ \varphi(t) = (u(t), v(t), z(t))^T\in E $为方程组(2.10) 满足初值条件$ \varphi_{\tau} = (u_\tau, v_\tau, z_\tau)^T\in E $的解. 则

$ \begin{eqnarray} \|\varphi(t)\|^2 &\leqslant& \frac{\delta_2}{\delta_1}{\rm e}^{-\theta(t-\tau)}\|\varphi_\tau\|^2+\frac{{\lambda}}{{\delta}_1\theta}\|a\|^2 +\frac{2\alpha}{{\delta}_1({\lambda}+k)}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_1(s)\|^2{\rm d}s \\ &&+ \frac{2}{{\delta}_1{\lambda}}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_2(s)\|^2{\rm d}s+\frac{2\mu\alpha}{{\delta}_1(\mu{\lambda}+k)}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_3(s)\|^2{\rm d}s, \end{eqnarray} $

其中$ {\delta}_1 = \min\{1, \alpha\}, {\delta}_2 = \max\{1, \alpha\} $.

  分别用$ \alpha u(t), v(t), \mu\alpha Z(t) $对方程组(2.11)-(2.13)中的方程两边作内积$ (\cdot, \cdot) $, 并相加, 就有

$ \begin{eqnarray} && \frac{1}{2}\frac{{\rm d}}{{\rm d}t}(\alpha\|u\|^2+\|v\|^2+\mu^2\alpha\|Z\|^2) + \alpha({\lambda}+k)\|u\|^2+{\lambda}\|v\|^2+\mu\alpha(\mu{\lambda}+k)\|Z\|^2 \\ &\leqslant& k\alpha(1+\mu)\sum\limits_{m\in {\Bbb Z}}u_mZ_m+{\lambda}\sum\limits_{m\in{\Bbb Z}}a_m v_m +\alpha\sum\limits_{m\in{\Bbb Z}}f_{1m}(t)u_m+\sum\limits_{m\in{\Bbb Z}}f_{2m}(t)v_m \\ && +\mu\alpha\sum\limits_{m\in{\Bbb Z}}f_{3m}(t)Z_m. \end{eqnarray} $

易知

$ \begin{equation} {\lambda}\sum\limits_{m\in{\Bbb Z}}a_mv_m \leqslant \frac{{\lambda}}{2}(\|a\|^2+\|v\|^2), \end{equation} $

$ \begin{equation} k\alpha(1+\mu)\sum\limits_{m\in {\Bbb Z}}u_mZ_m \leqslant \frac{k\alpha(1+\mu)}{2}(\|u\|^2+\|Z\|^2), \end{equation} $

并且

$ \begin{equation} \alpha\sum\limits_{m\in{\Bbb Z}}f_{1m}(t)u_m \leqslant \frac{\alpha(\lambda+k)}{4}\|u\|^2+\frac{\alpha}{{\lambda}+k}\|f_1\|^2, \end{equation} $

$ \begin{equation} \sum\limits_{m\in{\Bbb Z}}f_{2m}(t)v_m \leqslant \frac{\lambda}{4}\|v\|^2+\frac{1}{{\lambda}}\|f_2\|^2, \end{equation} $

$ \begin{equation} \mu\alpha\sum\limits_{m\in{\Bbb Z}}f_{3m}(t)Z_m \leqslant \frac{\mu\alpha(\mu\lambda+k)}{4}\|Z\|^2+\frac{\mu\alpha }{\mu{\lambda}+k}\|f_3\|^2. \end{equation} $

因此, 由(2.15)-(2.20) 式知, 当$ t\geqslant \tau $, 有

$ \begin{eqnarray} \frac{{\rm d}}{{\rm d}t}(\alpha\|u\|^2+\|v\|^2+\mu^2\alpha\|Z\|^2) + \theta(\alpha\|u\|^2+\|v\|^2+\mu^2\alpha\|Z\|^2) \leqslant R_0^2(t), \end{eqnarray} $

其中

在区间$ [\tau, t] $$ t\geqslant \tau $, 对(2.21)式用Gronwall不等式得

$ \begin{eqnarray} \alpha\|u\|^2+\|v\|^2+\alpha\|z\|^2 &\leqslant& {\rm e}^{-\theta(t-\tau)}(\alpha\|u(\tau)\|^2+\|v(\tau)\|^2+\alpha\|z(\tau)\|^2)+ \frac{{\lambda}}{\theta}\|a\|^2 \\ &&+ \frac{2\alpha}{{\lambda}+k}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_1(s)\|^2{\rm d}s+\frac{2}{{\lambda}}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_2(s)\|^2{\rm d}s \\ &&+ \frac{2\mu\alpha}{\mu{\lambda}+k}{\rm e}^{-\theta t}\int^t_\tau {\rm e}^{\theta s}\|f_3(s)\|^2{\rm d}s. \end{eqnarray} $

因此, 我们从(2.22) 式知, 对于$ t\geqslant \tau $, 有

为保证系统(2.10) 具有有界拉回吸收集, 我们对函数$ f_i(t), i = 1, 2, 3 $作如下假设.

(H2)   假设$ f_i(t) = (f_{im}(t))_{m\in {{\Bbb Z}}}\in {\mathcal C}({{\Bbb R}}, l^2), i = 1, 2, 3 $并且

$ \begin{equation} \int^t_{-\infty}{\rm e}^{\theta s}\|f_i(s)\|^2{\rm d}s<K(t), { \quad } t\in {{\Bbb R}}, { \quad } i = 1, 2, 3, \end{equation} $

其中$ K(\cdot) $$ {{\Bbb R}} $上的连续函数, 并且在区间$ (-{\infty}, t) $上有界.

因此, 从(2.14) 式中可以推导出, 系统(2.10) 具有一个有界的拉回吸收集.

根据假设(H2) 和估计(2.14), 我们知, 对任意的$ \varphi_{\tau} = (u_\tau, v_\tau, z_\tau)^T\in E $, 方程(2.10) 相对应的解$ \varphi(t) = (u(t), v(t), z(t))^T\in E $$ [\tau, +\infty) $上全局存在. 进一步, 通过引理2.1知

因此, 解算子在$ E $上生成一族连续过程$ \{U(t, \tau)\}_{t\geqslant\tau} $

$ \begin{eqnarray} U(t, \tau):\varphi_\tau = (u_\tau, v_\tau, z_\tau)^T\in E\mapsto \varphi(t) = (u(t), v(t), z(t))^T\in E, { \quad } t\geqslant \tau. \end{eqnarray} $

现在用$ {\cal P}(E) $表示$ E $上所有非空子集所构成的集族, 用$ {\cal D}_\theta $表示一类非空子集族$ D = \{D(s): s\in {{\Bbb R}}\}\subset {\cal P}(E) $满足

$ \begin{equation} \lim\limits_{s{\rightarrow} -\infty}\big({\rm e}^{\frac{\theta s}{2}}\sup\limits_{{\varphi}\in D(s)}\|{\varphi}\|_E^2\big) = 0. \end{equation} $

$ {\mathcal D}_\theta $就被称为$ {\mathcal P}(E) $中的一个系.

注2.1  易知系$ {\mathcal D}_\theta $包含$ E $的所有有界子集.

引理2.3  假设(H2) 成立. 则方程组(2.10) 生成的过程$ \{U(t, \tau)\}_{t\geqslant\tau} $存在一个有界拉回- $ {\mathcal D}_\theta $吸收集$ {\mathcal B}_0: = \{ {\mathcal B}_0(s):s\in {{\Bbb R}}\}{\subset} {\mathcal P}(E) $, 其中$ {\mathcal B}_0(s) = {\mathcal B}(0, r_\theta(s)) $$ E $中以$ 0 $为中心, 以$ r_\theta(s) $为半径的球.

  令$ r_\theta(t) = \rho^{1/2}_\theta(t) $, 其中

于是从(2.14) 式和$ {\mathcal D}_\theta $的构造中我们可以推出$ {\mathcal B}_0 $$ \{U(t, \tau)\}_{t\geqslant \tau} $$ E $中的有界拉回- $ {\mathcal D}_\theta $吸收集.

3 拉回吸引子

在本节中, 证明过程$ \{U(t, \tau)\}_{t\geqslant \tau} $的拉回- $ {\mathcal D}_\theta $吸引子的存在性. 为此, 我们首先证明系统(2.10) 的解具有拉回- $ {\mathcal D}_\theta $渐近零性.

引理3.1  假设(H2) 成立. 那么对每一个$ t\in {\Bbb R}, \varepsilon>0 $以及$ D = \{D(s):s\in {{\Bbb R}}\}\in {\mathcal D}_\theta $, 存在$ N_* = N_*(t, \varepsilon, D)\in {\Bbb N} $$ \tau_* = \tau_*(t, {\varepsilon}, D)\leqslant t $使得

其中$ |\varphi_{m}|^{2}_{E} = u_m^2+v_m^2+z_m^2 $.

  定义一个光滑函数$ \chi(x)\in {\mathcal C}^{1}({\bf {\Bbb R}}_+, [0, 1]) $满足

$ \begin{eqnarray} \quad \chi(x) = \left\{ \begin{array}{ll} 0, { \quad } 0\leqslant x\leqslant 1; \\ 1, { \quad } x\geqslant 2, \end{array} \right.\, {\rm}{并且} { \quad } |\chi'(x)|\leqslant \chi_0 \, \, ({\rm}{正常数}), { \quad } \forall x\geqslant 0. \end{eqnarray} $

$ D = \{D(s):s\in {{\Bbb R}}\}\in {\mathcal D}_\theta $. 对于$ t\geqslant \tau $, 令

为以$ {\varphi}_\tau\in D(\tau) $为初值(2.10) 的解. 接下来, 我们仍考虑等价方程组(2.11)-(2.13). 令

满足

其中$ M $是一个接下来会被确定的正整数, 并且$ Z_m(t) = \frac{\beta}{k}z_m(t) $.

对方程组(2.11)-(2.13) 分别用$ \alpha p, q $$ \mu\alpha W $作内积$ (\cdot, \cdot) $, 再相加, 得

$ \begin{eqnarray} && \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\mu^2\alpha Z_m^2) + d_1\alpha(Bu, Bp)+d_2(Bv, Bq)+\mu^2\alpha d_3(BZ, BW)\\ &&+\alpha({\lambda}+k)\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})u_m^2 + {\lambda}\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})v_m^2 + \mu\alpha(\mu{\lambda}+k)\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})Z_m^2\\ &\leqslant& k\alpha(1+\mu)\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})u_mZ_m+{\lambda}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})a_mv_m+\alpha\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})u_mf_{1m}(t)\\ &&+\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})v_mf_{2m}(t) + \mu\alpha\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})Z_mf_{3m}(t). \end{eqnarray} $

根据引理2.3, 存在$ \tau(t, D)\leqslant t $使得

$ \begin{eqnarray} (Bu, Bp) & = & \sum\limits_{m\in {\Bbb Z}}(Bu)_m(Bp)_m = \sum\limits_{m\in {\Bbb Z}}(Bu)_m[\chi(\frac{|m+1|}{M})u_{m+1}-\chi(\frac{|m|}{M})u_{m}]\\ & = & \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|(Bu)_m|^2+\sum\limits_{m\in {\Bbb Z}}\chi'(\frac{\tilde{m}}{M})\frac{1}{M}(u_{m+1}-u_m)u_{m+1}\\ &\geqslant& \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|(Bu)_m|^2-\frac{2\chi_0\rho_\theta(t)}{M}, { \quad } \forall \tau\leqslant \tau(t, D), \end{eqnarray} $

其中$ \tilde{m} $介于$ |m| $$ |m+1| $之间. 类似地,

$ \begin{equation} (Bv, Bq) \geqslant \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|(Bv)_m|^2-\frac{2\chi_0\rho_\theta(t)}{M}, { \quad } \tau\leqslant \tau(t, D), \end{equation} $

$ \begin{equation} (BZ, BW) \geqslant \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|(BZ)_m|^2-\frac{2\chi_0\rho_\theta(t)}{M\mu^2}, { \quad } \tau\leqslant \tau(t, D). \end{equation} $

易知

$ \begin{equation} {\lambda}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})a_mv_m \leqslant \frac{{\lambda}}{2}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})v_m^2 + \frac{{\lambda}}{2}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{m}{M})a_m^2, \end{equation} $

$ \begin{equation} k\alpha(1+\mu)\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})u_mZ_m \leqslant \frac{k\alpha(1+\mu)}{2}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})(u_m^2+Z_m^2) \end{equation} $

并且

$ \begin{equation} \alpha\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})u_mf_{1m}(t) \leqslant \frac{\alpha(\lambda+k)}{4}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})u_m^2+\frac{\alpha}{{\lambda}+k}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})f_{1m}^2, \end{equation} $

$ \begin{equation} \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})v_mf_{2m}(t) \leqslant \frac{{\lambda}}{4}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})v_m^2 +\frac{1}{{\lambda}}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})f_{2m}^2, \end{equation} $

$ \begin{equation} \mu\alpha\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})Z_mf_{3m}(t) \leqslant \frac{\mu\alpha(\mu\lambda+k)}{4}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})Z_m^2 + \frac{\mu\alpha }{\mu{\lambda}+k}\sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})f_{3m}^2. \end{equation} $

因此, 由(3.2)-(3.10) 式知, 如果$ \tau\leqslant \tau(t, D) $, 就有

该式子表明

$ \begin{eqnarray} && \frac{{\rm d}}{{\rm d}t}\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\mu^2\alpha Z_m^2)+\theta\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\mu^2\alpha Z_m^2)\\ &\leqslant& {\lambda}\sum\limits_{|m|\geqslant M}a_m^2+\frac{2\alpha }{{\lambda}+k}\sum\limits_{|m|\geqslant M}f_{1m}^2+\frac{2}{{\lambda}}\sum\limits_{|m|\geqslant M}f_{2m}^2+\frac{2\mu\alpha}{\mu{\lambda}+k}\sum\limits_{|m|\geqslant M}f_{3m}^2 \\ & &+ \frac{4\chi_0\rho_\theta(t)}{M}(d_1\alpha+d_2+d_3\alpha), { \quad } {\rm}{}{ \quad } {\forall}\tau\leqslant \tau(t, D). \end{eqnarray} $

现对任意$ {\varepsilon}>0 $$ t\in {{\Bbb R}} $, 由$ \rho_\theta(t) $的定义和(2.23) 式, 存在$ N_1 = N({\varepsilon}, t) $使得

因此从(3.11) 式推知, 如果$ \tau\leqslant \tau(t, D) $并且$ M\geqslant N_1 $, 就有

$ \begin{eqnarray} && \frac{{\rm d}}{{\rm d}t}\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\alpha z_m^2)+\theta\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\alpha z_m^2)\\ &\leqslant& \frac{2\alpha }{{\lambda}+k}\sum\limits_{|m|\geqslant M}f_{1m}^2+\frac{2}{{\lambda}}\sum\limits_{|m|\geqslant M}f_{2m}^2+\frac{2\mu\alpha}{\mu{\lambda}+k}\sum\limits_{|m|\geqslant M}f_{3m}^2+{\delta}_1\theta{\varepsilon}^2/3. \end{eqnarray} $

对(3.12) 式应用Gronwall不等式得, 当$ \tau\leqslant \tau(t, D) $并且$ M\geqslant N_1 $, 就有

$ \begin{eqnarray} &&\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2+v_m^2+\alpha z_m^2)\\ & \leqslant& {\rm e}^{-\theta(t-\tau)}\sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})(\alpha u_m^2(\tau)+v^2_m(\tau)+\alpha z^2_m(\tau))+ \frac{2\alpha }{{\lambda}+k}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{1m}^2(s){\rm d}s \\ & &+\frac{2}{{\lambda}}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{2m}^2(s){\rm d}s +\frac{2\mu\alpha}{\mu{\lambda}+k}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{3m}^2(s){\rm d}s+{\delta}_1{\varepsilon}^2/3, \end{eqnarray} $

注意到对给定的$ t\in {{\Bbb R}} $, 有

其中$ K_t $为依赖于$ t $的正常数. 因此, 存在$ N_2 = N_2({\varepsilon}, t)\in{{\Bbb N}} $使得

$ \begin{eqnarray} &&\frac{2\alpha }{{\lambda}+k}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{1m}^2(s){\rm d}s+\frac{2}{{\lambda}}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{2m}^2(s){\rm d}s \\ &&+\frac{2\mu\alpha}{\mu{\lambda}+k}\int_\tau^t{\rm e}^{-\theta(t-s)}\sum\limits_{|m|\geqslant M}f_{3m}^2(s){\rm d}s\\ &\leqslant &\frac{2\alpha }{{\lambda}+k}{\rm e}^{-\theta t}\sum\limits_{|m|\geqslant M}\int_{-}^t{\rm e}^{\theta s}f_{1m}^2(s){\rm d}s+\frac{2}{{\lambda}}{\rm e}^{-\theta t}\sum\limits_{|m|\geqslant M}\int_{-}^t{\rm e}^{\theta s}f_{2m}^2(s){\rm d}s \\ &&+\frac{2\mu\alpha}{\mu{\lambda}+k}{\rm e}^{-\theta t}\sum\limits_{|m|\geqslant M}\int_{-}^t{\rm e}^{\theta s}f_{3m}^2(s){\rm d}s <{\delta}_1{\varepsilon}^2/3, { \quad } {\forall} M\geqslant N_2. \end{eqnarray} $

$ N_* = \max\{N_1, N_2\} $. 于是由(3.13)和(3.14) 式知, 如果$ M\geqslant N_* $并且$ \tau\leqslant \tau(t, D) $, 就有

从而

$ \begin{equation} \sum\limits_{m\in{\Bbb Z}}\chi(\frac{|m|}{M})|{\varphi}_m(t)|_E^2 \leqslant \frac{{\delta}_2}{{\delta}_1}{\rm e}^{-\theta(t-\tau)}\|{\varphi}_\tau\|^2_E+2{\varepsilon}^2/3, { \quad } \forall M\geqslant N_*, \, \, {\forall}\tau\leqslant \tau(t, D). \end{equation} $

由于$ {\varphi}_\tau\in D(\tau) $并且

$ {\mathcal D}_\theta $的构造中可以推出, 存在$ \tau_* = \tau({\varepsilon}, t, D)\leqslant\tau(t, D) $, 使得

$ \begin{equation} \frac{{\delta}_2}{{\delta}_1}{\rm e}^{-\theta t}({\rm e}^{\theta \tau}\sup\limits_{{\varphi}_\tau\in D(s)}\|{\varphi}_\tau\|_E^2)<{\varepsilon}^2/3, { \quad } \forall \tau\leqslant \tau_*. \end{equation} $

因此, 如果$ M\geqslant N_* $并且$ \tau\leqslant \tau_* $, 由(3.15)和(3.16) 式就有

$ \begin{eqnarray} \sum\limits_{m\in {\Bbb Z}}\chi(\frac{|m|}{M})|{\varphi}_m(t)|^2_E \leqslant {\varepsilon}^2. \end{eqnarray} $

从而引理3.1中的结论成立.

根据引理2.3, 引理3.1和文献[32, 定理2.1], 我们有如下主要结果.

定理3.1  假设(H2) 成立. 方程组(2.10) 生成的一族连续过程$ \{U(t, \tau)\}_{t\geqslant\tau} $存在拉回- $ {\mathcal D}_\theta $吸引子$ {\cal A}_{ {\mathcal D}_\theta} = \{ {\mathcal A}_{ {\mathcal D}_{\theta}}(t):t\in {{\Bbb R}}\} $满足

(i) 紧性: 对任意$ t\in{{\Bbb R}} $, $ {\mathcal A}_{ {\mathcal D}_\theta}(t) $$ E $的非空紧子集;

(ii) 不变性: 当$ t\geqslant s $时, $ U(t, \tau) {\mathcal A}_{ {\mathcal D}_\theta}(s) = {\mathcal A}_{ {\mathcal D}_\theta}(t) $;

(iii) 拉回吸引性: $ {\mathcal A}_{ {\mathcal D}_\theta} $在如下意义下是拉回- $ {\mathcal D}_\theta $吸引的

4 拉回吸引子上的不变测度

在这一部分中, 我们将应用文献[21] 中的结果建立关于方程组(2.10) 在$ E $中生成过程$ \{U(t, \tau)\}_{t\geqslant \tau} $的唯一一族不变Borel概率测度的存在性. 首先, 回顾两个基本定义.

定义4.1[11]  广义Banach极限是定义在由$ [0, +{\infty}) $上所有有界实值函数所构成的函数空间上的泛函, 用$ \lim\limits_{T{\rightarrow}+\infty} $表示, 其满足

(i) 对非负函数$ \psi(\cdot) $, 有$ \lim\limits_{T{\rightarrow} +\infty}\psi(T)\geqslant 0 $;

(ii) 如果极限$ \lim\limits_{T{\rightarrow}+\infty}\psi(T) $存在, 则$ \lim\limits_{T{\rightarrow} +\infty}\psi(T) = \lim\limits_{T{\rightarrow} +\infty}\psi(T) $.

定义4.2[21]  度量空间$ X $上的过程$ \{U(t, \tau)\}_{t\geqslant \tau} $称为$ \tau $ -连续, 如果对任意$ x_0\in X $$ t\in {{\Bbb R}} $, 则$ X $ -值函数$ \tau\mapsto U(t, \tau)x_0 $是连续的, 并且在$ (-\infty, t] $有界.

注4.1  注意到我们研究的是方程组(2.10) 的拉回渐近行为, 并且需要$ \tau{\rightarrow}-\infty $时的广义极限. 因此, 对于定义在$ (-\infty, 0] $上的实值函数$ \psi $以及Banach极限$ \lim\limits_{T{\rightarrow}+\infty} $, 我们定义

为证明$ E $中关于过程$ \{U(t, \tau)\}_{t\geqslant \tau} $唯一一族不变Borel概率测度的存在性. 根据文献[21, 定理3.1], 需要证明$ \{U(t, \tau)\}_{t\geqslant \tau} $$ \tau $ -连续性.

引理4.1  设$ \varphi^{(1)}(t) $$ \varphi^{(2)}(t) $为方程组(2.10) 分别以$ {\varphi}_{\tau}^{(1)} $$ {\varphi}_{\tau}^{(2)} $为初值的两个解. 则

  设

是方程组(2.10) 以$ \varphi^{(i)}_\tau\in E $, $ i = 1, 2 $为初值的两个解. 记

由方程(2.6) 知

$ \begin{eqnarray} \dot{u}_d = -d_1 Au_{d}-(\lambda+k)u_d+(u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)}-\alpha ((u^{(1)})^3-(u^{(2)})^3)+\beta z_d. \end{eqnarray} $

$ u_d $与方程(4.1) 两边在$ l^2 $中作内积得

$ \begin{eqnarray} && \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u_{d}\|^2 +d_1\|Bu_d\|^2+({\lambda}+k)\|u_d\|^2 {}\\ & = & ((u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)}, u_{d}) -\alpha((u^{(1)})^3-(u^{(2)})^3, u_{d})+\beta(z_d, u_d). \end{eqnarray} $

经过计算, 有

$ \begin{eqnarray} ((u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)}, u_{d})& = &((u^{(1)})^2v_d+(u^{(1)}+u^{(2)})v^{(2)}u_d, u_d) \\ &\leqslant&\frac{{\lambda}}{4}\|u_d\|^2+\frac{1}{{\lambda}}\|(u^{(1)})^2v_d+(u^{(1)}+u^{(2)})v^{(2)}u_d\|^2 \\ &\leqslant& \frac{{\lambda}}{4}\|u_d\|^2+\frac{2}{{\lambda}}[\|(u^{(1)})^2\|^2+\|(u^{(1)}+u^{(2)})v^{(2)}\|^2]\|{\varphi}_d\|^2{\qquad} \end{eqnarray} $

并且

$ \begin{eqnarray} \alpha((u^{(1)})^3-(u^{(2)})^3, u_{d})& = &{\alpha}(((u^{(1)})^2+u^{(1)}u^{(2)}+(u^{(2)})^2)u_d, u_d) \\ &\leqslant& \frac{{\lambda}}{4}\|u_d\|^2+\frac{4{\alpha}^2}{{\lambda}}\|(u^{(1)})^2+(u^{(2)})^2\|^2\|{\varphi}_d\|^2, \end{eqnarray} $

$ \begin{eqnarray} [2ex] \beta(z_d, u_d)&\leqslant& \frac{\beta}{2}\|u_d\|^2+\frac{\beta}{2}\|z_d\|^2. \end{eqnarray} $

将(4.3)-(4.5) 式带入(4.2) 式得

$ \begin{eqnarray} \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u_{d}\|^2 +(\frac{{\lambda}}{2}+k-\frac{\beta}{2})\|u_d\|^2 &\leqslant& \frac{2}{{\lambda}}[\|(u^{(1)})^2\|^2+\|(u^{(1)}+u^{(2)})v^{(2)}\|^2]\|{\varphi}_d\|^2 \\ & &+\frac{4{\alpha}^2}{{\lambda}}\|(u^{(1)})^2+(u^{(2)})^2\|^2\|{\varphi}_d\|^2 +\frac{\beta}{2}\|z_d\|^2. \end{eqnarray} $

由方程(2.7) 得

$ \begin{eqnarray} \dot{v}_d = -d_2 Av_{d}-\lambda v_d-((u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)})+\alpha ((u^{(1)})^3-(u^{(2)})^3). \end{eqnarray} $

$ v_d $与方程(4.7) 两边在$ l^2 $中作内积得

$ \begin{eqnarray} && \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|v_{d}\|^2+d_2\|Bv_d\|^2+{\lambda}\|v_d\|^2 \\ & = & -((u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)}, v_{d}) +\alpha((u^{(1)})^3-(u^{(2)})^3, v_{d}). \end{eqnarray} $

类似于(4.3) 和(4.4) 式, 我们有

$ \begin{equation} ((u^{(1)})^2v^{(1)}-(u^{(2)})^2v^{(2)}, v_{d}) \leqslant \frac{{\lambda}}{4}\|v_d\|^2+\frac{2}{{\lambda}}[\|(u^{(1)})^2\|^2+\|(u^{(1)}+u^{(2)})v^{(2)}\|^2]\|{\varphi}_d\|^2, \end{equation} $

$ \begin{equation} -\alpha((u^{(1)})^3-(u^{(2)})^3, v_{d}) \leqslant \frac{{\lambda}}{4}\|v_d\|^2+\frac{4{\alpha}^2}{{\lambda}}\|(u^{(1)})^2+(u^{(2)})^2\|^2\|{\varphi}_d\|^2. \end{equation} $

结合(4.8), (4.9) 和(4.10) 式得

$ \begin{eqnarray} \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|v_{d}\|^2+\frac{{\lambda}}{2}\|v_d\|^2 &\leqslant& \frac{2}{{\lambda}}[\|(u^{(1)})^2\|^2+\|(u^{(1)}+u^{(2)})v^{(2)}\|^2]\|{\varphi}_d\|^2 \\ &&+ \frac{4{\alpha}^2}{{\lambda}}\|(u^{(1)})^2+(u^{(2)})^2\|^2\|{\varphi}_d\|^2. \end{eqnarray} $

最后, 由方程(2.8) 得

类似于(4.11) 式的得到过程, 我们有

$ \begin{equation} \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|z_{d}\|^2 + ({\lambda}+\beta-\frac{k}{2})\|z_d\|^2 \leqslant \frac{k}{2}\|u_d\|^2. \end{equation} $

注意到$ {\lambda}+k-\beta>{\lambda} $$ 2{\lambda}+\beta-k>{\lambda} $. 于是由(4.6), (4.11) 和(4.12) 式得

从而

我们可以推出

$ \begin{equation} \frac{{\rm d}}{{\rm d}t}\|{\varphi}_{d}\|_E^2+{\lambda}\|{\varphi}_{d}\|^2_E \leqslant (\frac{16}{{\lambda}}[\|u^{(1)}\|^4+\|u^{(2)}\|^4+\|v^{(2)}\|^4] +\frac{32{\alpha}^2}{{\lambda}}(\|u^{(1)}\|^4+\|u^{(2)}\|^4))\|{\varphi}_d\|^2_E. \end{equation} $

对方程(4.13) 在$ [\tau, t] $上积分得

$ \begin{eqnarray} \|{\varphi}_{d}(t)\|_E^2 &\leqslant& \|{\varphi}_d(\tau)\|_E^2 +\int_\tau^t(\frac{16}{{\lambda}}[\|u^{(1)}(s)\|^4+\|u^{(2)}(s)\|^4+\|v^{(2)}(s)\|^4])\|{\varphi}_d(s)\|_E^2{\rm d}s\\[1ex] & &+ \int_\tau^t(\frac{32{\alpha}^2}{{\lambda}}(\|u^{(1)}(s)\|^4+\|u^{(2)}(s)\|^4))\|{\varphi}_d(s)\|_E^2{\rm d}s. \end{eqnarray} $

对(4.14) 式用Gronwall不等式, 我们得

因此引理的结论成立.

引理4.2  假设(H2) 成立. 则对每个$ {\varphi}_*\in E $以及$ t\in {{\Bbb R}} $, $ E $ -值函数$ \tau{\rightarrow} U(t, \tau){\varphi}_* $是连续的, 并在$ (-\infty, t] $有界.

  设$ {\varphi}_* = (u_*, v_*, z_*)^T\in E $并且$ t\in {{\Bbb R}} $. 接下来我们证明, 对于每个固定的$ {\varepsilon}>0 $以及$ s\leqslant t $, 存在$ {\delta}>0 $使得, 如果$ r\in(-\infty, t] $满足$ |r-s|<{\delta} $, 就有

不失为一般性, 我们假定$ r<s $. 考察

根据引理4.1以及过程$ \{U(t, \tau)\}_{t\geqslant \tau} $的性质, 有

$ \begin{eqnarray} &&\|U(t, r){\varphi}_*-U(t, s){\varphi}_*\|^2_E \\[1ex] & = &\|U(t, s)U(s, r){\varphi}_*-U(t, s)U(r, r){\varphi}_*\|^2_E \\[1ex] &\leqslant& \|U(s, r){\varphi}_*-U(r, r){\varphi}_*\|^2_E \exp\bigg\{\int_s^t\bigg(\frac{16}{{\lambda}}[\|u^{(1)}_*(\eta)\|^4+\|u^{(2)}_*(\eta)\|^4+\|v^{(2)}_*(\eta)\|^4] {}\\ &&+\frac{32{\alpha}^2}{{\lambda}}[\|u^{(1)}_*(\eta)\|^4+\|u^{(2)}_*(\eta)\|^4]\bigg){\rm d}\eta\bigg\}. \end{eqnarray} $

由于方程(2.10) 的解属于空间$ {\mathcal C}([\tau, {\infty}), E) $, 我们可以推出, 对任意$ s\in {{\Bbb R}} $满足$ s\leqslant t $, 就有

$ \begin{eqnarray} & &\exp\bigg\{\int_s^t(\frac{16}{{\lambda}}[\|u^{(1)}_*(\eta)\|^4+\|u^{(2)}_*(\eta)\|^4+\|v^{(2)}_*(\eta)\|^4] +\frac{32{\alpha}^2}{{\lambda}}[\|u^{(1)}_*(\eta)\|^4+\|u^{(2)}_*(\eta)\|^4]){\rm d}\eta\bigg\}\\ &<&+{\infty}. \end{eqnarray} $

因此, 由(4.15) 和(4.16) 式知, 如果$ |r-s| $充分小, 则(4.15) 式的右侧也会尽可能小. 所以$ E $ -值函数$ \tau{\rightarrow} U(t, \tau){\varphi}_* $关于$ \tau\in (-{\infty}, t] $是连续的.

最后, 验证$ E $ -值函数$ \tau{\rightarrow} U(t, \tau){\varphi}_* $$ (-{\infty}, t] $上有界. 令$ {\varphi}_* $$ t\in {{\Bbb R}} $按如上给定的. 注意到$ {\varphi}_\tau\in D(\tau) $, 由引理 和假设(H2) 知

由于$ E $ -值函数$ \tau{\rightarrow} U(t, \tau){\varphi}_* $$ (-{\infty}, t] $上连续, 因此$ E $ -值函数$ \tau{\rightarrow} U(t, \tau){\varphi}_* $$ (-{\infty}, t] $上是有界的. 从而引理的结论成立.

根据引理4.2, 定理3.1以及文献[21, 定理3.1], 我们有如下结果.

定理4.1  (H2) 成立. 设$ \{U(t, \tau)\}_{t\geqslant \tau} $是由方程组(2.10) 生成的过程以及$ {\mathcal A}_{ {\mathcal D}_\theta} = \{ {\mathcal A}_{ {\mathcal D}_\theta}(t):t\in {{\Bbb R}}\} $是定理3.1给出的拉回- $ {\mathcal D}_\theta $吸引子. 固定一个广义Banach极限$ \lim\limits_{T{\rightarrow}+\infty} $并且令$ {\varphi}(\cdot):{{\Bbb R}}{\rightarrow} E $是一个连续映射满足$ {\varphi}(\cdot)\in {\mathcal D}_{\theta} $. 则在空间$ E $中存在唯一一族Borel概率测度$ \{\mu_t\}_{t\in {{\Bbb R}}} $, 使得$ \mu_t $的支集包含在$ {\mathcal A}_{ {\mathcal D}_\theta}(t) $中并且对$ E $上任意实值连续函数$ \phi $, 就有

而且, $ \mu_t $在以下意义上是不变的:

参考文献

Bates P W , Lu K , Wang B .

Attractors for lattice dynamical systems

Inter J Bifur Chaos, 2001, 11, 143- 153

DOI:10.1142/S0218127401002031      [本文引用: 1]

Beyn W J , Pilyugin S Yu .

Attractors of reaction diffusion systems on infinite lattices

J Dyn Differential Equations, 2003, 15, 485- 515

DOI:10.1023/B:JODY.0000009745.41889.30      [本文引用: 1]

Babin A V , Vishik M I . Attractors of Evolution Equations. Amsterdam: North-Holland, 1992

[本文引用: 1]

Chow S N .

Lattice dynamical systems

Lecture Notes in Math, 2003, 1822, 1- 102

[本文引用: 1]

Caraballo T , Łukaszewicz G , Real J .

Pullback attractors for asymptotically compact nonautonomous dynamical systems

Nonlinear Anal, 2006, 64, 484- 498

DOI:10.1016/j.na.2005.03.111      [本文引用: 2]

Caraballo T , Łukaszewicz G , Real J .

Pullback attractors for nonautonomous 2D-Navier-Stokes equations in some unbounded domains

C R Acad Sci Paris, Ser I, 2006, 342, 263- 268

DOI:10.1016/j.crma.2005.12.015     

Chueshov I , Lasiecka I .

Attractors for second-order evolution equations with a nonlinear damping

J Dyn Differential Equations, 2004, 16, 469- 512

DOI:10.1007/s10884-004-4289-x      [本文引用: 1]

Chekroun M , Glatt-Holtz N E .

Invariant measures for dissipative dynamical systems: Abstract results and applications

Comm Math Phys, 2012, 316, 723- 761

DOI:10.1007/s00220-012-1515-y      [本文引用: 2]

Chepyzhov V V , Vishik M I . Attractors for Equations of Mathematical Physics. Providence, RI: Amer Math Soc, 2002

[本文引用: 1]

Erneux T , Nicolis G .

Propagating waves in discrete bistable reaction diffusion systems

Physica D, 1993, 67, 237- 244

DOI:10.1016/0167-2789(93)90208-I      [本文引用: 1]

Foias C , Manley O , Rosa R , Temam R . Navier-Stokes Equations and Turbulence. Cambridge: Cambridge University Press, 2001

[本文引用: 3]

García-Luengo J , Marín-Rubio P , Real J .

Pullback attractors in V for nonautonomous 2D-Navier-Stokes equations and their tempered behavior

J Differential Equations, 2012, 252, 4333- 4356

DOI:10.1016/j.jde.2012.01.010      [本文引用: 1]

García-Luengo J , Marín-Rubio P , Real J .

Pullback attractors for three-dimensional nonautonomous Navier-Stokes-Voigt equations

Nonlinearity, 2012, 25, 905- 930

DOI:10.1088/0951-7715/25/4/905      [本文引用: 1]

Gu A , Zhou S , Wang Z .

Uniform attractor of nonautonomous three component reversible Gray-Scott system

Appl Math Comp, 2013, 219, 8718- 8729

DOI:10.1016/j.amc.2013.02.056      [本文引用: 1]

Jia X , Zhao C , Yang X .

Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices

Appl Math Comp, 2012, 218, 9781- 9789

DOI:10.1016/j.amc.2012.03.036      [本文引用: 2]

Keener J P .

Propagation and its failure in coupled systems of discrete excitable cells

SIAM J Appl Math, 1987, 47, 556- 572

DOI:10.1137/0147038      [本文引用: 1]

Kloeden P E , Marín-Rubio P , Real J .

Equivalence of invariant measures and stationary statistical solutions for the autonomous globally modified Navier-Stokes equations

Comm Pure Appl Anal, 2009, 8, 785- 802

DOI:10.3934/cpaa.2009.8.785      [本文引用: 1]

Ladyzhenskaya O . Attractors for Semigroups and Evolution Equations. Cambridge: Cambridge University Press, 1991

[本文引用: 1]

Łukaszewicz G .

Pullback attractors and statistical solutions for 2D Navier-Stokes equations

Discrete Cont Dyn Syst B, 2008, 9, 643- 659

DOI:10.3934/dcdsb.2008.9.643      [本文引用: 1]

Li C , Li D , Ju X .

On the forward dynamical behavior of nonautonomous systems

Discrete Cont Dyn Syst B, 2020, 25 (1): 473- 487

URL     [本文引用: 1]

Łukaszewicz G , Robinson J C .

Invariant measures for nonautonomous dissipative dynamical systems

Discrete Cont Dyn Syst, 2014, 34 (10): 4211- 4222

DOI:10.3934/dcds.2014.34.4211      [本文引用: 7]

Łukaszewicz G , Real J , Robinson J C .

Invariant measures for dissipative dynamical systems and generalised Banach limits

J Dyn Differential Equations, 2011, 23, 225- 250

DOI:10.1007/s10884-011-9213-6      [本文引用: 3]

Mahara H , et al.

Three-variable reversible Gray-Scott model

J Chem Phys, 2004, 121, 8968- 8972

DOI:10.1063/1.1803531      [本文引用: 1]

Pecora L M , Carroll T L .

Synchronization in chaotic systems

Phys Rev Lett, 1990, 64, 821- 824

DOI:10.1103/PhysRevLett.64.821      [本文引用: 1]

Temam R . Infinite Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1988

[本文引用: 1]

Wang X .

Upper-semicontinuity of stationary statistical properties of dissipative systems

Discrete Cont Dyn Syst, 2009, 23, 521- 540

URL     [本文引用: 1]

You Y .

Dynamics of two-compartment Gray-Scott equations

Nonlinear Anal, 2011, 74, 1969- 1986

DOI:10.1016/j.na.2010.11.004      [本文引用: 1]

You Y .

Dynamics of three-component reversible Gray-Scott model

Discrete Cont Dyn Syst B, 2010, 14 (4): 1671- 1688

[本文引用: 2]

You Y .

Global attractor of the Gray-Scott equations

Comm Pure Appl Anal, 2008, 7, 947- 970

DOI:10.3934/cpaa.2008.7.947      [本文引用: 1]

Zhao C , Caraballo T .

Asymptotic regularity of trajectory attractor and trajectory statistical solution for the 3D globally modified Navier-Stokes equations

J Differential Equations, 2019, 266, 7205- 7229

DOI:10.1016/j.jde.2018.11.032      [本文引用: 1]

Zhao C , Zhou S .

Compact kernel sections for nonautonomous Klein-Gordon-Schrödinger equations on infinite lattices

J Math Anal Appl, 2007, 332, 32- 56

DOI:10.1016/j.jmaa.2006.10.002      [本文引用: 1]

Zhao C , Xue G , Łukaszewicz G .

Pullback attractors and invariant measures for discrete Klein-Gordon-Schrödinger equations

Discrete Cont Dyn Syst B, 2018, 23 (9): 4021- 4044

URL     [本文引用: 3]

Zhao C , Zhou S .

Compact uniform attractors for dissipative lattice dynamical systems with delays

Discrete Cont Dyn Syst, 2008, 21 (2): 643- 663

DOI:10.3934/dcds.2008.21.643      [本文引用: 2]

Zhao X , Zhou S .

Kernel sections for processes and nonautonomous lattice systems

Discrete Cont Dyn Syst B, 2008, 9, 763- 785

DOI:10.3934/dcdsb.2008.9.763     

Zhou S .

Attractors and approximations for lattice dynamical systems

J Differential Equations, 2004, 200, 342- 368

DOI:10.1016/j.jde.2004.02.005     

Zhou S .

Attractors for first order dissipative lattice dynamical systems

Physica D, 2003, 178, 51- 61

DOI:10.1016/S0167-2789(02)00807-2      [本文引用: 1]

/