对称锥权互补问题的正则化非单调非精确光滑牛顿法
A Regularized Nonmonotone Inexact Smoothing Newton Algorithm for Weighted Symmetric Cone Complementarity Problems
通讯作者:
收稿日期: 2019-03-15
基金资助: |
|
Received: 2019-03-15
Fund supported: |
|
In this paper, we propose a regularized nonmonotone inexact smoothing Newton algorithm for solving the weighted symmetric cone complementarity problem(wSCCP). In the algorithm, we consider the regularized parameter as an independent variable. Therefore, it is simpler and easier to implement than many available algorithms. At each iteration, we only need to obtain an inexact solution of a system of equations. Moreover, the nonmonotone line search technique adopted in our algorithm includes two popular nonmonotone search schemes. We prove that the algorithm is globally and locally quadratically convergent under suitable assumptions. Finally, some preliminary numerical results indicate the effectiveness of our algorithm.
Keywords:
本文引用格式
迟晓妮, 曾荣, 刘三阳, 朱志斌.
Chi Xiaoni, Zeng Rong, Liu Sanyang, Zhu Zhibin.
1 引言
基于上述权互补问题的成果, 本文研究求解对称锥上权互补问题的算法. 令
其中
受文献[23]的启发, 本文提出求解对称锥权互补问题的正则化非单调非精确光滑牛顿法. 算法求解以下对称锥权互补问题
其中
当
2 预备知识
本节回顾欧几里德若当代数中的一些概念和结果[26].
若
(i)
(ii)
(iii)
则称
上述若当代数一般不满足结合律, 即
欧几里德若当代数
定理2.1(谱分解定理)[26] 设
其中
设
对任意
引理2.1[12] 若
定义2.1[8] 令
(i) 若任意
(ii) 若存在
由定义2.1知若
定义2.2 设函数
其中
则称
引理2.2[30] 在欧几里德若当代数
引理2.3[20] 设
3 wSCCP的光滑函数
本节引入对称锥权互补问题的一个光滑函数, 并研究该函数的一些性质. 这将在后续的正则化非单调非精确光滑牛顿法中起着重要作用.
设函数
其中
下面证明函数
引理3.1 对任意
(i) 令
其中
(ii)
证 (i) 因为
则有
因此
由引理2.1知
故
(ii) 因为
根据文献[30]中命题6和命题7, 可类似得到
引理3.2 对任意
(i)
(ii)
引理3.3 令
(i)
(ii) 存在一有界序列
则序列
证 由文献[9, 定理4.1]的证明可类似证得.
引理3.3表明
4 wSCCP的正则化非单调非精确光滑牛顿法
本节基于(3.1)式中的光滑函数, 给出求解wSCCP的正则化非单调非精确光滑牛顿法.
令
由(1.1)-(3.1)式和(4.1)式易得
定理4.1 设
且对任意
证 由文献[31, 定理3.2]易知
只有零解. 由(4.2)和(4.3)式知
而
另外, 根据(4.4)式, (4.6)式和引理3.1有
将(4.8)式两侧同时乘
由引理3.1知
则由引理2.2有
注意到对任意
且由(4.7)式知
故当
定义函数
其中
算法4.1 (wSCCP的正则化非单调非精确光滑牛顿法)
步骤0 选择
步骤1 若
步骤2 求搜索方向
其中
步骤3 令
步骤4 置
这里
其中
(ii) 当迭代点接近最优解时, 非单调线搜索(4.17)运用一个较弱的非单调形式, 即当迭代次数
取(4.22)式中最后
当
其中
令
当(4.23)式中
引理4.1 设
证 由(4.20)式知对任意非负整数
(i) 当
(ii) 设
证毕.
引理4.2 设序列
(i) 序列
(ii) 对任意非负整数
(iii) 设
证 (i) 由(4.15)知
(ii) 由(4.15)式易得
结合
故对任意非负整数
(iii) 由(4.14)和(4.15)式知
根据定理4.1知
由(4.15)式有
由(4.14), (4.16), (4.24)-(4.26)式和引理4.1得
因为
5 收敛性分析
本节给出算法4.1的全局与局部二阶收敛性分析.
引理5.1 设
证 因为
对任意
故
定理5.1 设
证 若
因为
故由(5.2), (5.3)式和引理5.1得
另外, 根据定理4.1知对任意
由(5.3)和(5.5)式有
因为
下证
运用归纳法, 先证对任意
且
当
由(5.7)式的证明, 类似可得
另外, 由定理4.1知
故(5.9)和(5.10)式对任意
则由(5.8)式有
从而由定理4.1, 引理5.1和(5.14)式得到
定理5.2 设
证 根据引理5.1的证明得
结合引理3.3知
(i) 设存在常数
对(5.16)式两边取极限, 结合(5.1)式得到
(ii) 设
即
因为
将(5.17)式两侧取极限, 结合(5.18)式有
又因为
由文献[14]中定理8的证明类似可得, 算法4.1具有如下局部二阶收敛性. 此处省略不证.
定理5.3 设
6 数值算例
由于二阶锥可视为对称锥的特例, 本节给出算法4.1求解二阶锥权互补问题的一些数值结果. 数值试验在Intel(R) Core(TM) i5-6500 CPU 3.20 GHz, 8.0GB内存, Windows 7操作系统的计算机上, 运用Matlab(R2015a)编程实现.
算法4.1中参数取值:
第一个数值试验考虑二阶锥权互补问题
其中
表 1 三种算法求解二阶锥权互补问题的数值结果
Algorithm 4.1 | Grippo's method | Zhang-Hager's method | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0077 | 4.86 | 0.0097 | 4.96 | 0.0080 | 4.94 | ||
200 | 0.0327 | 5.08 | 0.0340 | 5.16 | 0.0353 | 5.26 | ||
300 | 0.0967 | 6.00 | 0.0997 | 6.00 | 0.0995 | 6.00 | ||
400 | 0.2683 | 6.00 | 0.2763 | 6.00 | 0.2835 | 6.00 | ||
500 | 0.4576 | 6.00 | 0.4810 | 6.02 | 0.4757 | 6.02 | ||
600 | 0.7771 | 6.50 | 0.7824 | 6.58 | 0.9503 | 6.66 | ||
700 | 1.2112 | 7.00 | 1.2178 | 7.00 | 1.5006 | 7.00 | ||
800 | 1.6096 | 7.00 | 1.6162 | 7.00 | 1.7667 | 7.00 |
第二个数值试验中选择权向量
表 2 求解二阶锥互补问题与二阶锥权互补问题的数值结果
SOCCP(w =0) | wSOCCP(w = e) | wSOCCP(w = (1, 1, 0, …, 0)T) | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0092 | 5.54 | 0.0077 | 4.86 | 0.0081 | 5.00 | ||
200 | 0.0404 | 6.00 | 0.0327 | 5.08 | 0.0403 | 6.00 | ||
300 | 0.1084 | 6.52 | 0.0967 | 6.00 | 0.0999 | 6.00 | ||
400 | 0.3224 | 7.00 | 0.2683 | 6.00 | 0.2885 | 6.10 | ||
500 | 0.6037 | 7.00 | 0.4576 | 6.00 | 0.5476 | 7.00 | ||
600 | 0.8666 | 7.12 | 0.7771 | 6.50 | 0.8525 | 7.00 | ||
700 | 1.3798 | 7.82 | 1.2112 | 7.00 | 1.2700 | 7.00 | ||
800 | 1.9243 | 8.00 | 1.6096 | 7.00 | 1.6915 | 7.00 |
第三个数值试验中, 考虑具有多个二阶锥约束的二阶锥互补问题和二阶锥权互补问题, 即
表 3 求解具有多个二阶锥约束的二阶锥权互补问题的数值结果
SOCCP(w =0) | wSOCCP(w = e) | wSOCCP(w = (1, 1, 0, …, 0)T) | ||||||
n | ACPU | AIter | ACPU | AIter | ACPU | AIter | ||
100 | 0.0180 | 6.24 | 0.0145 | 5.02 | 0.0179 | 6.00 | ||
200 | 0.0617 | 7.08 | 0.0512 | 6.00 | 0.0621 | 7.00 | ||
300 | 0.1395 | 7.76 | 0.1145 | 6.54 | 0.1294 | 7.28 | ||
400 | 0.3378 | 8.22 | 0.2916 | 7.00 | 0.3434 | 8.00 | ||
500 | 0.6096 | 8.92 | 0.4744 | 7.00 | 0.5601 | 8.02 | ||
600 | 0.9576 | 9.28 | 0.8505 | 7.24 | 0.9394 | 8.96 | ||
700 | 1.4090 | 9.50 | 1.3711 | 8.00 | 1.3584 | 9.00 | ||
800 | 2.2010 | 9.76 | 1.6803 | 8.00 | 1.7638 | 9.00 |
第四个数值试验中选取权向量
表 4 求解不同初始点的线性二阶锥权互补问题的数值结果
n | (x0, s0) | ACPU | AIter |
100 | (e, 0) | 0.0078 | 5.00 |
100 | (0, e) | 0.0069 | 4.38 |
100 | (1, 1) | 0.0092 | 5.46 |
100 | -(1, 1) | 0.0094 | 5.66 |
100 | 10×(1, 1) | 0.0101 | 5.92 |
100 | -10×(1, 1) | 0.0098 | 5.88 |
最后考虑非线性二阶锥权互补问题
其中
选择权向量
表 5 求解不同初始点的非线性二阶锥权互补问题的数值结果
SOCCP(w = 0) | wSOCCP(w = (1, 0, 0, 1, 0)T) | ||||
(x0, s0) | ACPU | AIter | ACPU | AIter | |
(1, 1) | 0.0149 | 8.00 | 0.0085 | 7.00 | |
-(1, 1) | 0.0144 | 8.00 | 0.0150 | 9.00 | |
10×(1, 1) | 0.0255 | 13.00 | 0.0174 | 12.00 | |
-10×(1, 1) | 0.0231 | 13.00 | 0.0194 | 13.00 |
(i) 算法4.1可以有效地求解线性和非线性二阶锥权互补问题.
参考文献
Weighted complementarity problems-a new paradigm for computing equilibria
,DOI:10.1137/110837310 [本文引用: 1]
Interior-point algorithms for a generalization of linear programming and weighted centring
,
Sufficient weighted complementarity problems
,DOI:10.1007/s10589-015-9811-z [本文引用: 1]
A smoothing Newton algorithm for weighted linear complementarity problem
,
The weighted horizontal linear complementarity problem on a Euclidean Jordan algebra
,DOI:10.1007/s10898-018-0689-z [本文引用: 1]
Global and superlinear convergence of the smooothing Newton method and its application to general box constrained variational inequalities
,DOI:10.1090/S0025-5718-98-00932-6 [本文引用: 1]
A one-step smoothing Newton method for second-order cone programming
,
A combined smoothing and regularization method for monotone second-order cone complementarity problems
,
Smoothing algorithms for complementarity problems over symmetric cones
,DOI:10.1007/s10589-008-9180-y [本文引用: 1]
A regularized smoothing Newton method for symmetric cone complementarity problems
,DOI:10.1137/060676775 [本文引用: 1]
Some modifications of Newton's method with higher-order convergence for solving nonlinear equations
,
Analysis of a smoothing method for symmetric conic linear programming
,DOI:10.1007/BF02896466 [本文引用: 1]
A regularization method for the second-order cone complementarity problem with the Cartesian P0-property
,DOI:10.1016/j.na.2008.02.028 [本文引用: 1]
A new look at smoothing Newton methods for nonlinear complementarity problems and box constrained variational inequalities
,DOI:10.1007/s101079900127 [本文引用: 1]
A smoothing-type algorithm for the second-order cone complementarity problem with a new nonmonotone line search
,DOI:10.1080/02331934.2014.906595
A smoothing Newton method for mathematical programs governed by second-order cone constrained generalized equations
,
Optimality conditions of globally proper efficient solutions for set-valued optimization problems
,
A smoothing inexact Newton method for symmetric cone complementarity problems
,
An infeasible-interior-point predictor-corrector algorithm for the second-order cone program
,
Interior point trajectories and a homogeneous model for nonlinear complementarity problems over symmetric cones
,
Asymptotic approximation method and its convegence on semi-infinite programming
,
The (h, φ)-Lipschitz function, its generalized directional derivative and generalized gradient
,
On efficiency of nonmonotone Armijo-type line searches
,DOI:10.1016/j.apm.2016.10.055 [本文引用: 4]
A nonmonotone line search technique for Newton's Method
,
A nonmonotone line search technique and its application to unconstrained optimization
,DOI:10.1137/S1052623403428208 [本文引用: 7]
Semismooth and semiconvex functions in constrained optimization
,
Some P-properties for linear transformations on Euclidean algebras
,
Strong semismoothness of the Fischer-Burmeister SDC and SOC complementarity functions
,DOI:10.1007/s10107-005-0577-4 [本文引用: 1]
/
〈 | 〉 |