Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

数学物理学报, 2021, 41(1): 91-99 doi:

论文

关于Boussinesq方程组无粘极限的研究

郭连红,

Research on the Inviscid Limit for Boussinesq Equations

Guo Lianhong,

收稿日期: 2020-01-7  

基金资助: 广东普通高校重点科研(自然科学).  2019KZDXM042

Received: 2020-01-7  

Fund supported: the Guangdong Key Research in Common Colleges and Universities (Natural Science).  2019KZDXM042

作者简介 About authors

郭连红,E-mail:guoat164@163.com , E-mail:guoat164@163.com

Abstract

In this paper, we investigate the inviscid limit of the 3D viscous Boussinesq equations with slip boundary condition. We establish the local well-posedness of the strong solutions for initial boundary value problems for such systems. Furthermore, we establish the vanishing viscosity limit process and obtain a strong rate of convergence as the boundary of the domain is flat. In addition, the key observation is that the boundary term as θ can be estimated by the part of high order of energy through the trace formula.

Keywords: Boussinesq equations ; Vanishing viscosity limit ; Slip boundary conditions

PDF (324KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

郭连红. 关于Boussinesq方程组无粘极限的研究. 数学物理学报[J], 2021, 41(1): 91-99 doi:

Guo Lianhong. Research on the Inviscid Limit for Boussinesq Equations. Acta Mathematica Scientia[J], 2021, 41(1): 91-99 doi:

1 引言

该文在三维光滑有界区域Ω中, 研究下列Boussinesq方程组的初边值问题

{tuνΔu+uu+p=θe3, xΩ,tθκΔθ+uθ=0,xΩ,u=0,xΩ,u(0,x)=u0(x),θ(0,x)=θ0(x),xΩ,
(1.1)

边界条件为

{un=0,n×ω=0, xΩ,nθ=0, xΩ,
(1.2)

其中函数u=u(t,x), θ=θ(t,x), p=p(t,x)分别表示流体速度场, 温度和压力, ν0, κ0分别表示粘性系数和扩散系数, n为边界的单位外法向量, e3=(0,0,1)T表示x3方向的单位向量, u0θ0分别为给定的初始速度和温度, 且u0=0.

Boussinesq方程组是地球物理科学中常用的重要模型[1-3], 该系统在大气科学中也有重要应用[4].关于这个系统的推导[5].特别地, 对于一阶的情形, 可以用这个系统来描述混合现象, 当参数趋于无穷时, 研究解的极限尤其重要, 2D情况下已经有研究成果[6-7].

该系统是由经典Navier-Stokes方程和热力学方程耦合而成的.在θ0的情况下, 系统简化为经典的Navier-Stokes方程.关于Navier-Stokes方程的粘性消失极限问题已有丰富的研究结果[8-12], 关于Boussinesq方程的粘性消失极限问题的研究结果[13-19].

边界条件(1.2)由Navier[20]首次提出, 该条件是一类特殊的Navier滑移边界条件, 在不同的物理模型上建立带滑移边界条件的粘性消失极限问题的已有许多研究结果[10-12, 21-22].从数学角度来看, 与Xiao和Xin[10]中的Navier-Stokes方程相比, 动量方程中增加非定常温度函数, 为了克服温度和速度耦合项产生的困难, 对温度建立了一个更高阶的边界条件, 进而能够起到平衡动量方程的效果.

受Xiao和Xin等[10-11]的启发, 该文主要研究方程组(1.1)–(1.2)的粘性消失极限问题, 与MHD方程组[11]不同的是, 这里n×Δω0, 为解决由此产生的困难, 文中通过引理2.3的迹公式, 结合高阶能量部分来估计边界项

n×Δω=(2θ,1θ,0)τ=F(θ), xΩ.
(1.3)

最后得到类似MHD方程组[11]的结果.

主要结果如下.

定理1.1  设流体的初始速度与温度(u0,θ0)WH3(Ω), 则存在不依赖于ν,κT>0, 对任意t[0,T], 方程组(1.1)–(1.2)存在唯一强解(u,θ), 且满足

(u,θ)L2(0,T;H4)×C(0,T;H3),(u,θ)L2(0,T;W).

存在依赖于的常数 T_{0} , 对任意 t\in[0, T_{0}] , T_{0}<T^{*}

\|u(\nu, \kappa)-u^{0}\|_{2}^{2}+\|\theta(\nu, \kappa)-\theta^{0}\|_{2}^{2}\leq C(T_{0})(\nu+\kappa).

论文的结构:第2节介绍了函数空间的一些概念和一些基本结果.第3节给出了强解存在性理论.第4节详细证明了方程组(1.1)–(1.2)强解的收敛结果.

2 准备知识

\Omega\subset {{\Bbb R}} ^3 是一平坦区域, 例如立方体小盒子区域, \partial \Omega = \{(x_1, x_2, x_3);x_3 = 0, 1\}\cap \overline{\Omega} .内积记为 (\cdot) , 标准的Sobolev空间 H^s(\Omega)(s>0) , 其范数 \|\cdot\|_{L^2(\Omega)} = \|\cdot\| 以及 \|\cdot\|_{H^s(\Omega)} = \|\cdot\|_s , \nabla\times\phi = \varepsilon_{ijk}\partial_j\phi_k , u\cdot\nabla v = \sum\limits_{i, j = 1}^3u_i\partial_iv_j .为了简便, 在书写空间时省略 \Omega .

函数空间记为

X = \{u\in L^{2}(\Omega); \nabla\cdot u = 0, \ u\cdot n = 0\}, \nonumber

V = H^1 (\Omega)\cap X\subset X ,

W = \{u\in V\cap H^2 (\Omega); n\times\nabla\times u = 0, \ x\in \partial\Omega\}\subset X.

首先, 定义非线性项

B_{1}(u, \theta) = u\cdot\nabla u+\nabla p-\theta e_{3},

这里 p 满足

\Delta p = \nabla\cdot(\theta e_{3}-u\cdot\nabla u),

\nabla p\cdot n = (\theta e_{3}-u\cdot\nabla u)\cdot n,

B_{2}(u, \theta) = u\cdot\nabla \theta.

显然, B_{1}(u, \theta)\in X , B_{2}(u, \theta)\in X .

引理2.1[11]  设 s\geq 0 是一个整数, u\in H^{s} 是一个向量值函数, 那么

\begin{equation} \|u\|_{s}\leq C(\|\nabla\times u\|_{s-1}+\|\nabla\cdot u\|_{s-1}+|n\cdot u|_{s-\frac{1}{2}}+\|u\|_{s-1}), \end{equation}
(2.1)

(2.1)式的特殊情形, 对任意 u\in V

\|u\|_{1}\leq C(\|\nabla\times u\|)

容易验证, 当 u\in W , v\in V

(-\Delta u, v) = (\nabla\times u, \nabla\times v).

Stokes算子 -\Delta 可延拓至 W\in V , 延拓算子记为 A , 其定义域为 D(A) , 显然 W\subseteq D(A)\subset V .

引理2.2[11]  设Stokes算子 A = -\Delta 的定义域为 D(A) = W\subset V 是正闭双线性型的自伴扩张算子, 则有

\begin{equation} (Au, v) = a(u, v) = \int_{\Omega}(\nabla\times u)\cdot(\nabla\times v){\rm d}x, \end{equation}
(2.2)

它的逆是紧的, 且有可数多个特征值 \{\lambda_{j}\} 使得 0<\lambda_{1}\leq \lambda_{2}\leq \cdots \rightarrow\infty , 相关的特征向量 \{e_{j}\}\subset W\cap C^{\infty }(\Omega) X 里构成一个完备的正交基.

下面, 对方程组(1.1)的一式关于 u 求旋度, 对方程组(1.1)的二式关于 \theta 求梯度得

\begin{equation} \partial_{t}\omega-\nu\Delta\omega+u\cdot\nabla\omega-\omega\cdot\nabla u = \nabla\times (\theta e_{3}), \end{equation}
(2.3)

\begin{equation} \partial_{t}\nabla\theta-\kappa\Delta\nabla\theta+u\cdot\nabla\nabla\theta+\nabla u\cdot\nabla\theta = 0. \end{equation}
(2.4)

为了得到 H^3 中强解的存在性及相应收敛结果, 需要满足以下两个命题条件.此外, 在Navier-slip边界条件下, 温度还需要满足一个更高阶的边界条件.

命题2.1  假设 \theta 是Boussinesq方程组(1.1)–(1.2)的解, 且满足 \partial_{n}\theta = n\cdot\nabla\theta = 0 u\cdot n = 0, \; n\times\omega = 0 , 则 n\cdot\Delta\nabla\theta = 0 .

  对方程组(1.1)的第二式关于 \theta 求梯度, 得

\begin{equation} \partial_{t}\nabla\theta-\kappa\Delta\nabla\theta+u\cdot\nabla\nabla\theta+\nabla u\cdot\nabla\theta = 0, \end{equation}
(2.5)

由于

\begin{equation} (u\cdot\nabla\nabla\theta+\nabla u\cdot\nabla\theta)\cdot n = (\nabla(u\cdot\nabla\theta))\cdot n, \end{equation}
(2.6)

\begin{equation} \partial_{3}(u\cdot\nabla\theta) = \partial_{3}(u_{i}\partial_{i}\theta) = \partial_{3}u_{i}\partial_{i}\theta+u_{i}\theta_{i}\partial_{3}\theta. \end{equation}
(2.7)

利用边界条件 u\cdot n = 0, n\times\omega = 0 \partial_3u_j = 0, (j = 1, 2) , \partial_{3}(u\cdot\nabla\theta) = 0 .因此

\begin{equation} (u\cdot\nabla\theta+\nabla u\cdot\nabla\theta)\cdot n = 0, \end{equation}
(2.8)

进而得到 n\cdot\Delta\nabla\theta = 0 .

命题2.2  若 (u, \theta)\in C^{\infty}(\overline{\Omega})\cap W , (u, \theta) 是Boussinesq方程组(1.1)–(1.2)的解, 则边界条件 n\times\Delta\omega = (\partial_{2}\theta, -\partial_{1}\theta, 0)_{\tau} = F(\theta) 成立.

  对方程组(1.1)的第一式关于 u 求旋度, 得

\begin{equation} \partial_{t}\omega-\nu\Delta\omega+u\cdot\nabla\omega-\omega\cdot\nabla u = \nabla\times (\theta e_{3}), \end{equation}
(2.9)

依据旋度的定义以及条件(1.2), 在边界上对任意 i, j = 1, 2 , \partial_{i, 3}u_{j} = 0 均成立, 且

\begin{eqnarray} (u\cdot\nabla\omega-\omega\cdot\nabla u)_1& = &\sum\limits_{i = 1}^3( u_i\partial_i \omega_1-\omega_i\partial_i u_1){}\\ & = &\sum\limits_{i = 1}^2( u_i\partial_i (\partial_2u_3-\partial_3u_2)-\omega_i\partial_i u_1)+ ( u_3\partial_3 \omega_1-\omega_3\partial_3 u_1) = 0, \end{eqnarray}
(2.10)

类似地

\begin{equation} (u\cdot\nabla\omega-\omega\cdot\nabla u)_2 = \sum\limits_{i = 1}^3( u_i\partial_i \omega_2-u_i\omega_i\partial_i u_2) = 0. \end{equation}
(2.11)

因此在边界上有

\begin{equation} ( u\cdot\nabla\omega-\omega\cdot\nabla u)_{j} = 0, j = 1, 2. \end{equation}
(2.12)

\begin{equation} \nabla\times (\theta e_{3})_{\tau} = (\partial_{2}\theta, -\partial_{1}\theta, 0)_{\tau}, \end{equation}
(2.13)

\begin{equation} n\times\Delta\omega = (u\cdot\nabla\omega-\omega\cdot\nabla u-\nabla\times (\theta e_{3}))_{\tau} = (\partial_{2}\theta, -\partial_{1}\theta, 0)_{\tau} = F(\theta). \end{equation}
(2.14)

命题2.2证毕.

设非负光滑函数 \phi(t), \psi(t), f(t) , 令 t\geq 0 , 则下列微分不等式成立.

引理2.3[8]  假设给定光滑有界开集 \Omega , 1<p<+\infty , 则存在 C >0 , 使得

\|f\|_{p, \Gamma} \leq C\|f\|_{p}^{1-\frac{1}{p}}\|f\|_{1, p}^{\frac{1}{p}}, \quad \forall f \in\left(W^{1, p}(\Omega)\right)^{3}.\nonumber

引理2.4[23]  设 \phi(0) = \phi_0 , \frac{{\rm d}\phi(t)}{{\rm d}t}+\psi(t)\leq g(\phi(t))+f(t) , 其中 t\geq0 , 当 \phi\geq0 时, g 是非负Lipschitz连续函数.当 t\in[0, T(\phi_0)) 时, \phi(t)\leq F(t;\phi_0) , 这里 F(\cdot;\phi_0) \frac{{\rm d}F(t)}{{\rm d}t} = g(F(t))+f(t) 初边值问题的解; F(0) = \phi_0 [0, T(\phi_0)) 是其连续的最大区间.如果 g 非负递减, 则

\int_0^t\psi(\tau){\rm d}\tau\leq \widetilde{F}(t;\phi_0),

\widetilde{F}(t;\phi_0) = \phi_0+\int_0^t[g(F(\tau;\phi_0))+f(\tau)]{\rm d}\tau.\nonumber

3 先验估计

命题3.1  设( u_{0}, \theta_{0})\in W\cap H^{3}(\Omega) , 则存在依赖于 \|(u_{0}, \theta_{0})\|_{H^{3}} T^{*} 使方程组(1.1)–(1.2)的强解 u = u(\nu, \kappa), \theta = \theta(\nu, \kappa) 满足一致估计

\|u(\cdot, t)\|_{3}+\|\theta(\cdot, t)\|_{3}+\int^{t}_{0}\|u_{t}(s)\|^{2}_{2}{\rm d}s+\nu\int^{t}_{0}\|u(s)\|^{2}_{4}{\rm d}s+ \kappa\int^{t}_{0}\|\theta(s)\|^{2}_{4}{\rm d}s\leq C, \; \; t\in[0, T^{*}], \nonumber

这里 C>0 是不依赖于 \nu \kappa 的常数.

  零阶估计:方程组(1.1)的一式和二式分别乘以 u \theta 并在 \Omega 上积分, 利用边界条件(1.2)式得

\begin{equation} \frac{\rm d}{{\rm d}t}(\|u\|^{2}+\|\theta\|^{2})+2(\nu \|\nabla\times u\|^{2}+\kappa\|\nabla \theta\|^{2})\leq C(\|\theta\|^{2}+\|u\|^{2}). \end{equation}
(3.1)

一阶估计:方程组 (1.1) 的一式关于 u 求旋度, 二式关于 t 求梯度, 则

\begin{equation} \partial_{t}\omega-\nu\Delta\omega+u\cdot\nabla\omega-\omega\cdot\nabla u = \nabla\times (\theta e_{3}), \end{equation}
(3.2)

\begin{equation} \partial_{t}\nabla\theta-\kappa\Delta\nabla\theta+u\cdot\nabla\theta+\nabla u\cdot\nabla\theta = 0. \end{equation}
(3.3)

(3.2) (3.3) 式分别乘以 \omega \nabla\theta 并在 \Omega 上积分, 利用Hölder, Young不等式, 可得

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}(\|\omega\|^{2}+\|\nabla \theta\|^{2})+2(\nu \|\nabla\times\omega\|^{2}+\kappa\|\nabla^{2}\theta\|^{2}){}\\ &\leq&((u\cdot\nabla \omega-\omega\cdot\nabla u-\nabla\times(\theta e_{3})), \omega)+(\nabla (u\cdot\nabla\theta), \nabla\theta){}\\ &\leq&\|\omega\|^{\frac{3}{2}}\; \|\nabla\times\omega\|^{\frac{3}{2}}+\|\nabla u\|\|\nabla\theta\|^{\frac{1}{2}}\; \|\nabla^{2}\theta\|^{\frac{3}{2}}{}\\ &\leq&\frac{\nu}{2}\|\nabla\times\omega\|^{2}+\frac{C}{\nu^{3}}\|\omega\|^{6}+\frac{\kappa}{2}\|\nabla^{2}\theta\|^{2}+\frac{C}{\kappa^{3}} (\|\nabla u\|^{4}+(\|\nabla \theta\|^{2}). \end{eqnarray}
(3.4)

二阶估计:假设 \psi_{u} = -\Delta u, \psi_{\theta} = -\Delta \theta , 由方程组 (1.1) 的一式和二式有

\begin{equation} \partial_{t}\psi_{u}-\nu\Delta\psi_{u}-\Delta(u\cdot\nabla u-\theta e_{3}) = 0, \end{equation}
(3.5)

\begin{equation} \partial_{t}\psi_{\theta}-\kappa\Delta\psi_{\theta}-\Delta(u\cdot\nabla\theta) = 0. \end{equation}
(3.6)

(3.5) 式乘以 \psi_{u} , (3.6) 式乘以 \psi_{\theta} , 类似上面的计算可得

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}(\|\psi_{u}\|^{2}+\|\psi_{\theta}\|^{2})+2(\nu \|\nabla\times\psi_{u}\|^{2}+\kappa\|\nabla\psi_{\theta}\|^{2}){}\\ &\leq&(\Delta(u\cdot\nabla u-\theta e_{3}), \psi_{u})+(\Delta(u\cdot\nabla\theta), \psi_{\theta})+\nu\int_{\partial\Omega}F(\theta)\psi_{u}{\rm d}s{}\\ &\leq&\|\psi_{u}\|^{2}\; \|\nabla u\|_{L^{\infty}}+\|\psi_{u}\| \; \|\psi_{\theta}\|+\|\psi_{u}\|\; \|\psi_{\theta}\|(\|\nabla\theta\|_{L^{\infty}}+\|\nabla u\|_{L^{\infty}}){}\\ &&+\nu\|\psi_{u}\|_{H^{-\frac{1}{2}}(\partial\Omega)}\|\nabla\theta\|_{H^{\frac{1}{2}}(\partial\Omega)}{}\\ &\leq& \|\psi_{u}\|^{2}+\|\psi_{\theta}\|^{2}+\|\psi_{u}\|(\|\nabla\times\psi_{u}\|+\|\nabla\Delta\theta\|)(\|\psi_{u}\|+\|\psi_{\theta}\|)+\nu\|\psi_{u}\|\; \|\nabla^{2}\theta\|{}\\ &\leq& C(\|\psi_{u}\|^{2}+\|\psi_{\theta}\|^{2})+\frac{\nu}{2}\|\nabla\times\psi_{u}\|^{2}+\frac{\kappa}{2}\|\nabla\Delta\theta\|^{2}+C(\frac{1}{\kappa}, \frac{1}{\nu})(\|\psi_{u}\|^{4}+\|\psi_{\theta}\|^{4}). \end{eqnarray}
(3.7)

三阶估计: (3.5)与(3.6)式分别乘以 -\Delta\psi_{u} -\Delta\psi_{\theta} 并在 \Omega 上积分, 类似上面计算方法可得

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}(\|\nabla\times\psi_{u}\|^{2}+\int_{\partial\Omega}\psi_{u}F(\theta){\rm d}s+\|\nabla\psi_{\theta}\|^{2})+2(\nu \|\Delta\psi_{u}\|^{2}+\kappa\|\Delta \psi_{\theta}\|^{2}){}\\ &\leq&(\Delta(u\cdot\nabla u-\theta e_{3}), -\Delta\psi_{u})+(\Delta(u\cdot\nabla\theta), -\Delta\psi_{\theta})+\int_{\partial\Omega}\psi_{u}\partial_{t}F(\theta){\rm d}s{}\\ &\leq&\bigg\{((\nabla\times)^{3}(u\cdot\nabla u-\theta e_{3}), \nabla\times\psi_{u})+\int_{\partial\Omega}\Delta(u\cdot\nabla u-\theta e_{3})F(\theta){\rm d}s\bigg\}{}\\ &&+\bigg\{(\nabla\Delta(u\cdot\nabla\theta), \nabla\Delta\theta)+\int_{\partial\Omega}\psi_{u}(\kappa\Delta\nabla\theta +\nabla(u\cdot\nabla\theta)){\rm d}s\bigg\}{}\\ & = &|I_{1}|+|I_{2}|, \end{eqnarray}
(3.8)

这里

\begin{eqnarray*} |I_{1}|& = &\|u\|^{3}_{3}+\|\theta\|^{2}_{3}+\|u\|^{2}_{3}+\|(\nabla\times)^{3}u\|_{H^{-\frac{1}{2}}(\partial\Omega)}\; \|\nabla\theta\|_{H^{\frac{1}{2}}(\partial\Omega)}\; \|u\|_{L^{\infty}(\partial\Omega)}\nonumber\\ &&+\|u\|_{H^{2}(\partial\Omega)}\; \|\nabla u\|_{L^{3}(\partial\Omega)}\; \|\nabla\theta\|_{L^{6}(\partial\Omega)} \end{eqnarray*}

\begin{eqnarray*} |I_{2}|& = &\|\theta\|^{2}_{3}\; \|u\|_{3}+\|\Delta\nabla\theta\|_{H^{-\frac{1}{2}}(\partial\Omega)}\; \|\psi_{u}\|_{H^{\frac{1}{2}}(\partial\Omega)} +\|\varphi_{u}\|_{L^{2}(\partial\Omega)}\; \|\psi_{\theta}\|_{L^{2}(\partial\Omega)}\; \|u\|_{L^{\infty}(\partial\Omega)}\nonumber\\ &&+\|\psi_{u}\|_{L^{2}(\partial\Omega)}\; \|\nabla u\|_{L^{3}(\partial\Omega)}\; \|\nabla\theta\|_{L^{6}(\partial\Omega)}.\nonumber \end{eqnarray*}

综合上述估计可得

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}(\|\nabla\times\psi_{u}\|^{2}+\int_{\partial\Omega}\psi_{u}F(\theta){\rm d}s+\|\nabla\psi_{\theta}\|^{2})+2(\nu \|\Delta\psi_{u}\|^{2}+\kappa\|\Delta \psi_{\theta}\|^{2}){}\\ &\leq&\|u\|^{3}_{3}+\|\theta\|_{3}\; \|u\|_{3}+\|u\|^{2}_{3}\; \|\theta\|_{3}+\|\theta\|^{2}_{3}\; \|u\|_{3}{}\\ &\leq& C\|u\|^{3}_{3}+\|u\|^{2}_{3}+\|\theta\|^{2}_{3}+\|u\|^{4}_{3}+\|\theta\|^{4}_{3}, \end{eqnarray}
(3.9)

由引理2.3存在 T^{*}>0 , 对任意 t\in[0, T^{*}]

\|u(\cdot, t)\|_{3}+\|\theta(\cdot, t)\|_{3}+\int^{t}_{0}\|u_{t}(s)\|^{2}_{2}{\rm d}s+\nu\int^{t}_{0}\|u(s)\|^{2}_{4}{\rm d}s+ \kappa\int^{t}_{0}\|\theta(s)\|^{2}_{4}{\rm d}s\leq C.

这里 C 是独立于 \nu \kappa 的常数.命题3.1证毕.

利用命题3.1中的先验估计, 结合文献[24], 应用标准Garlerkin逼近方法, 可建立强解的局部存在唯一性.

4 粘性消失极限

本节研究 \nu\rightarrow0, \kappa\rightarrow0 时, Boussinesq方程组的粘性消失极限.

定理4.1  设 (u_{0}, \theta_{0})\in W\cap H^{3}(\Omega) , 存在 T_{0}>0 , 当 T_{0}\leq T^{*} 时, u = u(\nu, \kappa), \theta = \theta(\nu, \kappa) 是方程组(1.1)–(1.2)的强解.当 \nu, \kappa\rightarrow0 时, (u, \theta) 收敛于相同初始条件下理想Boussinesq方程组的解 (u^{0}, \theta^{0}) , 有

\begin{eqnarray*} &&u(\nu, \kappa), \theta(\nu, \kappa)\rightarrow (u^{0}, \theta^{0})\; \; \mbox{在}\ L^{q}(0, T_{0};H^{3}(\Omega)), \\ &&u(\nu, \kappa), \theta(\nu, \kappa)\rightarrow (u^{0}, \theta^{0})\; \; \mbox{在}\ C(0, T_{0};H^{2}(\Omega)), \end{eqnarray*}

其中 1\leq q <\infty .

  由命题3.1可得, 对任意 \nu, \kappa>0

\begin{eqnarray*} &&u(\nu, \kappa), \theta(\nu, \kappa)\ \ \, \mbox{ 在 $C(0, T_{0};H^{3}(\Omega))$ 一致有界, } \\ &&u'(\nu, \kappa), \theta'(\nu, \kappa)\ \mbox{ 在 $L^{2}(0, T_{0};W)$ 一致有界.} \end{eqnarray*}

依据标准紧性结果, 存在关于 \nu, \kappa 的序列 \nu_{n}, \kappa_{n} 和向量函数( u^{0}, \theta^{0} ), 对任意 1\leq q <\infty

\begin{eqnarray*} &&(u(\nu_{n}, \kappa_{n}), \theta(\nu_{n}, \kappa_{n}))\rightarrow (u^{0}, \theta^{0})\ \mbox{ 在 $L^{q}(0, T;H^{3}(\Omega))$, } \\ &&(u(\nu_{n}, \kappa_{n}), \theta(\nu_{n}, \kappa_{n}))\rightarrow (u^{0}, \theta^{0})\ \mbox{ 在 $C(0, T;H^{2}(\Omega))$.} \end{eqnarray*}

\nu_{n}, \kappa_{n}\rightarrow 0 时取极限, 则 (u^{0}, \theta^{0}) 是如下极限方程组的解

\begin{equation} \left\{\begin{array}{ll} \partial_{t}u^{0}+u^{0}\cdot\nabla u^{0}+\nabla p^{0} = \theta^{0} e_{3}, \\ \partial_{t}\theta^{0}+u^{0}\cdot\nabla\theta^{0} = 0, \\ \nabla\cdot u^{0} = 0, \end{array}\right. \end{equation}
(4.1)

满足边界条件

\begin{equation} \left\{\begin{array}{ll} u^{0}\cdot n = 0, \; \; \; n\times \omega^{0} = 0, \\ n\cdot\nabla\theta^{0} = 0, \end{array}\right. \end{equation}
(4.2)

这里 p^{0} 满足

\Delta p^{0} = \nabla\cdot(\theta^{0} e_{3}-u^{0}\cdot\nabla u^{0}),

\nabla p^{0}\cdot n = (\theta^{0} e_{3}-u^{0}\cdot\nabla u^{0})\cdot n.

类似上一节证明Boussinesq方程组强解的唯一性, 可以证明 (u^{0}, \theta^{0}) 的唯一性, 进而证明整个序列的收敛性.

最后给出强解收敛率的估计.

定理4.2  设 (u_{0}, \theta_{0})\in W\cap H^{3}(\Omega) , T_{0} 满足定理4.1的条件, 则

\|u(\nu, \kappa)-u^{0}\|_{2}^{2}+\|\theta(\nu, \kappa)-\theta^{0}\|_{2}^{2}\leq C(T_{0})(\nu+\kappa).

  记 \widetilde{u} = u(\nu, \kappa)-u^{0}, \widetilde{\theta} = \theta(\nu, \kappa)-\theta^{0} , 则 \psi_{\widetilde{u}} = -\Delta\widetilde{u}, \psi_{\widetilde{\theta}} = -\Delta\widetilde{\theta} 满足方程组

\begin{equation} \left\{\begin{array}{ll} \partial_{t}\psi_{\widetilde{u}}-\Delta (B_{1}(u, \theta)-B_{1}(u^{0}, \theta^{0})) = -\nu\Delta^{2}\widetilde{u}+\nu\Delta^{2}u^{0}, \\ \partial_{t}\psi_{\widetilde{\theta}}-\Delta (B_{2}(u, \theta)-B_{2}(u^{0}, \theta^{0})) = -\kappa\Delta^{2}\widetilde{\theta}+\kappa\Delta^{2}\theta^{0}, \\ \nabla\cdot\widetilde{u} = 0, \end{array}\right. \end{equation}
(4.3)

边界条件为

\begin{equation} \left\{\begin{array}{ll} \widetilde{u}\cdot n = 0, \\ n\times\Delta\omega = F(\theta), \; n\cdot\Delta\nabla\theta = 0, \end{array}\right. \end{equation}
(4.4)

这里 (\nabla\times u)\times n = 0, (\nabla\times u^{0})\times n = 0, n\cdot\nabla \widetilde{\theta} = 0 .

方程组(4.3)的一式和二式分别与 \psi_{\widetilde{u}}, \psi_{\widetilde{\theta}} L^{2} 作内积, 分部积分计算得到

\begin{eqnarray} &&\frac{\rm d}{{\rm d}t}(\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2})-2(\Delta(B_{1}(u, \theta)-B_{1}(u^{0}, \theta^{0})), \psi_{\widetilde{u}}) -2(\Delta(B_{2}(u, \theta)-B_{2}(u^{0}, \theta^{0})), \psi_{\widetilde{\theta}})\\ & = &\nu(\Delta^{2}\widetilde{u}, \psi_{\widetilde{u}})+\kappa(\Delta^{2}\widetilde{\theta}, \psi_{\widetilde{\theta}}) +\nu(\Delta^{2}u^{0}, \psi_{\widetilde{u}})+\kappa(\Delta^{2}\theta^{0}, \psi_{\widetilde{\theta}}), \end{eqnarray}
(4.5)

由命题3.1的证明可得

\begin{eqnarray} -\Delta (B_{1}(u, \theta)-B_{1}(u^{0}, \theta^{0})) & = &-\Delta [(u\cdot\nabla u-\theta e_{3})-(u^{0}\cdot\nabla u^{0}-\theta^{0} e_{3})]\\ & = &-\Delta [u\cdot\nabla u-u\cdot\nabla u^{0}+u\cdot\nabla u^{0}-u^{0}\cdot\nabla u^{0}-(\theta e_{3}-\theta^{0} e_{3})]\\ & = &-\Delta[u\cdot \nabla\widetilde{u}+\widetilde{u}\cdot\nabla u^{0}-\widetilde{\theta}e_{3} ], \end{eqnarray}
(4.6)

类似有

\begin{eqnarray} -\Delta (B_{2}(u, \theta)-B_{2}(u^{0}, \theta^{0})) & = &-\Delta [u\cdot\nabla \theta-u^{0}\cdot\nabla \theta^{0}]\\ & = &-\Delta [u\cdot\nabla \theta-u^{0}\cdot\nabla \theta+u^{0}\cdot\nabla \theta-u^{0}\cdot\nabla \theta^{0} ]\\ & = &-\Delta[\widetilde{u}\cdot\nabla \theta+u^{0}\cdot\widetilde{\theta} ], \end{eqnarray}
(4.7)

\begin{equation} \ 2(\Delta(B_{1}(u, \theta)-B_{1}(u^{0}, \theta^{0})), \psi_{\widetilde{u}}) -2(\Delta(B_{2}(u, \theta)-B_{2}(u^{0}, \theta^{0})), \psi_{\widetilde{\theta}}) \leq C(T_{0})(\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2}) \end{equation}
(4.8)

\begin{eqnarray} &&(\nu\Delta^{2}u^{0}, \psi_{\widetilde{u}})\leq \nu \|(\nabla\times)^{3}u^{0}\|\cdot\|\nabla\times\psi_{\widetilde{u}}\| \leq \frac{\nu}{2}\|\nabla\times\psi_{\widetilde{u}}\|^{2}+C\nu\|(\nabla\times)^{3}u^{0}\|^{2}, \\ &&(\kappa\Delta^{2}\theta^{0}, \psi_{\widetilde{\theta}})\leq \kappa \|(\nabla)^{3}\theta^{0}\|\cdot\|\nabla\psi_{\widetilde{\theta}}\| \leq \frac{\kappa}{2}\|\nabla\psi_{\widetilde{\theta}}\|^{2}+C\kappa\|(\nabla)^{3}\theta^{0}\|^{2}, \end{eqnarray}
(4.9)

综合(4.6)–(4.9)式可得

\frac{\rm d}{{\rm d}t}(\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2})+2(\nu\|\nabla\times\psi_{\widetilde{u}}\|^{2} +\kappa\|\nabla\psi_{\widetilde{\theta}}\|^{2}) \leq C((\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2})+C\nu+C\kappa).

上述估计关于 \nu, \kappa 是一致的, 因此

\frac{\rm d}{{\rm d}t}(\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2})\leq C(T_{0})(\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2}+C\nu+C\kappa).\nonumber

\widetilde{u}(0) = 0, \widetilde{\theta}(0) = 0 , 依据Gronwall's不等式可得

\|\psi_{\widetilde{u}}\|^{2}+\|\psi_{\widetilde{\theta}}\|^{2}\leq C(T_{0})(\nu+\kappa).

定理4.2得证.

参考文献

Constantin P , Foias C . Navier-Stokes Equations. Chicago: University of Chicago Press, 1988

[本文引用: 1]

Pedlosky J . Geophysical Fluid Dynamics. New York: Springer-Verlag, 1987

Majda A . Introduction to PDEs and Waves for the Atmosphere and Ocean. New York: Courant Institute of Mathematical Sciences, 2003

[本文引用: 1]

Cushman-Roisin B , Jean-Marie B . Introduction to Geophysical Fluid Dynamics, Physical and Numerical Aspects. New York: Academic Press, 2011

[本文引用: 1]

Rajagopal K R , Ruzicka M , Srinivasa A R .

On the Oberbeck-Boussinesq approximation

Mathematical Models and Methods in Applied Sciences, 1996, 6 (8): 1157- 1167

DOI:10.1142/S0218202596000481      [本文引用: 1]

Chae D .

Global regularity for the 2D Boussinesq equations with partial viscosity terms

Adv Math, 2006, 203: 497- 513

DOI:10.1016/j.aim.2005.05.001      [本文引用: 1]

Hou T Y , Li C .

Global well-posedness of the viscous Boussinesq equations

Discrete Contin Dyn Syst, 2005, 12 (1): 1- 12

DOI:10.3934/dcds.2005.12.1      [本文引用: 1]

Berselli L C , Spirito S .

On the vanishing viscosity limit for the Navier-Stokes equations under slip boundary conditions in general domains

Commun Math Phys, 2012, 316: 171- 198

DOI:10.1007/s00220-012-1581-1      [本文引用: 2]

Iftimie D , Planas G .

Inviscid limits for the Navier-Stokes equations with Navier friction boundary conditions

Nonlinearity, 2006, 19 (4): 899- 918

DOI:10.1088/0951-7715/19/4/007     

Xiao Y L , Xin Z P .

On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition

Comm Pure Appl Math, 2007, 60: 1027- 1055

DOI:10.1002/cpa.20187      [本文引用: 3]

Xiao Y L , Xin Z P , Wu J H .

Vanishing viscosity limit for the 3D magnetohydrodynamic system with a slip boundary condition

J Funct Anal, 2009, 257: 3375- 3394

DOI:10.1016/j.jfa.2009.09.010      [本文引用: 5]

Xiao Y L , Xin Z P .

Remarks on vanishing viscosity limits for 3D Navier-Stokes equations with a slip boundary condition

Chin Ann Math, 2011, 32: 321- 332

DOI:10.1007/s11401-011-0649-0      [本文引用: 2]

Berselli L C , Spirito S .

On the Boussinesq system:regularity criteria and singular limits

Methods Appl Anal, 2011, 18: 391- 496

[本文引用: 1]

Jiang S , Zhang J W , Zhao J N .

Boundary-layer effects for the 2-D Boussinesq equations with vanishing diffusivity limit in the half plane

Journal of Differential Equations, 2011, 250 (10): 3907- 3936

DOI:10.1016/j.jde.2011.01.002     

Berselli L C , Spirito S .

An elementary approach to the inviscid limits for the 3D Navier-Stokes equations with slip boundary conditions and applications to the 3D Boussinesq equations

Nonlinear Differ Equ Appl, 2014, 21: 149- 166

DOI:10.1007/s00030-013-0242-1     

Wang J , Xie F .

Zero dissipation limit and stability of boundary layers for the heat conductive Boussinesq equations in a bounded domain

Proc Roy Soc Edinburgh Sect A, 2015, 145 (3): 611- 637

DOI:10.1017/S0308210513000875     

Li L R , Wang K , Hong M L .

The Asymptotic limit for the 3D Boussinesq system

Chinese Quarrterly Journal of Mathematics, 2016, 31 (1): 51- 59

Li H P , Xu Z H , Zhu X L .

The vanishing diffusivity limit for the 2-D Boussinesq equations with boundary effct

Nonlinear Analysis, 2016, 133: 144- 160

DOI:10.1016/j.na.2015.12.004     

Zhang Z P .

Vanishing diffusivity limit for the 3D heat-conductive Boussinesq equations with a slip boundary condition

J Math Anal Appl, 2018, 460 (1): 47- 57

DOI:10.1016/j.jmaa.2017.11.045      [本文引用: 1]

Navier C L M .

Memoire sur les loir du mouvement des fluids

Memoires de l'Academie Royale des Sciences de l'Institut de France, 1823, 6: 389- 440

[本文引用: 1]

Beirão da Veiga H , Crispo F .

Sharp inviscid limit results under Navier type boundary conditions:An L^{p} theory

J Math Fluid Mech, 2010, 12: 397- 411

DOI:10.1007/s00021-009-0295-4      [本文引用: 1]

Beirão da Veiga H , Crispo F .

Concerning the W^{k, p}-inviscid limit for 3D flows under a slip boundary condition

J Math Fluid Mech, 2011, 13: 117- 135

DOI:10.1007/s00021-009-0012-3      [本文引用: 1]

Chen P F , Xiao Y H , Zhang H .

Vanishing viscosity limit for the 3D nonhomogeneous incompressible Navier-Stokes equations with a slip boundary condition

Math Meth Appl Sci, 2017, 40: 5925- 5932

DOI:10.1002/mma.4443      [本文引用: 1]

Constantin P , Doering C R .

Infinite Prandtl number convection

J Stat Phys, 1999, 94: 159- 172

DOI:10.1023/A:1004511312885      [本文引用: 1]

/