Processing math: 4%

数学物理学报, 2021, 41(1): 178-193 doi:

论文

带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解

蒋婷婷1,2, 杜增吉,1

Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response

Jiang Tingting1,2, Du Zengji,1

通讯作者: 杜增吉, E-mail: 751668254@qq.com; zjdu@jsnu.edu.cn; duzengji@163.com

收稿日期: 2020-02-29  

基金资助: 国家自然科学基金.  11771185
国家自然科学基金.  11871251

Received: 2020-02-29  

Fund supported: the NSFC.  11771185
the NSFC.  11871251

Abstract

This paper is concerned with a neutral impulsive predator-prey model with Holling-type IV functional response and delays. We obtain sufficient conditions on the existence of positive periodic solutions of this predator-prey model by using the Mawhin coincidence degree theory and analysis technique.

Keywords: Neutral predator-prey model ; Impulsive ; Periodic solutions ; Holling-type IV functional response ; Coincidence degree theory

PDF (402KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蒋婷婷, 杜增吉. 带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解. 数学物理学报[J], 2021, 41(1): 178-193 doi:

Jiang Tingting, Du Zengji. Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response. Acta Mathematica Scientia[J], 2021, 41(1): 178-193 doi:

1 引言

自Lotka和Volterra分别对捕食-食饵数学模型做了开创性的研究工作以来, 捕食-食饵数学模型被众多学者广泛研究, 参见文献[1-17].捕食者与被捕食者之间的动力学关系, 基于它们的普遍存在性以及重要性, 已经持续了很长一段时间并将继续被深入研究, 参见文献[11].上个世纪, 许多学者建立了大量的生态系统, 用来描述不同物种之间以及物种与外界环境之间的相互作用.其中, 最经典并且被广泛研究的是Lotka-Volterra竞争系统, 参见文献[12-16].根据实验数据, Holling[17]提出了三种单调型的功能函数

f(x)=c(t)x,  或 f(x)=c(t)xm+x,  或  f(x)=c(t)x2m+x2,

这些功能函数已经被广泛用在许多模型里加以研究.然而, 有实验显示, 在微生物的层面非单调反应很可能会发生:当营养浓度达到很高的一个水平的时候, 对于特定的增长速度很可能会发生抑制反应.当微生物被用在废物分解或者污水净化方面, 这种抑制反应的现象很常见, 因此, 提出了Holling Ⅳ型功能反应函数

f(x)=c(t)xα+βx+x2,

并用来模拟在高浓度下的抑制反应[18].与前三种功能反应函数相比, Holling Ⅳ型功能反应函数更合理.基于这个原因, Chen[19]研究了如下带有Holling Ⅳ型功能反应函数的捕食-食饵模型正周期解的存在性

{.N1(t)=N1(t)[b1(t)a1(t)N1(tτ1(t))c(t)N2(tσ(t))(N21(t)/i)+N1(t)+a],.N2(t)=N2(t)[b2(t)+a2(t)N1(tτ2(t))(N21(tτ2(t))/i)+N1(tτ2(t))+a],

其中N1(t)N2(t)分别代表食饵与捕食者在t时刻的种群密度; al(t),bl(t)τl(t) (l=1,2)都是以ω>0为周期的连续函数, 并且a,i都是正常数.利用Mawhin迭合度理论, 得到了该系统正周期解存在性的充分条件.

众所周知, 在种群动态中, 许多进化过程在经历了相当长一段时间的连续变化之后, 很可能经历一个短时间的突变.例如, 由于食物的供给, 季节性的变化, 狩猎以及一年一度的收获等等, 综合这些因素, 得到了脉冲微分方程.关于脉冲微分方程的理论, 参见文献[20].考虑到脉冲, Du和Feng[21]研究了带有脉冲时滞的具有Beddington-DeAngelis型功能反应函数的中立型捕食竞争模型正周期解的存在性, 利用Mawhin迭合度理论, 给出了正周期解存在的充分条件.

根据上述文献, 该文研究如下带有脉冲时滞和更一般的Holling Ⅳ型功能反应函数的中立型捕食-食饵模型

{.N1(t)=N1(t)[b1(t)a1(t)N1(tτ1(t))ρ(t).N1(tτ3(t))           c(t)N2(tσ(t))N21(t)+αN1(t)+β],.N2(t)=N2(t)[b2(t)+a2(t)N1(tτ2(t))N21(tτ2(t))+αN1(tτ2(t))+β],}ΔN1(tk)=N1(t+k)N1(tk)=c1kN1(tk),ΔN2(tk)=N2(t+k)N2(tk)=c2kN2(tk),}t=tk,k=1,2,,ttk,k=1,2,,
(1.1)

满足初始条件

N1(t)=φ(t),.N1(t)=.φ(t),φC1([τ,0],[0,+)),φ(0)>0,N2(t)=ψ(t),.N2(t)=.ψ(t),ψC1([τ,0],[0,+)),ψ(0)>0,
(1.2)

其中, N1N2分别代表食饵与捕食者在t时刻的种群密度; a1(t)C(R,(0,+)), a2(t),c(t)C(R,[0,+)), σ(t),τ1(t),τ2(t)C1(R,[0,+)), ρ(t)C1(R,R), τ3(t)C2(R,[0,+)); cik>1,i=1,2,kN+; b1(t),b2(t)C(R,R), τ=max, {\tau _2}(t) , {\tau _3}(t)\} , 其中, c(t) , \sigma(t) , \rho(t) , {a_i(t)} , {b_i(t)} \tau_\ell(t) ( i=1, 2 ; \ell=1, 2, 3) 都是以 \omega 为正周期的连续函数, \alpha \beta 都是正的常数.并且满足 \int_0^\omega {c(t){\rm d}t > 0} \int_0^\omega {{b_i}(t){\rm d}t > 0} 的条件.此外, 由于环境是随机变动的, 所以, 增长函数 {b_1}(t) {b_2}(t) 不一定总是正的.本文利用Mawhin迭合度定理和一些分析技巧, 给出了系统 (1.1) (1.2) 存在正周期解的充分条件.这些条件是时滞依赖的, 从而本文的研究和文献[18-19, 22-23]不同, 因为这些文献研究的结论都与时滞无关.

2 预备知识

为了得到系统 (1.1) (1.2) 正周期解的存在性, 首先介绍一些相关的引理和Mawhin迭合度定理.

定义2.1[21]  假设 {({N_1}(t), {N_2}(t))^{\rm T}} \in ([ - \tau, \infty ), (0, +\infty ), (0, +\infty )) , 满足下述条件

(ⅰ) {N_1}(t), {N_2}(t) 在每一个区间 (0, {t_1}] ({t_k}, {t_{k + 1}}], k \in {N^ + } 上, 都是绝对连续的;

(ⅱ) 对于 {\forall} {t_k} , k \in {N^ + } , {({N_1}(t_k^ + ), {N_2}(t_k^ + ))^{\rm T}} {({N_1}(t_k^ - ), {N_2}(t_k^ - ))^{\rm T}} 存在, 且

{({N_1}(t_k^ - ), {N_2}(t_k^ - ))^{\rm T}} = {({N_1}({t_k}), {N_2}({t_k}))^{\rm T}};

(ⅲ) {({N_1}(t), {N_2}(t))^{\rm T}} [0, \infty )\backslash \{ {t_k}\} 上几乎处处满足系统 (1.1) (1.2) , 并且当 t = {t_k} , k\in {N^+} 时, 有 {N_1}(t_k^ + ) - {N_1}({t_k}) = {c_{1k}}{N_1}({t_k}) {N_2}(t_k^ + ) - {N_2}({t_k}) = {c_{2k}}{N_2}({t_k}) 成立.

则称 {({N_1}(t), {N_2}(t))^{\rm T}} 是初值问题 (1.1) (1.2) [ - \tau, \infty ) 上的解.

为了叙述方便, 作如下假设.

(H _1)    {\{ {t_k}\} _{k \in N}} 是一个严格单调递增序列, 且 {t_1} > 0 , \mathop {\lim }\limits_{k \to \infty } {t_k} = +\infty ;

(H _2)    \{ {c_{ik}}\} 是实序列且 {c_{ik}} > - 1 , \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{ik}}), i = 1, 2 \omega -周期函数.

下面简要介绍迭合度相关知识.

X Y 是两个实Banach空间, L:DomL \subset X \to Y 是一个线性算子, N:X \to Y 是一个连续映射, 若 \dim KerL = co\dim {\mathop{\rm Im}\nolimits} L < + \infty , 且 {\mathop{\rm Im}\nolimits} L Y 的闭子空间, 则称 L 是指标为零的Fredholm算子[25].如果 L 是指标为零的Fredholm算子, 存在连续映射 P:X \to X Q:Y \to Y , 满足 {\mathop{\rm Im}\nolimits} P = KerL , {\mathop{\rm Im}\nolimits} L = KerQ = {\mathop{\rm Im}\nolimits} (I - Q) , 则 L\left| {_{DomL \cap KerP}:(I - P)X \to {\mathop{\rm Im}\nolimits} L} \right. 是可逆的, 把它的逆算子记为 {K_p} . \Omega \subset X X 中的有界开子集, 如果算子 QN(\bar{\Omega}) 是有界的, 并且算子 {K_p}(I - Q)N(\bar{\Omega}) \in X 是紧的, 则称算子 N N \in \bar{\Omega} 上是 L -紧的.

引理2.1[24-25]  假设 X Y 是两个实Banach空间, L:DomL\subset X \to Y 是指标为零的Fredholm算子, \Omega \subset X 是一个有界开集, N:\bar{\Omega}\to Y \bar{\Omega} 上是 L -紧的, 且假设下列条件成立

[C_1] x \in \partial \Omega \cap DomL , \lambda \in(0, 1) 时, 有 Lx \ne\lambda Nx ;

[C_2] x \in \partial \Omega \cap KerL 时, 有 Nx \notin {\mathop{\rm Im}\nolimits} L ;

[C_3] \deg \{ JQN, \Omega \cap KerL, 0\} \ne 0 , 其中 J:{\mathop{\rm Im}\nolimits} Q \to KerL 是同构映射.

则方程 Lx = Nx \bar{\Omega} \cap DomL 内至少存在一个解.

在假设(H _1) 和(H _2) 条件下, 首先考虑没有脉冲情况下的带有更一般的Holling Ⅳ型功能反应函数的中立型捕食竞争系统

\begin{equation} {\left\{ \begin{array}{l} \mathop {{\rm{ }}x}\limits^. (t) = x(t)\left[ {{b_1}(t) - {A_1}(t)x(t - {\tau _1}(t)) - \gamma (t)\mathop {{\rm{ }}x}\limits^. (t - {\tau _3}(t)) - {\frac{{C(t)y(t - \sigma (t))}}{{{p^2}(t){x^2}(t) + \alpha p(t)x(t) + \beta }}} }\right], \\ \mathop {{\rm{ }}y}\limits^. (t) = y(t)\left[ { - {b_2}(t) + {\frac{{{A_2}(t)x(t - {\tau _2}(t))}}{{{q^2}(t){x^2}(t - {\tau _2}(t)) + \alpha q(t)x(t - {\tau _2}(t)) + \beta }}}} \right], \end{array} \right.} \end{equation}
(2.1)

满足初始条件

\begin{eqnarray} \begin{array}{l} x(t) = \varphi (t), \mathop x\limits^. (t) = \mathop \varphi \limits^. (t), \varphi \in {C^1}([ - \tau, 0], [0, \infty )), \varphi (0) > 0, \\ y(t) = \psi (t), \mathop y\limits^. (t) = \mathop \psi \limits^. (t), \psi \in {C^1}([ - \tau, 0], [0, \infty )), \psi (0) > 0, \end{array} \end{eqnarray}
(2.2)

其中

{A_1}(t) = {a_1}(t )\mathop \prod \limits_{0 < {t_k} < t - {\tau _1}(t)} (1 + {c_{1k}}), \qquad \gamma(t) = \rho (t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _3}(t)} (1 + {c_{1k}}), \\ C(t) = c(t)\mathop \prod \limits_{0 < {t_k} < t - \sigma (t)} (1 + {c_{2k}}), \qquad\ \ \ \ p(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}}), \\ {A_2}(t) = {a_2}(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _2}(t)} (1 + {c_{1k}}), \qquad\ q(t) = \mathop \prod \limits_{0 < {t_k} < t - {\tau _2}(t)} (1 + {c_{1k}}).
(2.3)

下面的引理给出了初值问题 (1.1) (1.2) 与初值问题 (2.1) (2.2) 的关系.

引理2.2  假设(H _1) 和(H _2) 成立, 则有

(ⅰ) 如果 {(x(t), y(t))^{\rm T}} 是系统 (2.1) (2.2) 的解, 则 {({N_1}(t), {N_2}(t))^{\rm T}} 是系统 (1.1) (1.2) 的解, 其中

{N_1}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})x(t), \qquad {N_2}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})y(t);

(ⅱ) 如果 {({N_1}(t), {N_2}(t))^{\rm T}} 是系统 (1.1) (1.2) 的解, 则 {(x(t), y(t))^{\rm T}} 是系统 (2.1) (2.2) 的解, 其中

x(t) = \mathop \prod \limits_{0 < {t_k} < t} {(1 + {c_{1k}})^{ - 1}}{N_1}(t), \qquad y(t) = \mathop \prod \limits_{0 < {t_k} < t} {(1 + {c_{2k}})^{ - 1}}{N_2}(t).

  (ⅰ) 如果 {({x}(t), {y}(t))^{\rm T}} 是系统 (2.1) (2.2) 的解, 则有

{N_1}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})x(t), \qquad {N_2}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})y(t),

在每一个区间 ({t_k}, {t_{k+ 1}}] 上都是绝对连续的.对于任何 t \ne {t_k}, k \in {N^ + } , 有

\begin{eqnarray} && \mathop {{N_1}}\limits^. (t) - {N_1}(t)\left[ {{b_1}(t) - {a_1}(t){N_1}(t - {\tau _1}(t)) - \rho (t)\mathop {{N_1}}\limits^. (t - {\tau _3}(t)) - \frac{{c(t){N_2}(t - \sigma (t))}}{{{N_1}^2(t) + \alpha {N_1}(t) + \beta }}} \right]\\ & = & \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} \mathop {{\rm{ }}x}\limits^. (t) - \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} x(t)\Bigg[{b_1}(t) - {a_1}(t)\prod\limits_{0 < {t_k} < t - {\tau _1}(t)} {(1 + {c_{1k}})} x(t - {\tau _1}(t)) \\ && - \rho (t)\prod\limits_{0 < {t_k} < t - {\tau _3}(t)} {(1 + {c_{1k}})} \mathop {{\rm{ }}x}\limits^. (t - {\tau _3}(t))\\ && { - \frac{{c(t)\prod\limits_{0 < {t_k} < t - \sigma (t)} {(1 + {c_{2k}})} y(t - \sigma (t))}}{{{{\Big(\prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})}\Big )}^2}{x^2}(t) + \alpha \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} x(t) + \beta }}} \Bigg]\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\left\{ {\mathop x\limits^. (t) - } x(t)\left[ {{b_1}(t) - {a_1}(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _1}(t)} (1 + {c_{1k}})x(t - {\tau _1}(t))} \right.\right. \\ && - \rho (t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _3}(t)} (1 + {c_{1k}})\mathop x\limits^. (t - {\tau _3}(t))\\ && \left. {\left. { - \frac{{c(t)\mathop \prod \limits_{0 < {t_k} < t - \sigma (t)} (1 + {c_{2k}})y(t - \sigma (t))}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\Big)}^2}{x^2}(t) + \mathop \alpha \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})x(t) + \beta}}} \right]} \right\}\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\Bigg\{{\mathop x\limits^. (t) - x(t)} \Bigg[ {{b_1}(t) - {A_1}(t)x(t - {\tau _1}(t)) - \gamma (t)\mathop x\limits^. (t - {\tau _3}(t))} \\ && \ - \left. {\left. {\frac{{C(t)y(t - \sigma (t))}}{{{{{p^2}(t)}}{x^2}(t) + \alpha p(t)x(t) + \beta }}} \right]} \right\}\\ & = & 0. \end{eqnarray}
(2.4)

类似地, 有

\begin{eqnarray} && \mathop {{N_2}}\limits^. (t) - {N_2}(t)\left[ {{-b_2}(t) +\frac{{a_2(t){N_1}(t - {\tau_2} (t))}}{{{{{N_1}^2(t-{\tau_2} (t))}}+ \alpha {N_1}(t-{\tau_2} (t)) + \beta}}} \right]{}\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})\mathop y\limits^. (t) - \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})y(t)\Bigg[ {{-b_2}(t) } {} \\ && {+ \frac{{a_2(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau_2} (t)} (1 + {c_{1k}})x(t -{\tau_2} (t) )}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t-{\tau_2} (t)} (1 + {c_{1k}})\Big)}^2}{x^2}(t-{\tau_2} (t)) + \mathop \alpha \prod \limits_{0 < {t_k} < t-{\tau_2} (t)} (1 + {c_{1k}})x(t-{\tau_2} (t)) + \beta}}} \Bigg]\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})\left\{ {\mathop y\limits^. (t) - } y(t) \Bigg[ {{-b_2}(t) } \right. {}\\ && \left. {\left. { + \frac{{a_2(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau_2} (t)} (1 + {c_{1k}})x(t - {\tau_2} (t))}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t- {\tau_2} (t)} (1 + {c_{1k}})\Big)}^2}{x^2}(t- {\tau_2} (t)) + \mathop \alpha \prod \limits_{0 < {t_k} < t- {\tau_2} (t)} (1 + {c_{1k}})x(t- {\tau_2} (t)) + \beta}}} \right]} \right\}\\ & = & \prod\limits_{0 < {t_k} < t} {(1 + {c_{2k}})} \left\{ {\mathop y\limits^. (t) - y(t)\left[ { - {b_2}(t) + \frac{{{A_2}(t)x(t - {\tau _2}(t))}}{{{q^2}(t){x^2}(t - {\tau _2}(t)) + \alpha q(t)x(t - {\tau _2}(t)) + \beta }}} \right]} \right\}\\ & = & 0. \end{eqnarray}
(2.5)

另一方面, 对任何 t = t_k, k \in {N^ + } , 有

{N_1}(t_k^ + ) = \mathop {\lim }\limits_{t \to t_k^ + } \mathop \prod \limits_{0 < {t_j} < t} (1 + {c_{1j}})x(t) = \mathop \prod \limits_{0 < {t_j} < t_k^ + } (1 + {c_{1j}})x(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} \le {t_k}} (1 + {c_{1j}})x({t_k}),

{N_2}(t_k^ + ) = \mathop {\lim }\limits_{t \to t_k^ + } \mathop \prod \limits_{0 < {t_j} < t} (1 + {c_{2j}})y(t) = \mathop \prod \limits_{0 < {t_j} < t_k^ + } (1 + {c_{2j}})y(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} \le {t_k}} (1 + {c_{2j}})y({t_k})

{N_1}({t_k}) = \mathop \prod \limits_{0 < {t_j} < {t_k}} (1 + {c_{1j}})x({t_k}), \qquad {N_2}({t_k}) = \mathop \prod \limits_{0 < {t_j} < {t_k}} (1 + {c_{2j}})y({t_k}).

因此

\begin{equation} {N_1}(t_k^ + ) = (1 + {c_{1k}}){N_1}({t_k}), \qquad {N_2}(t_k^ + ) = (1 + {c_{2k}}){N_2}({t_k}). \end{equation}
(2.6)

此外

{N_1}(t_k^{\rm{ - }}) = \mathop {\lim }\limits_{t \to t_k^{\rm{ - }}} \prod\limits_{0 < {t_j} < t} {(1 + {c_{1j}})} x(t) = \prod\limits_{0 < {t_j} \le {t_{k{\rm{ - }}1}}} {(1 + {c_{1j}})} x({t_k}),

{N_2}(t_k^{\rm{ - }}) = \mathop {\lim }\limits_{t \to t_k^{\rm{ - }}} \prod\limits_{0 < {t_j} < t} {(1 + {c_{2j}})} y(t) = \prod\limits_{0 < {t_j} \le {t_{k{\rm{ - }}1}}} {(1 + {c_{2j}})} y({t_k}).

所以有

\begin{eqnarray} {N_1}(t_k^{\rm{ - }}) = {N_1}({t_k}), \qquad {N_2}(t_k^{\rm{ - }}) = {N_2}({t_k}). \end{eqnarray}
(2.7)

(2.1) (2.7) 式可知, (N_1(t), N_2(t))^{\rm T} 是系统 (1.1) (1.2) 的一个解.

(ⅱ) 由定义2.1可知

{N_1}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})x(t), \qquad {N_2}(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})y(t)

在每一个区间 ({t_k}, {t_{k + 1}}], k \in {N^ + } 上都是绝对连续的.由(2.6)式, 对 {\forall} k \in {N^ + } , 有

x(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} \le {t_k}} {(1 + {c_{1j}})^{ - 1}}{N_1}(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} < {t_k}} {(1 + {c_{1j}})^{ - 1}}{N_1}({t_k}) = x({t_k}),

y(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} \le {t_k}} {(1 + {c_{2j}})^{ - 1}}{N_2}(t_k^ + ) = \mathop \prod \limits_{0 < {t_j} < {t_k}} {(1 + {c_{2j}})^{ - 1}}{N_2}({t_k}) = y({t_k}),

并且有

x(t_k^ - ) = \mathop \prod \limits_{0 < {t_j} \le {t_{k - 1}}} {(1 + {c_{1j}})^{ - 1}}{N_1}(t_k^ - ) = x({t_k}),

y(t_k^ - ) = \mathop \prod \limits_{0 < {t_j} \le {t_{k - 1}}} {(1 + {c_{2j}})^{ - 1}}{N_2}(t_k^ - ) = y({t_k}).

所以 x(t) y(t) 在区间 [ - \tau, \infty) 上是连续的.进一步容易验证, x(t) y(t) 在区间 [ - \tau, \infty) 上是绝对连续的.类似于(ⅰ) 的证明, 容易验证

x(t) = \mathop \prod \limits_{0 < {t_k} < t} {(1 + {c_{1k}})^{ - 1}}{N_1}(t), \qquad y(t) = \mathop \prod \limits_{0 < {t_k} < t} {(1 + {c_{2k}})^{ - 1}}{N_2}(t)

是系统 (2.1) (2.2) 的解.

3 周期解的存在性

为了方便起见, 下面给出一些记号和几个正的常数.

{f^L} = \mathop {\min }\limits_{t \in [0, \omega ]} f(t), \; \; {f^M} = \mathop {\max }\limits_{t \in [0, \omega ]} f(t), \; \; {\left| f \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \{ \left| {f(t)} \right|\} , \; \; \hat f = {\frac{\ 1\ }{\ \omega\ }}{\int_0^\omega} {\left| {f(t)} \right|} {\rm d}t ,

\bar f = {\frac{1}{\omega }}{\int_0^\omega} {f(t)} {\rm d}t , \; \; {l_ \pm } = {\frac{{(A_2^M{e^G} - \alpha b_2^L{q^L}) \pm \sqrt {{{(A_2^M{e^G} - \alpha b_2^L{q^L})}^2} - 4\beta b_2^{2L}{q^{2L}}} }}{{2b_2^L{q^{2L}}}}},

{u_ \pm } = { \frac{{(A_2^L{e^{ - G}} - \alpha b_2^M{q^M}) \pm \sqrt {{{(A_2^L{e^{ - G}} -\alpha b_2^M{q^M})}^2} - 4\beta b_2^{2M}{q^{2M}}} }}{{2b_2^M{q^{2M}}}}},

H = \ln \left( {{\frac{{2b_1^M}}{{{D^L}}}}}\right) + {B^M}{\frac{{2b_1^M}}{{{D^L(1 - {{({{\mathop \tau \limits^. }_3})}^M})}}}} + \left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega , \; \; D(t) = {\frac{{{A_1}({\varphi ^{ - 1}}(t))}}{{1 - {{\mathop \tau \limits^. }_1}({\varphi ^{ - 1}}(t))}}},

B(t) = {\frac{\gamma }{{1 - {{\mathop \tau \limits^. }_3}(t)}} }, \; \; G \equiv {\frac{{\left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega }}{{1 - \gamma {e^H}}}} , \; \; {K_1} = G + \ln {l_ + } , \; \; {K_2} = \mathop {\max }\limits_{t \in [0, \omega ]} \{ {K_1}, H\} ,

其中 f \omega -周期的连续函数, {{\varphi ^{ - 1}}} \varphi = t - {\tau _1}(t) 的逆函数. A_1(t) 由(2.3)式给出, 常数 \gamma 由下面定理中给出.

定理3.1  假设(H _1) , (H _2) 和如下条件成立

(H _3)    A_2^M < \left( {\alpha-2\sqrt {\beta} } \right)b_2^L{q^L}{e^{ - G}} , 1 - \gamma {e^{{K_2}}} > 0 , {{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}} > 0 ;

(H _4)    \gamma(t) = \gamma 是常数; {\mathop \tau \limits^. {_1}}(t) < 1, {\forall} t \in {{\Bbb R}} {\mathop \tau \limits^. {_3}}(t) < 1 , {\mathop \tau \limits^{..} {_3}}(t) = 0 .

则系统 (2.1) (2.2) 至少存在一个 \omega -周期解.

  因为

\begin{eqnarray*} x(t)& = & x(0)\exp \left\{ {\int_0^t {\Bigg[ {{b_1}(s) - {A_1}(s)x(s - {\tau _1}(s)) - \gamma \mathop x\limits^. (s - {\tau _3}(s))} } } \right.\\ && \left. {\left. { - {\frac{{C(s)y(s - \sigma (s))}}{{{p^2}(s){x^2}(s) + \alpha p(s)x(s) + \beta }}}} \right]{\rm d}s} \right\}, \\ y(t) & = & y(0)\exp \left\{{\int_0^t {\left[ { - {b_2}(s) + \frac{{{A_2}(s)x(s - {\tau _2}(s))}}{{{q^2}(s){x^2}(s - {\tau _2}(s)) + \alpha q(s)x(s - {\tau _2}(s)) + \beta }}} \right]{\rm d}s} } \right\}, \end{eqnarray*}

所以, 对 \forall t\in {{\Bbb R}} , 系统 (2.1) 的解都是正的.做变换

x(t) = {e^{u(t)}}, \ \ \ \ \ y(t) = {e^{v(t)}},

则系统 (2.1) 可变换成如下系统

\begin{equation} \left\{ \begin{array}{l} { } \mathop u\limits^. (t) = {b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma{e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t)) - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta}}}, \\ { } \mathop v\limits^. (t) = - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}}. \end{array} \right. \end{equation}
(3.1)

X = Y = \left\{ {z(t) = {{(u(t), v(t))}^{\rm T}} \in C({{\Bbb R}}, {{{\Bbb R}} ^2}):z(t) \equiv z(t + \omega )} \right\},

\left| z \right| = \left| u \right| + \left| v \right|, \ \ \ \ {\left| z \right|_\infty } = \mathop {\max }\limits_{t \in [0, \omega ]} \left| z \right|, \ \ \ \ \ \left\| z \right\| = {\left| z \right|_\infty } + {\left| {\mathop z\limits^. } \right|_\infty },

(X, \left\| . \right\|) (Y, {\left| .\right|_\infty }) 都是Banach空间.

定义算子 L, P Q 如下

L:DomL{\cap}X \to Y, \ \ \ \ Lz = {\frac{{{\rm d}z}}{{{\rm d}t}}}; \ \ \ \ \ p(z) = {\frac{1}{\omega }}{\int_0^\omega} {z(t){\rm d}t; \ \ \ \ \ Q(z) = {\frac{1}{\omega }}} {\int_0^\omega} {z(t){\rm d}t;}

其中, DomL = \left\{ {z\left| {z \in X:z(t) \in {C^1}({{\Bbb R}}, {{{\Bbb R}} ^2})} \right.} \right\} .定义算子 N:X \to Y 如下

Nz = \left( \begin{array}{c} { } {b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma {e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t)) - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta}}}\\ { } - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t) {e^{2u(t - {\tau _2}(t))}} +\alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} \end{array} \right).

容易得到

KerL = \left\{ {z = {{(u, v)}^{\rm T}} \in X:{{(u(t), v(t))}^{\rm T}} = {{({c_1}, {c_2})}^{\rm T}} \in {{{\Bbb R}} ^2}, t \in {{\Bbb R}} } \right\}

{\mathop{\rm Im}\nolimits} L = \left\{ {z \in Y: \int_0^\omega {z(t){\rm d}t} = 0} \right\} .

因为 {\rm Im}L Y 上是闭的, P Q 都是连续的投影算子, 且满足 {\rm Im}P = KerL , {\rm Im}L = KerQ = {\rm Im}(I-Q) , dimKerL = codim{\rm Im}L = 2 , 所以 L 是指标为零的Fredholm算子, 故算子 L 有唯一的逆映射.记 L 的广义逆为 {K_p}:{\mathop{\rm Im}\nolimits} L \to KerP \cap DomL .经过计算可得

{K_p}(z) = \int_0^t {z(s)} {\rm d}s - {\frac{1}{\omega }}\int_0^\omega {\int_0^t {z(s)} {\rm d}s{\rm d}t} = \int_\omega ^t {z(s)} {\rm d}s + {\frac{1}{\omega }}\int_0^\omega {sz(s)} {\rm d}s.

从而, 有

\begin{eqnarray*} QNz & = & \left( \begin{array}{l} { } {\frac{1}{\omega }}\int_o^\omega {\Bigg[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma {e^{u(t - {\tau _3}(t))}}\mathop {{\rm{ }}u}\limits^. (t - {\tau _3}(t))} } \\ { } {{} - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta }}}} \Bigg]{\rm d}t\\ {\frac{1}{\omega }}\int_0^\omega {\left[ { - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta }}}} \right]} {\rm d}t \end{array} \right)\nonumber\\ & = & \left( \begin{array}{l} { } {\frac{1}{\omega }}\int_o^\omega {\Bigg[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} + \mathop {{\rm{ }}B}\limits^. (t){e^{u(t - {\tau _3}(t))}}} } \\ { } { {}- {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha \alpha p(t){e^{u(t)}} + \beta }}}} \Bigg]{\rm d}s\\ { } {\frac{1}{\omega }}\int_0^\omega {\left[ { - {b_2}(t) + {\rm{ }}{\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta }}}} \right]} {\rm d}s \end{array} \right), \end{eqnarray*}

其中 B(t) = {\frac{\gamma }{{1 - {{\mathop \tau \limits^. }_3}(t)}}} .由假设条件(H _4) , 可得 \mathop B\limits^. (t) = 0 .因此

QNz = \left( \begin{array}{l} {\frac{1}{\omega }}\int_0^\omega {\left[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta}}} }\right]} {\rm d}t\\ { } {\frac{1}{\omega }}\int_0^\omega {\left[ { - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}}} \right]} {\rm d}t \end{array} \right),

\begin{eqnarray*} {K_p}(I - Q)Nz& = & \left( \begin{array}{l} \int_\omega ^t {\left[ {{b_1}(s) - {A_1}(s){e^{u(s - {\tau _1}(s))}} - {\frac{{C(s){e^{v(s - \sigma (s))}}}}{{{p^2}(s){e^{2u(s)}} +\alpha p(s){e^{u(s)}} + \beta}}}} \right]{\rm d}s} \\ \int_\omega ^t {\left[ { - {b_2}(s) + {\frac{{{A_2}(s){e^{u(s - {\tau _2}(s))}}}}{{{q^2}(s){e^{2u(s - {\tau _2}(s))}} + \alpha q(s){e^{u(s - {\tau _2}(s))}} + \beta}}}} \right]{\rm d}s} \end{array} \right)\\ && +{ \frac{1}{\omega }}\left( \begin{array}{l} { } \int_0^\omega {s\left[ {{b_1}(s) - {A_1}(s){e^{u(s - {\tau _1}(s))}} + B(s){e^{u(s - {\tau _3}(s))}}} \right.} \\ { } \left. { {} - {\frac{{C(s){e^{v(s - \sigma (s))}}}}{{{p^2}(s){e^{2u(s)}} + \alpha p(s){e^{u(s)}} + \beta }}}} \right]{\rm d}s\\ [4mm] \int_0^\omega {s\left[ { - {b_2}(s) + {\frac{{{A_2}(s){e^{u(s - {\tau _2}(s))}}}}{{{q^2}(s){e^{2u(s - {\tau _2}(s))}} + \alpha q(s){e^{u(s - {\tau _2}(s))}} + \beta }}}} \right]{\rm d}s} \end{array} \right)\\ && + \left( {{\frac{1}{2}} - {\frac{t}{\omega }}} \right)\left( \begin{array}{l} { } {\int_o^\omega } {\Bigg[ {{b_1}(s) - {A_1}(s){e^{u(s - {\tau _1}(s))}}} } \\ { {}- {\frac{{C(s){e^{v(s - \sigma (s))}}}}{{{p^2}(s){e^{2u(s)}} + \alpha p(s){e^{u(s)}} + \beta }}}} \Bigg]{\rm d}s\\ {\int_0^\omega} {\left[ { - {b_2}(s) + {\frac{{{A_2}(s){e^{u(s - {\tau _2}(s))}}}}{{{q^2}(s){e^{2u(s - {\tau _2}(s))}} + \alpha q(s){e^{u(s - {\tau _2}(s))}} + \beta }}}} \right]} {\rm d}s \end{array} \right). \end{eqnarray*}

根据Lebesgue控制收敛定理可知, QN K_p(I-Q)N 都是连续的.由Arzela-Ascoli定理, 对于任意的有界开集 \Omega \in X , {K_p}(I - Q)N(\bar \Omega ) 是紧的, QN(\bar \Omega ) 是有界的.因此 N \bar \Omega 上是 L -紧的.

由算子方程

Lz = {\lambda} Nz , {\quad} {\lambda}\in(0, 1),

可得

\begin{equation} \left\{ \begin{array}{l} \mathop u\limits^. (t) = \lambda \Bigg[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma {e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t))} { - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta }}}} \Bigg], \\ \mathop v\limits^. (t) = \lambda \left[ { - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta }}}} \right], \end{array} \right. \end{equation}
(3.2)

对某个 {\lambda}\in(0, 1) , 假设 z(t) = {(u(t), v(t))^T} \in X 是系统 (3.2) 的一个解.对于方程 (3.2) , 在 [0, {\omega}] 上进行积分, 有

\begin{equation} \int_0^\omega {\left[ {{A_1}(t){e^{u(t - {\tau _1}(t))}} + \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} {\rm d}t = {{\bar b}_1}\omega, \end{equation}
(3.3)

\begin{equation} \int_0^\omega {\left[ {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} \right]} {\rm d}t = {{\bar b}_2}\omega . \end{equation}
(3.4)

由等式(3.2)–(3.4), 有

\begin{eqnarray} && \int_0^\omega {\left| {\frac{\rm d}{{{\rm d}t}}\left[ {u(t) + \lambda B(t){e^{u(t - {\tau _3}(t))}}} \right]} \right|} {\rm d}t\\ & = & \lambda \int_0^\omega {\left| {\left[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} \right|} {\rm d}t\\ &\leq& \int_0^\omega {\left| {{b_1}(t)} \right|} {\rm d}t + \int_0^\omega {\left[ {{A_1}(t){e^{u(t - {\tau _1}(t))}} + \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} {\rm d}t\\ & = & \left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega. \end{eqnarray}
(3.5)

由(3.3)式, 可得

\begin{eqnarray*} \int_0^\omega {{A_1}(t){e^{u(t - {\tau _1}(t))}}} {\rm d}t & = & \int_{ - {\tau _1}(0)}^{\omega - {\tau _1}(\omega )} {\frac{{{A_1}({\varphi ^{ - 1}}(t)){e^{u(t)}}}}{{1 - \mathop {{\tau _1}}\limits^. ({\varphi ^{ - 1}}(t))}}}{\rm d}t = \int_0^\omega {D(t){e^{u(t)}}} {\rm d}t< {{\bar b}_1}\omega . \end{eqnarray*}

根据广义积分中值定理, 存在 {\eta _1} \in \left[ {0, \omega } \right] , 使得

\begin{eqnarray} \int_0^\omega {D(t){e^{u(t)}}} {\rm d}t & = & D({\eta _1})\int_0^\omega {{e^{u(t)}}} {\rm d}t = D({\eta _1})\int_0^\omega {\left( {1 - \mathop {{\tau _3}}\limits^. (t)} \right){e^{u(t - {\tau _3}(t))}}} {\rm d}t < {{\bar b}_1}\omega . \end{eqnarray}
(3.6)

由不等式(3.6), 存在 {\eta _2} \in\left[ {0, \omega } \right] , 有

\begin{equation} D({\eta _1})\int_0^\omega {\left( {1 - \mathop {{\tau _3}}\limits^. (t)} \right){e^{u(t - {\tau _3}(t))}}} {\rm d}t = D({\eta _1})\left( {1 - \mathop {{\tau _3}}\limits^. (\eta_2)} \right)\int_0^\omega {{e^{u(t - {\tau _3}(t))}}} {\rm d}t<{{\bar b}_1}\omega. \end{equation}
(3.7)

根据(3.6)和(3.7)式, 得

D({\eta _1})\int_0^\omega {{e^{u(t)}}} {\rm d}t + D({\eta _1})\left( {1 - \mathop {{\tau _3}}\limits^. (\eta_2)} \right)\int_0^\omega {{e^{u(t - {\tau _3}(t))}}} {\rm d}t < 2{{\bar b}_1}\omega.

进而可知, 存在 \xi \in[0, \omega] , 使得

D({\eta _1}){e^{u(\xi)}} + D({\eta _1})\left( {1 - \mathop {{\tau _3}}\limits^. (\eta_2)} \right){e^{u({\xi} - {\tau _3}({\xi}))}} < 2{b_1}(\xi ).

由于 \int_0^\omega {{b_1}(t)} {\rm d}t > 0 , 可得 b_1^M > 0 , 从而有

\begin{equation} u(\xi) < \ln \left( {\frac{{2b_1^M}}{{{D^L}}}} \right) \end{equation}
(3.8)

\begin{equation} {e^{u(\xi - {\tau _3}(\xi ))}} < \frac{{2b_1^M}}{{{D^L}\left( {1 - {{\left( {\mathop {{\tau _3}}\limits^. } \right)}^M}} \right)}}. \end{equation}
(3.9)

根据不等式(3.5), (3.8)和(3.9), 可得

\begin{eqnarray*} u(t) + \lambda B(t){e^{u(t - {\tau _3}(t))}} &\le& u(\xi ) + \lambda B(\xi ){e^{u(\xi - {\tau _3}(\xi ))}} + \int_0^\omega {\left| {{\frac{\rm d}{{{\rm d}t}}}\left[ {u(t) + \lambda B(t){e^{u(t - {\tau _3}(t))}}} \right]} \right|} {\rm d}t \\ & <& \ln \left( {{\frac{{2b_1^M}}{{{D^L}}}}} \right) + {B^M}{\frac{{2b_1^M}}{{{D^L}\left( {1 - {{\left( {\mathop {{\tau _3}}\limits^. } \right)}^M}} \right)}}} + \left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega \equiv H. \end{eqnarray*}

因为 B(t){e^{u(t - {\tau _3}(t))}} > 0 , 故有

\begin{eqnarray} u(t) < H . \end{eqnarray}
(3.10)

根据方程(3.2), (3.3)和不等式(3.10), 可得

\begin{eqnarray*} \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t &\le& \int_0^\omega {\left| {{b_1}(t)} \right|} {\rm d}t + \int_0^\omega {\left[ {{A_1}(t){e^{u(t - {\tau _1}(t))}} + {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}}} \right]} {\rm d}t\\ &&+ \int_0^\omega {\left| {\gamma {e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t))} \right|} {\rm d}t\\ & \le& \left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega + \gamma {e^H}\int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t. \end{eqnarray*}

再由(H _3) , 可得

\begin{equation} \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t \le \frac{{\left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega }}{{1 - \gamma {e^H}}} \equiv G . \end{equation}
(3.11)

因为 z = (u, v)^{\rm T}{\in}X , 所以存在 {\underline{\xi}}, \bar \xi, {\underline{\eta}}, \bar \eta \in [0, \omega ] , 使得

\begin{equation} u({\underline{\xi}}) = \mathop {\min }\limits_{t \in [0, \omega ]} u(t), {} u(\bar \xi) = \mathop {\max }\limits_{t \in [0, \omega ]} u(t), \end{equation}
(3.12)

\begin{equation} v({\underline{\eta}}) = \mathop {\min }\limits_{t \in [0, \omega ]} v(t), {} v(\bar \eta) = \mathop {\max }\limits_{t \in [0, \omega ]} v(t). \end{equation}
(3.13)

根据(3.4)式, 可知

\begin{eqnarray} \int_0^\omega {\left[ {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} +\alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} \right]} {\rm d}t = {{\bar b}_2}\omega = \int_0^\omega {{b_2}(t)} {\rm d}t. \end{eqnarray}
(3.14)

结合(3.12)和(3.14)式, 可得

b_2^L \le \frac{{A_2^M{e^{u(\bar \xi )}}}}{{{q^{2L}}{e^{2u({\underline{\xi}})}} + \alpha {q^L}{e^{u({\underline{\xi}} )}} + \beta}} .

u(\bar \xi ) \ge \ln \left[ {\frac{{b_2^L\left( {{q^{2L}}{e^{2u({\underline{\xi}} )}} +\alpha {q^L}{e^{u({\underline{\xi}} )}} + \beta} \right)}}{{A_2^M}}} \right].

结合(3.11)式, 可得

u(t) \ge u(\bar \xi ) - \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t > \ln \left[ {\frac{{b_2^L\left( {{q^{2L}}{e^{2u({\underline{\xi}})}} + \alpha {q^L}{e^{u({\underline{\xi}} )}} + \beta} \right)}}{{A_2^M}}} \right] - G .

进一步, 有

u({\underline{\xi}} ) > \ln \left[ {\frac{{b_2^L\left( {{q^{2L}}{e^{2u({\underline{\xi}} )}} +\alpha {q^L}{e^{u({\underline{\xi}} )}} + \beta} \right)}}{{A_2^M}}} \right] - G,

b_2^L{q^{2L}}{e^{2u({\underline{\xi}})}} + (\alpha b_2^L{q^L} - A_2^M{e^G}){e^{u({\underline{\xi}})}} + \beta b_2^L < 0 .

再结合(H _3) , 可得

\begin{eqnarray} \ln {l_ - } < u({\underline{\xi}} ) < \ln {l_ + }. \end{eqnarray}
(3.15)

类似的, 根据(3.14)式有

\frac{{A_2^L{e^{u({\underline{\xi}} )}}}}{{{q^{2M}}{e^{2u(\bar \xi )}} +\alpha {q^M}{e^{u(\bar \xi )}} + \beta}} \le b_2^M.

因此有

u({\underline{\xi}}) \le \ln \left[ {\frac{{b_2^M\left( {{q^{2M}}{e^{2u(\bar \xi )}} + \alpha {q^M}{e^{u(\bar \xi )}} + \beta} \right)}}{{A_2^L}}} \right] .

再结合不等式(3.11), 可得

u(t) \le u({\underline{\xi}}) + \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t < \ln \left[{ {\frac{{b_2^M\left( {{q^{2M}}{e^{2u(\bar \xi )}} +\alpha {q^M}{e^{u(\bar \xi )}} + \beta} \right)}}{{A_2^L}}} }\right] + G .

特别的, 有

u(\bar \xi ) < \ln \left[ {\frac{{b_2^M\left( {{q^{2M}}{e^{2u(\bar \xi )}} + \alpha{q^M}{e^{u(\bar \xi )}} + \beta} \right)}}{{A_2^L}}} \right] + G,

b_2^M{q^{2M}}{e^{2u(\bar \xi )}} + (\alpha b_2^M{q^M} - A_2^L{e^{ - G}}){e^{u(\bar \xi )}} + \beta b_2^M > 0 .

结合假设条件(H _3) , 可得

\begin{eqnarray} u(\bar \xi ) > \ln {u_ + } \ \mbox{ 或者} \ u(\bar \xi ) < \ln {u_ - }. \end{eqnarray}
(3.16)

由不等式(3.11)和(3.15), 可得

\begin{eqnarray} u(t) \le u({\underline{\xi}}) + \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t < G + \ln {l_ + }: = {K_1} . \end{eqnarray}
(3.17)

由(3.10)和(3.17)式, 可得

\begin{eqnarray} u(t) \le \max \left\{ {{K_1}, H} \right\}: = {K_2} . \end{eqnarray}
(3.18)

由(3.11)和(3.16)式, 可得

\begin{eqnarray} u(t) \ge u(\bar \xi ) - \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t > \ln {u_ + } - G: = {K_3}. \end{eqnarray}
(3.19)

再由(3.18)和(3.19)式, 有

\begin{eqnarray} {\left| u \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {u(t)} \right|} \right\} \le \max \left\{ {\left| {{K_1}} \right|, \left| {{K_2}} \right|, \left| H \right|} \right\} : = {K_4}. \end{eqnarray}
(3.20)

另一方面, 由(3.3)和(3.18)式, 可得

\begin{equation} {{\bar b}_1}\omega \ge \frac{{\bar C\omega {e^{v({\underline\eta})}}}}{{{p^{2M}}{e^{2{K_2}}} +\alpha {p^M}{e^{{K_2}}} + \beta}} \end{equation}
(3.21)

\begin{equation} {{\bar b}_1}\omega \le \omega {{\bar A}_1}{e^{{K_2}}} + \frac{{\bar C\omega {e^{v(\bar \eta )}}}}{\beta}. \end{equation}
(3.22)

由(3.21)式, 可得

\begin{equation} {{v({\underline\eta})}} \le \ln \left[ {\frac{{{{\bar b}_1}}}{{\bar C}}\left( {{p^{2M}}{e^{2{K_2}}} + \alpha {p^M}{e^{{K_2}}} + \beta} \right)} \right]. \end{equation}
(3.23)

结合条件(H _3) 和(3.22)式, 有

\begin{equation} v(\bar \eta ) \ge \ln \left[ {\frac{{\beta\left( {{{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}}} \right)}}{{\bar C}}} \right]. \end{equation}
(3.24)

再由(3.2)和(3.4)式, 可得

\begin{eqnarray} \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t & \le& \int_0^\omega {\left| {{b_2}(t)} \right|} {\rm d}t + \int_0^\omega {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} +\alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} {\rm d}t \\ & = & \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega . \end{eqnarray}
(3.25)

根据不等式(3.23)–(3.25), 可得

\begin{eqnarray} v(t) &\leq& v({\underline\eta}) + \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t{}\\ &<& \ln \left[ {\frac{{\bar b}}{{\bar C}}\left( {{p^{2M}}{e^{2{K_2}}} + \alpha {p^M}{e^{{K_2}}} + \beta} \right)} \right] + \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega : = {K_5}, \end{eqnarray}
(3.26)

且有

\begin{eqnarray} v(t) &\geq& v(\bar \eta ) - \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t > \ln \left[ {\frac{{\beta \left( {{{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}}} \right)}}{{\bar C}}} \right] - \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega : = {K_6} . \end{eqnarray}
(3.27)

再由(3.26)和(3.27)式, 可得

\begin{eqnarray} {\left| v \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {v(t)} \right|} \right\} < \max \left\{ {\left| {{K_5}} \right|, \left| {{K_6}} \right|} \right\}: = {K_7}. \end{eqnarray}
(3.28)

结合(3.2), (3.11), (3.18)和(3.28)式, 可得

{\left| {\mathop u\limits^. } \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {\mathop u\limits^. (t)} \right|} \right\} \le {\left| {{b_1}} \right|_0} + {\left| {{A_1}} \right|_0}{e^{{K_2}}} + \gamma {e^{{K_2}}}{\left| {\mathop u\limits^. } \right|_0} +{ \frac{{{{\left| C \right|}_0}{e^{{K_7}}}}}{{{p^{2L}}{e^{2{K_3}}} +\alpha {p^L}{e^{{K_3}}} + \beta}}},

{\left| {\mathop v\limits^. } \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {\mathop v\limits^. (t)} \right|} \right\} \le {\left| {{b_2}} \right|_0} + {\frac{{{{\left| {{A_2}} \right|}_0}}}{{{\alpha q^L}}}}: = {K_8} .

从而, 有

{\left| {\mathop u\limits^. } \right|_0} \le {\frac{1}{{1 - \gamma {e^{{K_2}}}}}}\left( {{{\left| {{b_1}} \right|}_0} + {{\left| {{A_1}} \right|}_0}{e^{{K_2}}} +{ \frac{{{{\left| C \right|}_0}{e^{{K_7}}}}}{{{p^{2L}}{e^{2{K_3}}} +\alpha {p^L}{e^{{K_3}}} + \beta}}}} \right): = {K_9} .

因此, 由(3.20)和(3.28)式, 可得

\begin{eqnarray} \left\| z \right\| = \left\| {{{(u, v)}^T}} \right\| = {\left| z \right|_\infty } + {\left| {\mathop z\limits^. } \right|_\infty } < {K_4} + {K_7} + {K_8} + {K_9}: = {K_{10}}. \end{eqnarray}
(3.29)

显然, \ln {l_ \pm }, \ln {u_ \pm }, {K_2} {K_{10}} 都不依赖于 \lambda . K = {K_{10}} + \tilde K. \tilde K 取足够大, 可使得如下代数方程

\begin{eqnarray} \left\{ \begin{array}{l} {{\bar b}_1} - {{\bar A}_1}{e^u} - \overline {{\frac{{C(t){e^v}}}{{{p^2}(t){e^{2u}} +\alpha p(t){e^u} + \beta}}}} = 0, \\ - {{\bar b}_2} + \overline {{\frac{{{A_2}(t){e^u}}}{{{q^2}(t){e^{2u}} +\alpha q(t){e^u} + \beta}}} } = 0 \end{array} \right. \end{eqnarray}
(3.30)

的解满足 \left\| {{z^*}} \right\| = \left\| {{{({u^*}, {v^*})}^{\rm T}}} \right\| = \left| {{u^*}} \right| + \left| {{v^*}} \right| < K .

\Omega = \left\{ {z(t) = {{(u(t), v(t))}^{\rm T}}\left| {z(t) \in X, \left\| {z(t) } \right\|< K} \right.} \right\} .

下面验证引理2.1的三个条件成立.

(a) 由上述计算可知, 对 {\forall} \lambda {\in}(0, 1) , z \in \partial \Omega \cap DomL, Lz \ne \lambda Nz 成立.

(b) 当 {(u(t), v(t))^{\rm T}} \in \partial \Omega \cap KerL , 且 {(u(t), v(t))^{\rm T}} R^2 中是范数为 K 的一个常向量, 记作: {(u, v)^{\rm T}} .如果 QN{(u, v)^{\rm T}} = 0 , 则 {(u, v)^{\rm T}} 是方程(3.30)的一个常数解.由上面讨论可知, \left\| {{{(u, v)}^{\rm T}}} \right\| < K , 这与 \left\| {{{(u, v)}^{\rm T}}} \right\| = K 矛盾.所以对 {\forall} z \in \partial \Omega\cap KerL , 有 QNz \ne 0 .

(c) 下面验证条件 [C_3] 成立.定义 \phi:DomL\cap KerL\times[0, 1]\rightarrow X

\phi (u, v, \mu ) = \left( \begin{array}{l} \bar C{e^v} - {{\bar A}_1}{e^u}\\ - {{\bar b}_2} + {{\bar A}_2}{e^u} \end{array} \right) + \mu \left( \begin{array}{l} {{\bar b}_1} - \bar C{e^v} - \overline {{\frac{{C(t){e^v}}}{{{p^2}(t){e^{2u}} + \alpha p(t){e^u} + \beta }}}} \\ - {{\bar A}_2}{e^u} + \overline {{\frac{{{A_2}(t){e^u}}}{{{q^2}(t){e^{2u}} + \alpha q(t){e^u} + \beta }}}} \end{array} \right),

其中参数 \mu\in[0, 1] .常向量 {(u, v)^{\rm T}} \in\partial \Omega \cap KerL = \partial \Omega \cap {R^2} , 且 \left\| {{{(u, v)}^{\rm T}}} \right\| = K .下证当 {(u, v)^{\rm T}} \in \partial \Omega \cap KerL 时, 有 \phi (u, v, \mu )\neq 0 成立.否则, 假设存在常向量 {(u, v)^{\rm T}} , 范数为 \left\| {{{(u, v)}^{\rm T}}} \right\| = K 时, 满足 \phi (u, v, \mu ) = 0 . \phi (u, v, \mu ) = 0 , 类似于(3.8), (3.9), (3.15), (3.16), (3.23)和(3.24)式的推导, 可得 \left\| {{{(u, v)}^{\rm T}}} \right\| < K , 这就产生矛盾.假设 J 是从 ImQ KerL 的恒等同构映射, 由根据拓扑度的同伦不变性, 可得

\begin{eqnarray*} &&\deg \{ JQN{(u, v)^{\rm T}}, \Omega \cap KerL, {(0, 0)^{\rm T}}\}\\ & = &\deg \{ QN{(u, v)^{\rm T}}, \Omega \cap KerL, {(0, 0)^{\rm T}}\} \\ & = & \deg \{ \phi (u, v, 1), \Omega \cap KerL, {(0, 0)^{\rm T}}\}\\ & = & \deg \{ \phi (u, v, 0), \Omega \cap \ KerL, {(0, 0)^{\rm T}}\}\\ & = & \deg \{ {(\bar C{e^v} - {{\bar A}_1}{e^u}, - {{\bar b}_2} + {{\bar A}_2}{e^u})^{\rm T}}, \Omega \cap KerL, {(0, 0)^{\rm T}}\}. \end{eqnarray*}

易得, 下面的代数方程

\left\{ \begin{array}{l} \bar C{e^v} - {{\bar A}_1}{e^u} = 0, \\ - {{\bar b}_2} + {{\bar A}_2}{e^u} = 0 \end{array} \right.

有唯一解 {({u^*}, {v^*})^{\rm T}} \in \Omega \cap KerL .因此有

\begin{eqnarray*} \deg \{ JQN{(u, v)^{\rm T}}, \Omega \cap KerL, {(0, 0)^{\rm T}}\} & = & {\mathop{\rm sgn}} \left| {\begin{array}{*{20}{c}} { - {{\bar A}_1}{e^{{u^*}}}}&{\bar C{e^{{v^*}}}}\\ {{{\bar A}_2}{e^{{u^*}}}}&0 \end{array}} \right| = {\mathop{\rm sign}} ( - \bar C{{\bar A}_2}{e^{{v^*} + {u^*}}})\neq0. \end{eqnarray*}

所以引理2.1中的所有条件均满足, 因此系统(2.1)–(2.2)至少存在一个正的 \omega -周期解.进而由引理2.3可知, 系统(1.1)–(1.2)至少存在一个正的 \omega -周期解.

4 结论

该文主要研究一类带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵种群动力学模型(1.1)–(1.2).通过运用Mawhin迭合度理论和一些分析技巧, 得到了系统(1.1)–(1.2)正周期解的存在性.今后, 我们将进一步讨论系统(1.1)–(1.2)正周期解的全局吸引性以及多周期解的存在性.

参考文献

邵长旭, 刘树堂.

三种群捕食-食饵模型的分形特征与控制

数学物理学报, 2019, 39A (4): 951- 962

DOI:10.3969/j.issn.1003-3998.2019.04.022      [本文引用: 1]

Shao C X , Liu S T .

Fractal feature and control of three-species predator-prey model

Acta Math Sci, 2019, 39A (4): 951- 962

DOI:10.3969/j.issn.1003-3998.2019.04.022      [本文引用: 1]

付盈洁, 蓝桂杰, 张树文, 魏春金.

污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究

数学物理学报, 2019, 39A (3): 674- 688

DOI:10.3969/j.issn.1003-3998.2019.03.024     

Fu Y J , Lan G J , Zhang S W , Wei C J .

Dynamics of a stochastic predator-prey model with pulse input in a polluted environment

Acta Math Sci, 2019, 39A (3): 674- 688

DOI:10.3969/j.issn.1003-3998.2019.03.024     

Sun X L , Yuan R , Wang L .

Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting

J Nonlinear Sci, 2019, 29: 287- 318

DOI:10.1007/s00332-018-9487-5     

Chen X , Du Z J .

Existence of positive periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse

Qual Theory Dyn Syst, 2018, 17: 67- 80

DOI:10.1007/s12346-017-0223-6     

Ma Z P , Huo H F , Xiang H .

Hopf bifurcation for a delayed predator-prey diffusion system with Dirichlet boundary condition

Appl Math Comput, 2017, 311: 1- 18

DOI:10.1016/j.cam.2016.06.032     

Negreanua M , Tellob J I .

Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals

J Math Anal Appl, 2019, 474: 1116- 1131

DOI:10.1016/j.jmaa.2019.02.007     

Du Z J , Feng Z S .

Existence and asymptotic behavior of traveling waves in a modified vector-disease model

Commun Pure Appl Anal, 2018, 17 (5): 1899- 1920

DOI:10.3934/cpaa.2018090     

Lu S P , Ge W G .

Existence of positive periodic solutions for neutral population model with multiple delays

Appl Math Comput, 2004, 153: 885- 902

Du Z J , Feng Z S , Zhang X N .

Traveling wave phenomena of n-dimensional diffusive predator-prey systems

Nonlinear Anal Real World Appl, 2018, 41: 288- 312

DOI:10.1016/j.nonrwa.2017.10.012     

Du Z J , Zhang X N , Zhu H P .

Dynamics of nonconstant steady states of the Sel'kov model with saturation effect

J Nonlinear Sci, 2020,

DOI:10.1007/s00332-020-09617-w     

Kuang Y .

Rich dynamics of Gauss-type ratio-dependent predator-prey systems

Field Inst Commun, 1999, 21: 325- 337

[本文引用: 1]

Pao C V .

Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion

J Math Anal Appl, 2015, 421: 1721- 1742

DOI:10.1016/j.jmaa.2014.07.070      [本文引用: 1]

Gokmen E , Isik O R , Sezer M .

Taylor collocation approach for delayed Lotka-Volterra predator-prey system

Appl Math Comput, 2015, 268: 671- 684

Wang K , Zhu Y L .

Global attractivity of positive periodic solution for a Volterra model

Appl Math Comput, 2008, 203: 493- 501

Lv Y S , Du Z J .

Existence and global attractivity of positive periodic solution to a Lotka-Volterra model with mutual interference and Holling Ⅲ type functional response

Nonlinear Anal Real World Appl, 2011, 12: 3654- 3664

DOI:10.1016/j.nonrwa.2011.06.022     

Wang C Y , Li N , Zhou Y Q .

On a multi-delay Lotka-Volterra predator-prey model with feedback controls and prey diffusion

Acta Math Sci, 2019, 39B (2): 429- 448

[本文引用: 1]

Holling C S .

The functional response of predator to prey density and its role in mimicry and population regulation

Men Ent Sec Can, 1965, 45: 1- 60

[本文引用: 2]

Xia Y H , Cao J D , Cheng S S .

Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses

Appl Math Modelling, 2007, 31: 1947- 1959

DOI:10.1016/j.apm.2006.08.012      [本文引用: 2]

Chen Y M .

Multiple periodic solutions of delayed predator-prey systems with type IV functional responses

Nonlinear Anal Real World Appl, 2004, 5: 45- 53

[本文引用: 2]

Lakshmikantham V , Bainov D D , Simeonov P S . Theory of Impulsive Differential Equations. New Jersey: World Scientific Publishing Co, 1989

[本文引用: 1]

Du Z J , Feng Z S .

Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays

J Comput Appl Math, 2014, 258: 87- 98

DOI:10.1016/j.cam.2013.09.008      [本文引用: 2]

Xia Y H , Han M A .

Multiple periodic solutions of a ratio-dependent predator-prey model

Chaos Sol Fra, 2009, 39: 1100- 1108

DOI:10.1016/j.chaos.2007.04.028      [本文引用: 1]

Wang Q , Dai B X , Chen Y M .

Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response

Math Comput Modelling, 2009, 49: 1829- 1836

DOI:10.1016/j.mcm.2008.09.008      [本文引用: 1]

葛渭高. 非线性常微分方程边值问题. 北京: 科学出版社, 2007

[本文引用: 1]

Ge W G . Boundary Value Problems for Nonlinear Ordinary Differential Equations. Beijing: Science Press, 2007

[本文引用: 1]

Gaines R E , Mawhin J L . Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977

[本文引用: 2]

/