数学物理学报, 2021, 41(1): 178-193 doi:

论文

带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解

蒋婷婷1,2, 杜增吉,1

Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response

Jiang Tingting1,2, Du Zengji,1

通讯作者: 杜增吉, E-mail: 751668254@qq.com; zjdu@jsnu.edu.cn; duzengji@163.com

收稿日期: 2020-02-29  

基金资助: 国家自然科学基金.  11771185
国家自然科学基金.  11871251

Received: 2020-02-29  

Fund supported: the NSFC.  11771185
the NSFC.  11871251

Abstract

This paper is concerned with a neutral impulsive predator-prey model with Holling-type IV functional response and delays. We obtain sufficient conditions on the existence of positive periodic solutions of this predator-prey model by using the Mawhin coincidence degree theory and analysis technique.

Keywords: Neutral predator-prey model ; Impulsive ; Periodic solutions ; Holling-type IV functional response ; Coincidence degree theory

PDF (402KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

蒋婷婷, 杜增吉. 带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵模型的周期解. 数学物理学报[J], 2021, 41(1): 178-193 doi:

Jiang Tingting, Du Zengji. Periodic Solutions of a Neutral Impulsive Predator-Prey Model with Holling-Type IV Functional Response. Acta Mathematica Scientia[J], 2021, 41(1): 178-193 doi:

1 引言

自Lotka和Volterra分别对捕食-食饵数学模型做了开创性的研究工作以来, 捕食-食饵数学模型被众多学者广泛研究, 参见文献[1-17].捕食者与被捕食者之间的动力学关系, 基于它们的普遍存在性以及重要性, 已经持续了很长一段时间并将继续被深入研究, 参见文献[11].上个世纪, 许多学者建立了大量的生态系统, 用来描述不同物种之间以及物种与外界环境之间的相互作用.其中, 最经典并且被广泛研究的是Lotka-Volterra竞争系统, 参见文献[12-16].根据实验数据, Holling[17]提出了三种单调型的功能函数

这些功能函数已经被广泛用在许多模型里加以研究.然而, 有实验显示, 在微生物的层面非单调反应很可能会发生:当营养浓度达到很高的一个水平的时候, 对于特定的增长速度很可能会发生抑制反应.当微生物被用在废物分解或者污水净化方面, 这种抑制反应的现象很常见, 因此, 提出了Holling Ⅳ型功能反应函数

并用来模拟在高浓度下的抑制反应[18].与前三种功能反应函数相比, Holling Ⅳ型功能反应函数更合理.基于这个原因, Chen[19]研究了如下带有Holling Ⅳ型功能反应函数的捕食-食饵模型正周期解的存在性

其中$ {N_1}(t) $$ {N_2}(t) $分别代表食饵与捕食者在$ t $时刻的种群密度; $ {a_l}(t), {b_l}(t) $$ {\tau _l}(t)\ (l = 1, 2) $都是以$ \omega>0 $为周期的连续函数, 并且$ a, i $都是正常数.利用Mawhin迭合度理论, 得到了该系统正周期解存在性的充分条件.

众所周知, 在种群动态中, 许多进化过程在经历了相当长一段时间的连续变化之后, 很可能经历一个短时间的突变.例如, 由于食物的供给, 季节性的变化, 狩猎以及一年一度的收获等等, 综合这些因素, 得到了脉冲微分方程.关于脉冲微分方程的理论, 参见文献[20].考虑到脉冲, Du和Feng[21]研究了带有脉冲时滞的具有Beddington-DeAngelis型功能反应函数的中立型捕食竞争模型正周期解的存在性, 利用Mawhin迭合度理论, 给出了正周期解存在的充分条件.

根据上述文献, 该文研究如下带有脉冲时滞和更一般的Holling Ⅳ型功能反应函数的中立型捕食-食饵模型

$ \begin{equation} \left\{ {\begin{array}{*{20}{l}} {\left. {\begin{array}{*{20}{l}} {\mathop {{N_1}}\limits^.(t) = {N_1}(t)\Bigg[ {{b_1}(t) - {a_1}(t){N_1}(t - {\tau _1}(t)) - \rho (t)\mathop {{N_1}}\limits^. (t - {\tau _3}(t))} }\\ { {\ \ \ \ \ \ \ \ \ \ { \ - \frac{{c(t){N_2}(t - \sigma (t))}}{{N_1^2(t) + \alpha {N_1}(t) + \beta }}}} \Bigg], }\\ {\mathop {{N_2}}\limits^. (t) = {N_2}(t)\left[ { - {b_2}(t) + {\frac{{{a_2}(t){N_1}(t - {\tau _2}(t))}}{{N_1^2(t - {\tau _2}(t)) + \alpha {N_1}(t - {\tau _2}(t)) + \beta }}}} \right], } \end{array}} \right\}}\\ {\left. {\begin{array}{*{20}{l}} {\Delta {N_1}({t_k}) = {N_1}(t_k^ + ) - {N_1}({t_k}) = {c_{1k}}{N_1}({t_k}), }\\ {\Delta {N_2}({t_k}) = {N_2}(t_k^ + ) - {N_2}({t_k}) = {c_{2k}}{N_2}({t_k}), } \end{array}} \right\}t = {t_k}, k = 1, 2, \cdots, } \end{array}} \right.t \ne {t_k}, k = 1, 2, \cdots, \end{equation} $

满足初始条件

$ {N_1}(t) = \varphi (t), \mathop {{N_1}}\limits^. (t) = \mathop \varphi \limits^. (t), \varphi \in {C^1}([ - \tau, 0], [0, + \infty )), \varphi (0) > 0, \\ {N_2}(t) = \psi (t), \mathop {{N_2}}\limits^. (t) = \mathop \psi \limits^. (t), \psi \in {C^1}([ - \tau, 0], [0, + \infty )), \psi (0) > 0, $

其中, $ N_1 $$ N_2 $分别代表食饵与捕食者在$ t $时刻的种群密度; $ a_1(t) $$ \in C({{\Bbb R}}, (0, + \infty )) $, $ a_2(t), $$ c(t) \in C({{\Bbb R}}, [0, + \infty )) $, $ \sigma (t), {\tau _1}(t), {\tau _2}(t) \in {C^1}({{\Bbb R}}, [0, + \infty )) $, $ \rho (t)\in {C^1}({{\Bbb R}}, {{\Bbb R}} ) $, $ {\tau _3}(t) \in {C^2}({{\Bbb R}}, $$ [0, + \infty )) $; $ {c_{ik}} > - 1, i = 1, 2, k \in {N^ + } $; $ {b_1}(t), {b_2}(t) \in C({{\Bbb R}}, {{\Bbb R}} ) $, $ \tau = \mathop {\max }\limits_{t \in [0, \omega ]} \{ {\tau _1}(t) $, $ {\tau _2}(t) $, $ {\tau _3}(t)\} $, 其中, $ c(t) $, $ \sigma(t) $, $ \rho(t) $, $ {a_i(t)} $, $ {b_i(t)} $$ \tau_\ell(t) $$ ( i=1, 2 ; \ell=1, 2, 3) $都是以$ \omega $为正周期的连续函数, $ \alpha $$ \beta $都是正的常数.并且满足$ \int_0^\omega {c(t){\rm d}t > 0} $$ \int_0^\omega {{b_i}(t){\rm d}t > 0} $的条件.此外, 由于环境是随机变动的, 所以, 增长函数$ {b_1}(t) $$ {b_2}(t) $不一定总是正的.本文利用Mawhin迭合度定理和一些分析技巧, 给出了系统$ (1.1) $$ (1.2) $存在正周期解的充分条件.这些条件是时滞依赖的, 从而本文的研究和文献[18-19, 22-23]不同, 因为这些文献研究的结论都与时滞无关.

2 预备知识

为了得到系统$ (1.1) $$ (1.2) $正周期解的存在性, 首先介绍一些相关的引理和Mawhin迭合度定理.

定义2.1[21]  假设$ {({N_1}(t), {N_2}(t))^{\rm T}} \in ([ - \tau, \infty ), (0, +\infty ), (0, +\infty )) $, 满足下述条件

(ⅰ) $ {N_1}(t), {N_2}(t) $在每一个区间$ (0, {t_1}] $$ ({t_k}, {t_{k + 1}}], k \in {N^ + } $上, 都是绝对连续的;

(ⅱ) 对于$ {\forall} $$ {t_k} $, $ k \in {N^ + } $, $ {({N_1}(t_k^ + ), {N_2}(t_k^ + ))^{\rm T}} $$ {({N_1}(t_k^ - ), {N_2}(t_k^ - ))^{\rm T}} $存在, 且

(ⅲ) $ {({N_1}(t), {N_2}(t))^{\rm T}} $$ [0, \infty )\backslash \{ {t_k}\} $上几乎处处满足系统$ (1.1) $$ (1.2) $, 并且当$ t = {t_k} $, $ k\in {N^+} $时, 有$ {N_1}(t_k^ + ) - {N_1}({t_k}) = {c_{1k}}{N_1}({t_k}) $$ {N_2}(t_k^ + ) - {N_2}({t_k}) = {c_{2k}}{N_2}({t_k}) $成立.

则称$ {({N_1}(t), {N_2}(t))^{\rm T}} $是初值问题$ (1.1) $$ (1.2) $$ [ - \tau, \infty ) $上的解.

为了叙述方便, 作如下假设.

(H$ _1) $  $ {\{ {t_k}\} _{k \in N}} $是一个严格单调递增序列, 且$ {t_1} > 0 $, $ \mathop {\lim }\limits_{k \to \infty } {t_k} = +\infty $;

(H$ _2) $  $ \{ {c_{ik}}\} $是实序列且$ {c_{ik}} > - 1 $, $ \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{ik}}), i = 1, 2 $$ \omega $ -周期函数.

下面简要介绍迭合度相关知识.

$ X $$ Y $是两个实Banach空间, $ L:DomL \subset X \to Y $是一个线性算子, $ N:X \to Y $是一个连续映射, 若$ \dim KerL = co\dim {\mathop{\rm Im}\nolimits} L < + \infty $, 且$ {\mathop{\rm Im}\nolimits} L $$ Y $的闭子空间, 则称$ L $是指标为零的Fredholm算子[25].如果$ L $是指标为零的Fredholm算子, 存在连续映射$ P:X \to X $$ Q:Y \to Y $, 满足$ {\mathop{\rm Im}\nolimits} P = KerL $, $ {\mathop{\rm Im}\nolimits} L = KerQ = {\mathop{\rm Im}\nolimits} (I - Q) $, 则$ L\left| {_{DomL \cap KerP}:(I - P)X \to {\mathop{\rm Im}\nolimits} L} \right. $是可逆的, 把它的逆算子记为$ {K_p} $.$ \Omega \subset X $$ X $中的有界开子集, 如果算子$ QN(\bar{\Omega}) $是有界的, 并且算子$ {K_p}(I - Q)N(\bar{\Omega}) \in X $是紧的, 则称算子$ N $$ N \in \bar{\Omega} $上是$ L $ -紧的.

引理2.1[24-25]  假设$ X $$ Y $是两个实Banach空间, $ L:DomL\subset X \to Y $是指标为零的Fredholm算子, $ \Omega \subset X $是一个有界开集, $ N:\bar{\Omega}\to Y $$ \bar{\Omega} $上是$ L $ -紧的, 且假设下列条件成立

$ [C_1] $$ x \in \partial \Omega \cap DomL $, $ \lambda \in(0, 1) $时, 有$ Lx \ne\lambda Nx $;

$ [C_2] $$ x \in \partial \Omega \cap KerL $时, 有$ Nx \notin {\mathop{\rm Im}\nolimits} L $;

$ [C_3] $$ \deg \{ JQN, \Omega \cap KerL, 0\} \ne 0 $, 其中$ J:{\mathop{\rm Im}\nolimits} Q \to KerL $是同构映射.

则方程$ Lx = Nx $$ \bar{\Omega} \cap DomL $内至少存在一个解.

在假设(H$ _1) $和(H$ _2) $条件下, 首先考虑没有脉冲情况下的带有更一般的Holling Ⅳ型功能反应函数的中立型捕食竞争系统

$ \begin{equation} {\left\{ \begin{array}{l} \mathop {{\rm{ }}x}\limits^. (t) = x(t)\left[ {{b_1}(t) - {A_1}(t)x(t - {\tau _1}(t)) - \gamma (t)\mathop {{\rm{ }}x}\limits^. (t - {\tau _3}(t)) - {\frac{{C(t)y(t - \sigma (t))}}{{{p^2}(t){x^2}(t) + \alpha p(t)x(t) + \beta }}} }\right], \\ \mathop {{\rm{ }}y}\limits^. (t) = y(t)\left[ { - {b_2}(t) + {\frac{{{A_2}(t)x(t - {\tau _2}(t))}}{{{q^2}(t){x^2}(t - {\tau _2}(t)) + \alpha q(t)x(t - {\tau _2}(t)) + \beta }}}} \right], \end{array} \right.} \end{equation} $

满足初始条件

$ \begin{eqnarray} \begin{array}{l} x(t) = \varphi (t), \mathop x\limits^. (t) = \mathop \varphi \limits^. (t), \varphi \in {C^1}([ - \tau, 0], [0, \infty )), \varphi (0) > 0, \\ y(t) = \psi (t), \mathop y\limits^. (t) = \mathop \psi \limits^. (t), \psi \in {C^1}([ - \tau, 0], [0, \infty )), \psi (0) > 0, \end{array} \end{eqnarray} $

其中

${A_1}(t) = {a_1}(t )\mathop \prod \limits_{0 < {t_k} < t - {\tau _1}(t)} (1 + {c_{1k}}), \qquad \gamma(t) = \rho (t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _3}(t)} (1 + {c_{1k}}), \\ C(t) = c(t)\mathop \prod \limits_{0 < {t_k} < t - \sigma (t)} (1 + {c_{2k}}), \qquad\ \ \ \ p(t) = \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}}), \\ {A_2}(t) = {a_2}(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _2}(t)} (1 + {c_{1k}}), \qquad\ q(t) = \mathop \prod \limits_{0 < {t_k} < t - {\tau _2}(t)} (1 + {c_{1k}}).$

下面的引理给出了初值问题$ (1.1) $$ (1.2) $与初值问题$ (2.1) $$ (2.2) $的关系.

引理2.2  假设(H$ _1) $和(H$ _2) $成立, 则有

(ⅰ) 如果$ {(x(t), y(t))^{\rm T}} $是系统$ (2.1) $$ (2.2) $的解, 则$ {({N_1}(t), {N_2}(t))^{\rm T}} $是系统$ (1.1) $$ (1.2) $的解, 其中

(ⅱ) 如果$ {({N_1}(t), {N_2}(t))^{\rm T}} $是系统$ (1.1) $$ (1.2) $的解, 则$ {(x(t), y(t))^{\rm T}} $是系统$ (2.1) $$ (2.2) $的解, 其中

  (ⅰ) 如果$ {({x}(t), {y}(t))^{\rm T}} $是系统$ (2.1) $$ (2.2) $的解, 则有

在每一个区间$ ({t_k}, {t_{k+ 1}}] $上都是绝对连续的.对于任何$ t \ne {t_k}, k \in {N^ + } $, 有

$ \begin{eqnarray} && \mathop {{N_1}}\limits^. (t) - {N_1}(t)\left[ {{b_1}(t) - {a_1}(t){N_1}(t - {\tau _1}(t)) - \rho (t)\mathop {{N_1}}\limits^. (t - {\tau _3}(t)) - \frac{{c(t){N_2}(t - \sigma (t))}}{{{N_1}^2(t) + \alpha {N_1}(t) + \beta }}} \right]\\ & = & \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} \mathop {{\rm{ }}x}\limits^. (t) - \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} x(t)\Bigg[{b_1}(t) - {a_1}(t)\prod\limits_{0 < {t_k} < t - {\tau _1}(t)} {(1 + {c_{1k}})} x(t - {\tau _1}(t)) \\ && - \rho (t)\prod\limits_{0 < {t_k} < t - {\tau _3}(t)} {(1 + {c_{1k}})} \mathop {{\rm{ }}x}\limits^. (t - {\tau _3}(t))\\ && { - \frac{{c(t)\prod\limits_{0 < {t_k} < t - \sigma (t)} {(1 + {c_{2k}})} y(t - \sigma (t))}}{{{{\Big(\prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})}\Big )}^2}{x^2}(t) + \alpha \prod\limits_{0 < {t_k} < t} {(1 + {c_{1k}})} x(t) + \beta }}} \Bigg]\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\left\{ {\mathop x\limits^. (t) - } x(t)\left[ {{b_1}(t) - {a_1}(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _1}(t)} (1 + {c_{1k}})x(t - {\tau _1}(t))} \right.\right. \\ && - \rho (t)\mathop \prod \limits_{0 < {t_k} < t - {\tau _3}(t)} (1 + {c_{1k}})\mathop x\limits^. (t - {\tau _3}(t))\\ && \left. {\left. { - \frac{{c(t)\mathop \prod \limits_{0 < {t_k} < t - \sigma (t)} (1 + {c_{2k}})y(t - \sigma (t))}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\Big)}^2}{x^2}(t) + \mathop \alpha \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})x(t) + \beta}}} \right]} \right\}\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{1k}})\Bigg\{{\mathop x\limits^. (t) - x(t)} \Bigg[ {{b_1}(t) - {A_1}(t)x(t - {\tau _1}(t)) - \gamma (t)\mathop x\limits^. (t - {\tau _3}(t))} \\ && \ - \left. {\left. {\frac{{C(t)y(t - \sigma (t))}}{{{{{p^2}(t)}}{x^2}(t) + \alpha p(t)x(t) + \beta }}} \right]} \right\}\\ & = & 0. \end{eqnarray} $

类似地, 有

$ \begin{eqnarray} && \mathop {{N_2}}\limits^. (t) - {N_2}(t)\left[ {{-b_2}(t) +\frac{{a_2(t){N_1}(t - {\tau_2} (t))}}{{{{{N_1}^2(t-{\tau_2} (t))}}+ \alpha {N_1}(t-{\tau_2} (t)) + \beta}}} \right]{}\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})\mathop y\limits^. (t) - \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})y(t)\Bigg[ {{-b_2}(t) } {} \\ && {+ \frac{{a_2(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau_2} (t)} (1 + {c_{1k}})x(t -{\tau_2} (t) )}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t-{\tau_2} (t)} (1 + {c_{1k}})\Big)}^2}{x^2}(t-{\tau_2} (t)) + \mathop \alpha \prod \limits_{0 < {t_k} < t-{\tau_2} (t)} (1 + {c_{1k}})x(t-{\tau_2} (t)) + \beta}}} \Bigg]\\ & = & \mathop \prod \limits_{0 < {t_k} < t} (1 + {c_{2k}})\left\{ {\mathop y\limits^. (t) - } y(t) \Bigg[ {{-b_2}(t) } \right. {}\\ && \left. {\left. { + \frac{{a_2(t)\mathop \prod \limits_{0 < {t_k} < t - {\tau_2} (t)} (1 + {c_{1k}})x(t - {\tau_2} (t))}}{{{{\Big(\mathop \prod \limits_{0 < {t_k} < t- {\tau_2} (t)} (1 + {c_{1k}})\Big)}^2}{x^2}(t- {\tau_2} (t)) + \mathop \alpha \prod \limits_{0 < {t_k} < t- {\tau_2} (t)} (1 + {c_{1k}})x(t- {\tau_2} (t)) + \beta}}} \right]} \right\}\\ & = & \prod\limits_{0 < {t_k} < t} {(1 + {c_{2k}})} \left\{ {\mathop y\limits^. (t) - y(t)\left[ { - {b_2}(t) + \frac{{{A_2}(t)x(t - {\tau _2}(t))}}{{{q^2}(t){x^2}(t - {\tau _2}(t)) + \alpha q(t)x(t - {\tau _2}(t)) + \beta }}} \right]} \right\}\\ & = & 0. \end{eqnarray} $

另一方面, 对任何$ t = t_k, k \in {N^ + } $, 有

因此

$ \begin{equation} {N_1}(t_k^ + ) = (1 + {c_{1k}}){N_1}({t_k}), \qquad {N_2}(t_k^ + ) = (1 + {c_{2k}}){N_2}({t_k}). \end{equation} $

此外

所以有

$ \begin{eqnarray} {N_1}(t_k^{\rm{ - }}) = {N_1}({t_k}), \qquad {N_2}(t_k^{\rm{ - }}) = {N_2}({t_k}). \end{eqnarray} $

$ (2.1) $$ (2.7) $式可知, $ (N_1(t), N_2(t))^{\rm T} $是系统$ (1.1) $$ (1.2) $的一个解.

(ⅱ) 由定义2.1可知

在每一个区间$ ({t_k}, {t_{k + 1}}], k \in {N^ + } $上都是绝对连续的.由(2.6)式, 对$ {\forall} $$ k \in {N^ + } $, 有

并且有

所以$ x(t) $$ y(t) $在区间$ [ - \tau, \infty) $上是连续的.进一步容易验证, $ x(t) $$ y(t) $在区间$ [ - \tau, \infty) $上是绝对连续的.类似于(ⅰ) 的证明, 容易验证

是系统$ (2.1) $$ (2.2) $的解.

3 周期解的存在性

为了方便起见, 下面给出一些记号和几个正的常数.

其中$ f $$ \omega $ -周期的连续函数, $ {{\varphi ^{ - 1}}} $$ \varphi = t - {\tau _1}(t) $的逆函数. $ A_1(t) $由(2.3)式给出, 常数$ \gamma $由下面定理中给出.

定理3.1  假设(H$ _1) $, (H$ _2) $和如下条件成立

(H$ _3) $  $ A_2^M < \left( {\alpha-2\sqrt {\beta} } \right)b_2^L{q^L}{e^{ - G}} $, $ 1 - \gamma {e^{{K_2}}} > 0 $, $ {{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}} > 0 ; $

(H$ _4) $  $ \gamma(t) = \gamma $是常数; $ {\mathop \tau \limits^. {_1}}(t) < 1, $$ {\forall} $$ t \in {{\Bbb R}} $$ {\mathop \tau \limits^. {_3}}(t) < 1 $, $ {\mathop \tau \limits^{..} {_3}}(t) = 0 $.

则系统$ (2.1) $$ (2.2) $至少存在一个$ \omega $ -周期解.

  因为

所以, 对$ \forall t\in {{\Bbb R}} $, 系统$ (2.1) $的解都是正的.做变换

则系统$ (2.1) $可变换成如下系统

$ \begin{equation} \left\{ \begin{array}{l} { } \mathop u\limits^. (t) = {b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma{e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t)) - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta}}}, \\ { } \mathop v\limits^. (t) = - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}}. \end{array} \right. \end{equation} $

$ (X, \left\| . \right\|) $$ (Y, {\left| .\right|_\infty }) $都是Banach空间.

定义算子$ L, P $$ Q $如下

其中, $ DomL = \left\{ {z\left| {z \in X:z(t) \in {C^1}({{\Bbb R}}, {{{\Bbb R}} ^2})} \right.} \right\} $.定义算子$ N:X \to Y $如下

容易得到

因为$ {\rm Im}L $$ Y $上是闭的, $ P $$ Q $都是连续的投影算子, 且满足$ {\rm Im}P = KerL $, $ {\rm Im}L = KerQ = {\rm Im}(I-Q) $, $ dimKerL = codim{\rm Im}L = 2 $, 所以$ L $是指标为零的Fredholm算子, 故算子$ L $有唯一的逆映射.记$ L $的广义逆为$ {K_p}:{\mathop{\rm Im}\nolimits} L \to KerP \cap DomL $.经过计算可得

从而, 有

其中$ B(t) = {\frac{\gamma }{{1 - {{\mathop \tau \limits^. }_3}(t)}}} $.由假设条件(H$ _4) $, 可得$ \mathop B\limits^. (t) = 0 $.因此

根据Lebesgue控制收敛定理可知, $ QN $$ K_p(I-Q)N $都是连续的.由Arzela-Ascoli定理, 对于任意的有界开集$ \Omega \in X $, $ {K_p}(I - Q)N(\bar \Omega ) $是紧的, $ QN(\bar \Omega ) $是有界的.因此$ N $$ \bar \Omega $上是$ L $ -紧的.

由算子方程

可得

$ \begin{equation} \left\{ \begin{array}{l} \mathop u\limits^. (t) = \lambda \Bigg[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \gamma {e^{u(t - {\tau _3}(t))}}\mathop u\limits^. (t - {\tau _3}(t))} { - {\frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} + \alpha p(t){e^{u(t)}} + \beta }}}} \Bigg], \\ \mathop v\limits^. (t) = \lambda \left[ { - {b_2}(t) + {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta }}}} \right], \end{array} \right. \end{equation} $

对某个$ {\lambda}\in(0, 1) $, 假设$ z(t) = {(u(t), v(t))^T} \in X $是系统$ (3.2) $的一个解.对于方程$ (3.2) $, 在$ [0, {\omega}] $上进行积分, 有

$ \begin{equation} \int_0^\omega {\left[ {{A_1}(t){e^{u(t - {\tau _1}(t))}} + \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} {\rm d}t = {{\bar b}_1}\omega, \end{equation} $

$ \begin{equation} \int_0^\omega {\left[ {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} + \alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} \right]} {\rm d}t = {{\bar b}_2}\omega . \end{equation} $

由等式(3.2)–(3.4), 有

$ \begin{eqnarray} && \int_0^\omega {\left| {\frac{\rm d}{{{\rm d}t}}\left[ {u(t) + \lambda B(t){e^{u(t - {\tau _3}(t))}}} \right]} \right|} {\rm d}t\\ & = & \lambda \int_0^\omega {\left| {\left[ {{b_1}(t) - {A_1}(t){e^{u(t - {\tau _1}(t))}} - \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} \right|} {\rm d}t\\ &\leq& \int_0^\omega {\left| {{b_1}(t)} \right|} {\rm d}t + \int_0^\omega {\left[ {{A_1}(t){e^{u(t - {\tau _1}(t))}} + \frac{{C(t){e^{v(t - \sigma (t))}}}}{{{p^2}(t){e^{2u(t)}} +\alpha p(t){e^{u(t)}} + \beta}}} \right]} {\rm d}t\\ & = & \left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega. \end{eqnarray} $

由(3.3)式, 可得

根据广义积分中值定理, 存在$ {\eta _1} \in \left[ {0, \omega } \right] $, 使得

$ \begin{eqnarray} \int_0^\omega {D(t){e^{u(t)}}} {\rm d}t & = & D({\eta _1})\int_0^\omega {{e^{u(t)}}} {\rm d}t = D({\eta _1})\int_0^\omega {\left( {1 - \mathop {{\tau _3}}\limits^. (t)} \right){e^{u(t - {\tau _3}(t))}}} {\rm d}t < {{\bar b}_1}\omega . \end{eqnarray} $

由不等式(3.6), 存在$ {\eta _2} \in\left[ {0, \omega } \right] $, 有

$ \begin{equation} D({\eta _1})\int_0^\omega {\left( {1 - \mathop {{\tau _3}}\limits^. (t)} \right){e^{u(t - {\tau _3}(t))}}} {\rm d}t = D({\eta _1})\left( {1 - \mathop {{\tau _3}}\limits^. (\eta_2)} \right)\int_0^\omega {{e^{u(t - {\tau _3}(t))}}} {\rm d}t<{{\bar b}_1}\omega. \end{equation} $

根据(3.6)和(3.7)式, 得

进而可知, 存在$ \xi \in[0, \omega] $, 使得

由于$ \int_0^\omega {{b_1}(t)} {\rm d}t > 0 $, 可得$ b_1^M > 0 $, 从而有

$ \begin{equation} u(\xi) < \ln \left( {\frac{{2b_1^M}}{{{D^L}}}} \right) \end{equation} $

$ \begin{equation} {e^{u(\xi - {\tau _3}(\xi ))}} < \frac{{2b_1^M}}{{{D^L}\left( {1 - {{\left( {\mathop {{\tau _3}}\limits^. } \right)}^M}} \right)}}. \end{equation} $

根据不等式(3.5), (3.8)和(3.9), 可得

因为$ B(t){e^{u(t - {\tau _3}(t))}} > 0 $, 故有

$ \begin{eqnarray} u(t) < H . \end{eqnarray} $

根据方程(3.2), (3.3)和不等式(3.10), 可得

再由(H$ _3) $, 可得

$ \begin{equation} \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t \le \frac{{\left( {{{\hat b}_1} + {{\bar b}_1}} \right)\omega }}{{1 - \gamma {e^H}}} \equiv G . \end{equation} $

因为$ z = (u, v)^{\rm T}{\in}X $, 所以存在$ {\underline{\xi}}, \bar \xi, {\underline{\eta}}, \bar \eta \in [0, \omega ] $, 使得

$ \begin{equation} u({\underline{\xi}}) = \mathop {\min }\limits_{t \in [0, \omega ]} u(t), {} u(\bar \xi) = \mathop {\max }\limits_{t \in [0, \omega ]} u(t), \end{equation} $

$ \begin{equation} v({\underline{\eta}}) = \mathop {\min }\limits_{t \in [0, \omega ]} v(t), {} v(\bar \eta) = \mathop {\max }\limits_{t \in [0, \omega ]} v(t). \end{equation} $

根据(3.4)式, 可知

$ \begin{eqnarray} \int_0^\omega {\left[ {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} +\alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} \right]} {\rm d}t = {{\bar b}_2}\omega = \int_0^\omega {{b_2}(t)} {\rm d}t. \end{eqnarray} $

结合(3.12)和(3.14)式, 可得

结合(3.11)式, 可得

进一步, 有

再结合(H$ _3) $, 可得

$ \begin{eqnarray} \ln {l_ - } < u({\underline{\xi}} ) < \ln {l_ + }. \end{eqnarray} $

类似的, 根据(3.14)式有

因此有

再结合不等式(3.11), 可得

特别的, 有

结合假设条件(H$ _3) $, 可得

$ \begin{eqnarray} u(\bar \xi ) > \ln {u_ + } \ \mbox{ 或者} \ u(\bar \xi ) < \ln {u_ - }. \end{eqnarray} $

由不等式(3.11)和(3.15), 可得

$ \begin{eqnarray} u(t) \le u({\underline{\xi}}) + \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t < G + \ln {l_ + }: = {K_1} . \end{eqnarray} $

由(3.10)和(3.17)式, 可得

$ \begin{eqnarray} u(t) \le \max \left\{ {{K_1}, H} \right\}: = {K_2} . \end{eqnarray} $

由(3.11)和(3.16)式, 可得

$ \begin{eqnarray} u(t) \ge u(\bar \xi ) - \int_0^\omega {\left| {\mathop u\limits^. (t)} \right|} {\rm d}t > \ln {u_ + } - G: = {K_3}. \end{eqnarray} $

再由(3.18)和(3.19)式, 有

$ \begin{eqnarray} {\left| u \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {u(t)} \right|} \right\} \le \max \left\{ {\left| {{K_1}} \right|, \left| {{K_2}} \right|, \left| H \right|} \right\} : = {K_4}. \end{eqnarray} $

另一方面, 由(3.3)和(3.18)式, 可得

$ \begin{equation} {{\bar b}_1}\omega \ge \frac{{\bar C\omega {e^{v({\underline\eta})}}}}{{{p^{2M}}{e^{2{K_2}}} +\alpha {p^M}{e^{{K_2}}} + \beta}} \end{equation} $

$ \begin{equation} {{\bar b}_1}\omega \le \omega {{\bar A}_1}{e^{{K_2}}} + \frac{{\bar C\omega {e^{v(\bar \eta )}}}}{\beta}. \end{equation} $

由(3.21)式, 可得

$ \begin{equation} {{v({\underline\eta})}} \le \ln \left[ {\frac{{{{\bar b}_1}}}{{\bar C}}\left( {{p^{2M}}{e^{2{K_2}}} + \alpha {p^M}{e^{{K_2}}} + \beta} \right)} \right]. \end{equation} $

结合条件(H$ _3) $和(3.22)式, 有

$ \begin{equation} v(\bar \eta ) \ge \ln \left[ {\frac{{\beta\left( {{{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}}} \right)}}{{\bar C}}} \right]. \end{equation} $

再由(3.2)和(3.4)式, 可得

$ \begin{eqnarray} \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t & \le& \int_0^\omega {\left| {{b_2}(t)} \right|} {\rm d}t + \int_0^\omega {\frac{{{A_2}(t){e^{u(t - {\tau _2}(t))}}}}{{{q^2}(t){e^{2u(t - {\tau _2}(t))}} +\alpha q(t){e^{u(t - {\tau _2}(t))}} + \beta}}} {\rm d}t \\ & = & \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega . \end{eqnarray} $

根据不等式(3.23)–(3.25), 可得

$ \begin{eqnarray} v(t) &\leq& v({\underline\eta}) + \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t{}\\ &<& \ln \left[ {\frac{{\bar b}}{{\bar C}}\left( {{p^{2M}}{e^{2{K_2}}} + \alpha {p^M}{e^{{K_2}}} + \beta} \right)} \right] + \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega : = {K_5}, \end{eqnarray} $

且有

$ \begin{eqnarray} v(t) &\geq& v(\bar \eta ) - \int_0^\omega {\left| {\mathop v\limits^. (t)} \right|} {\rm d}t > \ln \left[ {\frac{{\beta \left( {{{\bar b}_1} - {{\bar A}_1}{e^{{K_2}}}} \right)}}{{\bar C}}} \right] - \left( {{{\hat b}_2} + {{\bar b}_2}} \right)\omega : = {K_6} . \end{eqnarray} $

再由(3.26)和(3.27)式, 可得

$ \begin{eqnarray} {\left| v \right|_0} = \mathop {\max }\limits_{t \in [0, \omega ]} \left\{ {\left| {v(t)} \right|} \right\} < \max \left\{ {\left| {{K_5}} \right|, \left| {{K_6}} \right|} \right\}: = {K_7}. \end{eqnarray} $

结合(3.2), (3.11), (3.18)和(3.28)式, 可得

从而, 有

因此, 由(3.20)和(3.28)式, 可得

$ \begin{eqnarray} \left\| z \right\| = \left\| {{{(u, v)}^T}} \right\| = {\left| z \right|_\infty } + {\left| {\mathop z\limits^. } \right|_\infty } < {K_4} + {K_7} + {K_8} + {K_9}: = {K_{10}}. \end{eqnarray} $

显然, $ \ln {l_ \pm }, \ln {u_ \pm }, {K_2} $$ {K_{10}} $都不依赖于$ \lambda $.$ K = {K_{10}} + \tilde K. $$ \tilde K $取足够大, 可使得如下代数方程

$ \begin{eqnarray} \left\{ \begin{array}{l} {{\bar b}_1} - {{\bar A}_1}{e^u} - \overline {{\frac{{C(t){e^v}}}{{{p^2}(t){e^{2u}} +\alpha p(t){e^u} + \beta}}}} = 0, \\ - {{\bar b}_2} + \overline {{\frac{{{A_2}(t){e^u}}}{{{q^2}(t){e^{2u}} +\alpha q(t){e^u} + \beta}}} } = 0 \end{array} \right. \end{eqnarray} $

的解满足$ \left\| {{z^*}} \right\| = \left\| {{{({u^*}, {v^*})}^{\rm T}}} \right\| = \left| {{u^*}} \right| + \left| {{v^*}} \right| < K $.

下面验证引理2.1的三个条件成立.

(a) 由上述计算可知, 对$ {\forall} $$ \lambda {\in}(0, 1) , z \in \partial \Omega \cap DomL, $$ Lz \ne \lambda Nz $成立.

(b) 当$ {(u(t), v(t))^{\rm T}} \in \partial \Omega \cap KerL $, 且$ {(u(t), v(t))^{\rm T}} $$ R^2 $中是范数为$ K $的一个常向量, 记作: $ {(u, v)^{\rm T}} $.如果$ QN{(u, v)^{\rm T}} = 0 $, 则$ {(u, v)^{\rm T}} $是方程(3.30)的一个常数解.由上面讨论可知, $ \left\| {{{(u, v)}^{\rm T}}} \right\| < K $, 这与$ \left\| {{{(u, v)}^{\rm T}}} \right\| = K $矛盾.所以对$ {\forall} $$ z \in \partial \Omega\cap KerL $, 有$ QNz \ne 0 $.

(c) 下面验证条件$ [C_3] $成立.定义$ \phi:DomL\cap KerL\times[0, 1]\rightarrow X $

其中参数$ \mu\in[0, 1] $.常向量$ {(u, v)^{\rm T}} \in\partial \Omega \cap KerL = \partial \Omega \cap {R^2} $, 且$ \left\| {{{(u, v)}^{\rm T}}} \right\| = K $.下证当$ {(u, v)^{\rm T}} \in \partial \Omega \cap KerL $时, 有$ \phi (u, v, \mu )\neq 0 $成立.否则, 假设存在常向量$ {(u, v)^{\rm T}} $, 范数为$ \left\| {{{(u, v)}^{\rm T}}} \right\| = K $时, 满足$ \phi (u, v, \mu ) = 0 $.$ \phi (u, v, \mu ) = 0 $, 类似于(3.8), (3.9), (3.15), (3.16), (3.23)和(3.24)式的推导, 可得$ \left\| {{{(u, v)}^{\rm T}}} \right\| < K $, 这就产生矛盾.假设$ J $是从$ ImQ $$ KerL $的恒等同构映射, 由根据拓扑度的同伦不变性, 可得

易得, 下面的代数方程

有唯一解$ {({u^*}, {v^*})^{\rm T}} \in \Omega \cap KerL $.因此有

所以引理2.1中的所有条件均满足, 因此系统(2.1)–(2.2)至少存在一个正的$ \omega $ -周期解.进而由引理2.3可知, 系统(1.1)–(1.2)至少存在一个正的$ \omega $ -周期解.

4 结论

该文主要研究一类带有脉冲和Holling-IV型功能反应函数的中立型捕食-食饵种群动力学模型(1.1)–(1.2).通过运用Mawhin迭合度理论和一些分析技巧, 得到了系统(1.1)–(1.2)正周期解的存在性.今后, 我们将进一步讨论系统(1.1)–(1.2)正周期解的全局吸引性以及多周期解的存在性.

参考文献

邵长旭, 刘树堂.

三种群捕食-食饵模型的分形特征与控制

数学物理学报, 2019, 39A (4): 951- 962

DOI:10.3969/j.issn.1003-3998.2019.04.022      [本文引用: 1]

Shao C X , Liu S T .

Fractal feature and control of three-species predator-prey model

Acta Math Sci, 2019, 39A (4): 951- 962

DOI:10.3969/j.issn.1003-3998.2019.04.022      [本文引用: 1]

付盈洁, 蓝桂杰, 张树文, 魏春金.

污染环境下具有脉冲输入的随机捕食-食饵模型的动力学研究

数学物理学报, 2019, 39A (3): 674- 688

DOI:10.3969/j.issn.1003-3998.2019.03.024     

Fu Y J , Lan G J , Zhang S W , Wei C J .

Dynamics of a stochastic predator-prey model with pulse input in a polluted environment

Acta Math Sci, 2019, 39A (3): 674- 688

DOI:10.3969/j.issn.1003-3998.2019.03.024     

Sun X L , Yuan R , Wang L .

Bifurcations in a diffusive predator-prey model with Beddington-DeAngelis functional response and nonselective harvesting

J Nonlinear Sci, 2019, 29: 287- 318

DOI:10.1007/s00332-018-9487-5     

Chen X , Du Z J .

Existence of positive periodic Solutions for a neutral delay predator-prey model with Hassell-Varley type functional response and impulse

Qual Theory Dyn Syst, 2018, 17: 67- 80

DOI:10.1007/s12346-017-0223-6     

Ma Z P , Huo H F , Xiang H .

Hopf bifurcation for a delayed predator-prey diffusion system with Dirichlet boundary condition

Appl Math Comput, 2017, 311: 1- 18

DOI:10.1016/j.cam.2016.06.032     

Negreanua M , Tellob J I .

Global existence and asymptotic behavior of solutions to a Predator-Prey chemotaxis system with two chemicals

J Math Anal Appl, 2019, 474: 1116- 1131

DOI:10.1016/j.jmaa.2019.02.007     

Du Z J , Feng Z S .

Existence and asymptotic behavior of traveling waves in a modified vector-disease model

Commun Pure Appl Anal, 2018, 17 (5): 1899- 1920

DOI:10.3934/cpaa.2018090     

Lu S P , Ge W G .

Existence of positive periodic solutions for neutral population model with multiple delays

Appl Math Comput, 2004, 153: 885- 902

Du Z J , Feng Z S , Zhang X N .

Traveling wave phenomena of n-dimensional diffusive predator-prey systems

Nonlinear Anal Real World Appl, 2018, 41: 288- 312

DOI:10.1016/j.nonrwa.2017.10.012     

Du Z J , Zhang X N , Zhu H P .

Dynamics of nonconstant steady states of the Sel'kov model with saturation effect

J Nonlinear Sci, 2020,

DOI:10.1007/s00332-020-09617-w     

Kuang Y .

Rich dynamics of Gauss-type ratio-dependent predator-prey systems

Field Inst Commun, 1999, 21: 325- 337

[本文引用: 1]

Pao C V .

Dynamics of Lotka-Volterra competition reaction-diffusion systems with degenerate diffusion

J Math Anal Appl, 2015, 421: 1721- 1742

DOI:10.1016/j.jmaa.2014.07.070      [本文引用: 1]

Gokmen E , Isik O R , Sezer M .

Taylor collocation approach for delayed Lotka-Volterra predator-prey system

Appl Math Comput, 2015, 268: 671- 684

Wang K , Zhu Y L .

Global attractivity of positive periodic solution for a Volterra model

Appl Math Comput, 2008, 203: 493- 501

Lv Y S , Du Z J .

Existence and global attractivity of positive periodic solution to a Lotka-Volterra model with mutual interference and Holling Ⅲ type functional response

Nonlinear Anal Real World Appl, 2011, 12: 3654- 3664

DOI:10.1016/j.nonrwa.2011.06.022     

Wang C Y , Li N , Zhou Y Q .

On a multi-delay Lotka-Volterra predator-prey model with feedback controls and prey diffusion

Acta Math Sci, 2019, 39B (2): 429- 448

[本文引用: 1]

Holling C S .

The functional response of predator to prey density and its role in mimicry and population regulation

Men Ent Sec Can, 1965, 45: 1- 60

[本文引用: 2]

Xia Y H , Cao J D , Cheng S S .

Multiple periodic solutions of a delayed stage-structured predator-prey model with non-monotone functional responses

Appl Math Modelling, 2007, 31: 1947- 1959

DOI:10.1016/j.apm.2006.08.012      [本文引用: 2]

Chen Y M .

Multiple periodic solutions of delayed predator-prey systems with type IV functional responses

Nonlinear Anal Real World Appl, 2004, 5: 45- 53

[本文引用: 2]

Lakshmikantham V , Bainov D D , Simeonov P S . Theory of Impulsive Differential Equations. New Jersey: World Scientific Publishing Co, 1989

[本文引用: 1]

Du Z J , Feng Z S .

Periodic solutions of a neutral impulsive predator-prey model with Beddington-DeAngelis functional response with delays

J Comput Appl Math, 2014, 258: 87- 98

DOI:10.1016/j.cam.2013.09.008      [本文引用: 2]

Xia Y H , Han M A .

Multiple periodic solutions of a ratio-dependent predator-prey model

Chaos Sol Fra, 2009, 39: 1100- 1108

DOI:10.1016/j.chaos.2007.04.028      [本文引用: 1]

Wang Q , Dai B X , Chen Y M .

Multiple periodic solutions of an impulsive predator-prey model with Holling-type IV functional response

Math Comput Modelling, 2009, 49: 1829- 1836

DOI:10.1016/j.mcm.2008.09.008      [本文引用: 1]

葛渭高. 非线性常微分方程边值问题. 北京: 科学出版社, 2007

[本文引用: 1]

Ge W G . Boundary Value Problems for Nonlinear Ordinary Differential Equations. Beijing: Science Press, 2007

[本文引用: 1]

Gaines R E , Mawhin J L . Coincidence Degree and Nonlinear Differential Equations. Berlin: Springer-Verlag, 1977

[本文引用: 2]

/