Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

数学物理学报, 2020, 40(6): 1634-1645 doi:

论文

含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性

李琴,1, 杨作东,2

Multiple Positive Solutions for a Quasilinear Elliptic System Involving the Caffarelli-Kohn-Nirenberg Inequality and Nonlinear Boundary Conditions

Li Qin,1, Yang Zuodong,2

通讯作者: 杨作东, E-mail: zdyang_jin@263.net

收稿日期: 2019-08-12  

基金资助: 安徽省自然科学基金青年项目.  1808085QA15
安徽财经大学科学研究一般项目.  ACKYC19050
国家自然科学基金.  11571093

Received: 2019-08-12  

Fund supported: the Anhui Natural Science Foundation.  1808085QA15
the Scientific Research Project of Anhui University of Finance and Economics.  ACKYC19050
the NSFC.  11571093

作者简介 About authors

李琴,E-mail:liqin_math@163.com , E-mail:liqin_math@163.com

Abstract

This paper is concerned with a quasilinear elliptic system, which involves the Caffarelli-Kohn-Nirenberg inequality and nonlinear boundary conditions. By means of variational methods, the existence of at least two positive solutions is obtained.

Keywords: Quasilinear elliptic system ; Caffarelli-Kohn-Nirenberg inequality ; Nonlinear boundary conditions ; Nehari manifold

PDF (333KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李琴, 杨作东. 含Caffarelli-Kohn-Nirenberg不等式和非线性边界条件的拟线性椭圆型方程组的多解性. 数学物理学报[J], 2020, 40(6): 1634-1645 doi:

Li Qin, Yang Zuodong. Multiple Positive Solutions for a Quasilinear Elliptic System Involving the Caffarelli-Kohn-Nirenberg Inequality and Nonlinear Boundary Conditions. Acta Mathematica Scientia[J], 2020, 40(6): 1634-1645 doi:

1 引言

本文将研究如下拟线性椭圆型方程组

{div(|x|ap|u|p2u)μ|u|p2u|x|p(a+1)=2αα+β|u|α2u|v|β|x|t,xΩ,div(|x|ap|v|p2v)μ|v|p2v|x|p(a+1)=2βα+β|u|α|v|β2v|x|t,xΩ,|x|ap|u|p2un=λf(x)|u|q2u, |x|ap|v|p2vn=δg(x)|v|q2v,xΩ
(1.1)

正解的存在性与多解性, 其中ΩRN(N3)是有界光滑区域, 0Ω, 1<q<p<N, λ,δ>0,0μ<¯μ=(Nppa)p, 0a<Npp, ab<a+1, 0t<p,α>1, β>1满足p<α+β<p, p=NpNp(1+ab)为临界Hardy-Sobolev指数.

方程(1.1)与如下Caffarelli-Kohn-Nirenberg不等式[1]有关:存在正常数Ka,b满足

(RN|u|p|x|bpdx)ppKa,bRN|x|ap|u|pdx, uC0(RN).
(1.2)

关于最佳常数与极值函数, 参见文献[7, 17].在(1.2)式中若取b=a+1, 则p=p, 且如下加权Hardy不等式[3, 16]成立

RN|u|p|x|p(a+1)dx1¯μRN|x|ap|u|pdx, uC0(RN),
(1.3)

其中¯μ=(Nppa)p为最佳Hardy常数.

μ[0,¯μ)时, 令E=W1,pa(Ω)表示C0(Ω)的闭包, 且赋有范数

u=(Ω(|x|ap|u|pμ|u|p|x|p(a+1))dx)1p.

由(1.3)式可知该范数与(Ω|x|ap|u|pdx)1p等价.

现在, 引入空间X=E×E, 且赋有范数

(u,v)=(up+vp)1p.

对于μ[0,¯μ), 定义最佳常数

S:=inf

则有

\begin{align} \int_{\Omega}\frac{|u|^{p^{*}}}{|x|^{bp^{*}}}{\rm d}x\leq S^{-\frac{p^{*}}{p}}\|u\|^{p^{*}}. \end{align}
(1.4)

注意到很多学者研究了含Hardy或Hardy-Sobolev不等式的椭圆型问题解的性质, 特别是单个方程的情形, 参见文献[1, 5-6, 8-9, 12, 20-21].

近年来, 带权椭圆型方程组解的存在性与多重性得到了广泛的研究. Lü和Xiao在文献[10]中研究了如下带权半线性椭圆型方程组

\begin{align} \left\{ \begin{array}{ll} { } -\mbox{div}(|x|^{-2a}\nabla u)-\mu \frac{u}{|x|^{2(1+a)}} = \frac{2\alpha}{\alpha+\beta}|x|^{-bp^{*}}|u|^{\alpha-2}u|v|^{\beta}+\lambda |u|^{q-2}u, &x\in \Omega, \\ { } -\mbox{div}(|x|^{-2a}\nabla v)-\mu \frac{v}{|x|^{2(1+a)}} = \frac{2\beta}{\alpha+\beta}|x|^{-bp^{*}}|u|^{\alpha}|v|^{\beta-2}v+\delta |v|^{q-2}v, &x\in \Omega, \\ u = v = 0, &x\in \partial\Omega, \end{array}\right. \end{align}
(1.5)

其中 \alpha+\beta = p^{*} = \frac{2N}{N-2(1+a-b)} .利用变分法, 作者证明了当参数 (\lambda, \delta) 属于 {{\Bbb R}} ^{2} 中某个特定的子集时, 问题(1.5)至少存在两个非平凡解.

接着, 许多学者开始研究带权的拟线性椭圆型方程组.当 a = 0, \mu\neq 0 时, Nyamoradi和Shekarbigi[13]考虑了如下问题

\begin{align} \left\{ \begin{array}{ll} { }-\mbox{div}(|\nabla u|^{p-2}\nabla u)-\mu \frac{|u|^{p-2}u}{|x|^{p}} = \frac{p\alpha}{\alpha+\beta}\frac{|u|^{\alpha-2}u|v|^{\beta}}{|x|^{t}}+\lambda \frac{|u|^{q-2}u}{|x|^{s}}, &x\in \Omega, \\ { } -\mbox{div}(|\nabla v|^{p-2}\nabla v)-\mu \frac{|v|^{p-2}v}{|x|^{p}} = \frac{p\beta}{\alpha+\beta}\frac{|u|^{\alpha}|v|^{\beta-2}v}{|x|^{t}}+\theta \frac{|v|^{q-2}v}{|x|^{s}}, &x\in \Omega, \\ u = v = 0, &x\in \partial\Omega, \end{array}\right. \end{align}
(1.6)

其中 \alpha+\beta = p^{*}(t) = \frac{p(N-t)}{N-p} .利用变分法, 作者证明了问题(1.6)至少存在两个正解.并且, Nyamoradi在文献[14]中利用同样的方法把文献[13]中的结果推广到了更一般的情形.更多类似结果参见文献[11-12].对于 \mu = 0 , a\neq0 的情形, 参见文献[15, 19].

然而, 据我们所知, 对于带权的拟线性椭圆型方程组, 很少有文献研究 \mu\neq0 , a\neq0 \alpha+\beta<p^{*} 的情形.并且, 现有的文献大部分都是在Dirichlet边界条件下研究此类型方程解的性质.因此, 本文深入研究问题(1.1)是非常必要且有意义的.

利用类似Pohozaev在文献[4]中提出的纤维方法, 我们证明了问题(1.1)至少存在两个正解.特别地, 本文无需在Nehari中提取Palais-Smale序列.

假设 f(x) g(x) 满足如下条件:

(A) f , g\in C(\partial\Omega)\cap L^{\infty}(\partial\Omega) .

本文的主要结果如下.

定理1.1   假设条件(A)成立, 且 1<q<p<\alpha+\beta<p^{*} = \frac{Np}{N-p(1+a-b)} .则存在 \Lambda_{1}>0 使得当 \lambda+\delta\in (0, \frac{q}{p}\Lambda_{1}) 时, 问题(1.1)至少存在两个正解.

本文结构安排如下:在第二部分我们给出Nehari流形的一些性质, 同时建立问题(1.1)的变分框架.在第三部分, 我们考虑多解性结果并给出定理1.1的证明.最后, 给出临界情形下该类型方程解的存在性结果.

2 预备知识

显然, 问题(1.1)具有变分结构.令 I_{\lambda, \delta}:X\rightarrow {{\Bbb R}} 表示问题(1.1)对应的能量泛函, 定义如下

I_{\lambda, \delta}(u, v) = \frac{1}{p}\|(u, v)\|^{p}-\frac{2}{\alpha+\beta}\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x-\frac{1}{q}K_{\lambda, \delta}(u, v),

其中 K_{\lambda, \delta}(u, v) = \int_{\partial\Omega}(\lambda f(x)|u|^{q}+\delta g(x)|v|^{q}){\rm d}\sigma.

由条件(A)可知, 泛函 I_{\lambda, \delta}\in C^{1}(X, {{\Bbb R}} ) 且对任意 (\varphi_{1}, \varphi_{2})\in X,

\begin{eqnarray*} \langle I'_{\lambda, \delta}(u, v), (\varphi_{1}, \varphi_{2})\rangle& = & \int_{\Omega}\bigg(|x|^{-ap}|\nabla u|^{p-2}\nabla u\nabla \varphi_{1}-\mu\frac{|u|^{p-2}u\varphi_{1}}{|x|^{p(a+1)}}\bigg){\rm d}x\\ &&+\int_{\Omega}\bigg(|x|^{-ap}|\nabla v|^{p-2}\nabla v\nabla \varphi_{2}-\mu\frac{|v|^{p-2}v\varphi_{2}}{|x|^{p(a+1)}}\bigg){\rm d}x\\ &&-\frac{2\alpha}{\alpha+\beta}\int_{\Omega}\frac{|u|^{\alpha-2}u|v|^{\beta}\varphi_{1}}{|x|^{t}}{\rm d}x- \frac{2\beta}{\alpha+\beta}\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta-2}v\varphi_{2}}{|x|^{t}}{\rm d}x\\ &&-\int_{\partial\Omega}(\lambda f(x)|u|^{q-2}u\varphi_{1}+\delta g(x)|v|^{q-2}v\varphi_{2}){\rm d}\sigma. \end{eqnarray*}

易知, 泛函 I_{\lambda, \delta} X 中的临界点即为问题(1.1)的弱解.由于 I_{\lambda, \delta} X 中不是下有界的, 我们考虑Nehari流形

{\cal N}_{\lambda, \delta} = \{(u, v)\in X\backslash \{(0, 0)\}|\langle I'_{\lambda, \delta}(u, v), (u, v)\rangle = 0\}.

于是, (u, v)\in{\cal N}_{\lambda, \delta} 当且仅当

\|(u, v)\|^{p}-2\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x-K_{\lambda, \delta}(u, v) = 0.

注意到Nehari流形 {\cal N}_{\lambda, \delta} 包含问题(1.1)全部的非平凡解.

显然, 若 (u, v)\in {\cal N}_{\lambda, \delta} , 则有

\begin{eqnarray*} I_{\lambda, \delta}(u, v)& = & \Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big)K_{\lambda, \delta}(u, v)\\ & = & \Big(\frac{1}{p}-\frac{1}{q}\Big)\|(u, v)\|^{p}+2\Big(\frac{1}{q}-\frac{1}{\alpha+\beta}\Big) \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x. \end{eqnarray*}

s>0 , 定义纤维映射

\phi_{u, v}(s) = I_{\lambda, \delta}(su, sv) = \frac{s^{p}}{p}\|(u, v)\|^{p}-\frac{2s^{\alpha+\beta}}{\alpha+\beta} \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x-\frac{s^{q}}{q}K_{\lambda, \delta}(u, v),

则有

\begin{eqnarray*} \phi'_{u, v}(s)& = &s^{p-1}\|(u, v)\|^{p}-2s^{\alpha+\beta-1}\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x-s^{q-1}K_{\lambda, \delta}(u, v)\\ & = &s^{q-1}\bigg[s^{p-q}\|(u, v)\|^{p}-2s^{\alpha+\beta-q} \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x-K_{\lambda, \delta}(u, v)\bigg]\\ & = & s^{\alpha+\beta-1}\bigg[s^{p-(\alpha+\beta)}\|(u, v)\|^{p}-s^{q-(\alpha+\beta)}K_{\lambda, \delta}(u, v)-2\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x\bigg] \end{eqnarray*}

\phi''_{u, v}(s) = (p-1)s^{p-2}\|(u, v)\|^{p}-2(\alpha+\beta-1)s^{\alpha+\beta-2}\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x- (q-1)s^{q-2}K_{\lambda, \delta}(u, v).

易见 (u, v)\in {\cal N}_{\lambda, \delta} 当且仅当 \phi'_{u, v}(1) = 0 .更一般地, (su, sv)\in {\cal N}_{\lambda, \delta} 当且仅当 \phi'_{u, v}(s) = 0 , 即 {\cal N}_{\lambda, \delta} 中的元素相应于纤维映射的稳定点.于是, 对任意 (u, v)\in {\cal N}_{\lambda, \delta} , 有

\begin{eqnarray} \phi''_{u, v}(1)& = &(p-1)\|(u, v)\|^{p}-2(\alpha+\beta-1)\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x- (q-1)K_{\lambda, \delta}(u, v)\\ & = &[p-(\alpha+\beta)]\|(u, v)\|^{p}+(\alpha+\beta-q)K_{\lambda, \delta}(u, v) \end{eqnarray}
(2.1)

\begin{eqnarray} & = &(p-q)\|(u, v)\|^{p}-2(\alpha+\beta-q)\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x. \end{eqnarray}
(2.2)

因此, 根据局部极小值, 局部极大值和拐点的定义, 我们可以把Nehari流形 {\cal N}_{\lambda, \delta} 分为三部分, 即

{\cal N}_{\lambda, \delta}^{+} = \{(u, v)\in {\cal N}_{\lambda, \delta}|\;\ \phi''_{u, v}(1)>0 \},

{\cal N}_{\lambda, \delta}^{-} = \{(u, v)\in {\cal N}_{\lambda, \delta}|\;\ \phi''_{u, v}(1)<0 \},

{\cal N}_{\lambda, \delta}^{0} = \{(u, v)\in {\cal N}_{\lambda, \delta}|\;\ \phi''_{u, v}(1) = 0 \}.

下面, 我们给出几个重要的引理.

引理2.1[4, 引理2.10]   若 (u_{0}, v_{0})\in {\cal N}_{\lambda, \delta} 满足 {I_{\lambda , \delta }}({u_0}, {v_0}) = \mathop {\min }\limits_{(u, v) \in {N_{\lambda , \delta }}} {I_{\lambda , \delta }}(u, v) (u_{0}, v_{0})\not\in {\cal N}^{0}_{\lambda, \delta} , 则 (u_{0}, v_{0}) 是问题(1.1)的一个非平凡解.

引理2.2   泛函 I_{\lambda, \delta} {\cal N}_{\lambda, \delta} 上凸且下有界.

  由迹嵌入 W_{a}^{1, p}(\Omega)\hookrightarrow L^{q}(\partial \Omega) 的紧性[18]可得

\begin{eqnarray} |K_{\lambda, \delta}(u, v)|&\leq&\lambda \|f\|_{\infty}\int_{\partial\Omega}|u|^{q}{\rm d}\sigma+\delta\|g\|_{\infty}\int_{\partial\Omega}|v|^{q}{\rm d}\sigma\\ &\leq& \lambda \|f\|_{\infty}S_{0}\|u\|^{q}+\delta \|g\|_{\infty}S_{0}\|v\|^{q}\\ &\leq& M_{0}(\lambda+\delta)S_{0}\|(u, v)\|^{q}, \end{eqnarray}
(2.3)

其中 S_{0}>0 M_{0} = \max\{\|f\|_{\infty}, \|g\|_{\infty}\} .

于是, 对任意 (u, v)\in {\cal N}_{\lambda, \delta} , 有

\begin{eqnarray*} I_{\lambda, \delta}(u, v)& = &\Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big)K_{\lambda, \delta}(u, v)\\ &\geq&\Big (\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big)M_{0}(\lambda+\delta)S_{0}\|(u, v)\|^{q}. \end{eqnarray*}

结合 1<q<p<\alpha+\beta, 易得 I_{\lambda, \delta} {\cal N}_{\lambda, \delta} 上凸且下有界.

引理2.3   存在 \Lambda_{1}>0 使得若 \lambda+\delta\in(0, \Lambda_{1}) , {\cal N}^{0}_{\lambda, \delta} = \emptyset .

  令

\Lambda_{1} = \frac{\alpha+\beta-p}{(\alpha+\beta-q)M_{0}S_{0}} \bigg[\frac{(p-q)S^{\frac{\alpha+\beta}{p}}}{2(\alpha+\beta-q)C_{R}}\bigg]^{\frac{p-q}{\alpha+\beta-p}},

其中 C_{R}>0 由下文给出.

采用反证法.假设结论不成立, 即存在 \lambda+\delta\in(0, \Lambda_{1}) 使得 {\cal N}^{0}_{\lambda, \delta}\neq\emptyset .则对任意 (u, v)\in{\cal N}^{0}_{\lambda, \delta} , 利用(2.1)和(2.3)式, 有

(\alpha+\beta-p)\|(u, v)\|^{p} = (\alpha+\beta-q)K_{\lambda, \delta}(u, v)\leq(\alpha+\beta-q)M_{0}(\lambda+\delta)S_{0}\|(u, v)\|^{q},

于是

\|(u, v)\|\leq \bigg[\frac{(\alpha+\beta-q)M_{0}(\lambda+\delta)S_{0}}{\alpha+\beta-p}\bigg]^{\frac{1}{p-q}}.

另一方面, 令 R>0 使得 \Omega\subset B_{R}(0) , 其中 B_{R}(0) = \{x\in{{\Bbb R}} ^{N}|\; |x|<R\} .

由(1.4)式, Young不等式和H \ddot{\rm o} lder不等式, 可得

\begin{eqnarray} \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x&\leq& \frac{\alpha}{\alpha+\beta}\int_{\Omega}\frac{|u|^{\alpha+\beta}}{|x|^{t}}{\rm d}x+\frac{\beta}{\alpha+\beta}\int_{\Omega}\frac{|v|^{\alpha+\beta}}{|x|^{t}}{\rm d}x\\ &\leq& \frac{\alpha}{\alpha+\beta} \bigg(\int_{\Omega}|x|^{-bp^{*}}|u|^{p^{*}}{\rm d}x\bigg)^{\frac{\alpha+\beta}{p^{*}}} \bigg(\int_{\Omega}|x|^{\frac{p^{*}[(\alpha+\beta)b-t]}{p^{*}-(\alpha+\beta)}}{\rm d}x\bigg)^{\frac{p^{*}-(\alpha+\beta)} {p^{*}}}\\ &&+\frac{\beta}{\alpha+\beta} \bigg(\int_{\Omega}|x|^{-bp^{*}}|v|^{p^{*}}{\rm d}x\bigg)^{\frac{\alpha+\beta}{p^{*}}} \bigg(\int_{\Omega}|x|^{\frac{p^{*}[(\alpha+\beta)b-t]}{p^{*}-(\alpha+\beta)}}{\rm d}x\bigg)^{\frac{p^{*}-(\alpha+\beta)} {p^{*}}} \\ &\leq& C_{R}\bigg[\frac{\alpha}{\alpha+\beta}S^{-\frac{\alpha+\beta}{p}}\|u\|^{\alpha+\beta}+\frac{\beta}{\alpha+\beta}S^{-\frac{\alpha+\beta}{p}}\|v\|^{\alpha+\beta}\bigg]\\ &\leq& C_{R}S^{-\frac{\alpha+\beta}{p}}\|(u, v)\|^{\alpha+\beta}, \end{eqnarray}
(2.4)

其中 C_{R}>0.

于是, 对任意 (u, v)\in {\cal N}^{0}_{\lambda, \delta} , 由(2.2)和(2.4)式知

(p-q)\|(u, v)\|^{p} = 2(\alpha+\beta-q)\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x\leq 2(\alpha+\beta-q)C_{R}S^{-\frac{\alpha+\beta}{p}}\|(u, v)\|^{\alpha+\beta},

从而, 有

\|(u, v)\|\geq\bigg [\frac{(p-q)S^{\frac{\alpha+\beta}{p}}}{2(\alpha+\beta-q)C_{R}}\bigg]^{\frac{1}{\alpha+\beta-p}}.

因此, 得到

\lambda+\delta\geq \frac{\alpha+\beta-p}{(\alpha+\beta-q)M_{0}S_{0}} \bigg[\frac{(p-q)S^{\frac{\alpha+\beta}{p}}}{2(\alpha+\beta-q)C_{R}}\bigg]^{\frac{p-q}{\alpha+\beta-p}} = \Lambda_{1}.

矛盾.故存在常数 \Lambda_{1}>0 使得对任意 \lambda+\delta\in (0, \Lambda_{1}) , {\cal N}^{0}_{\lambda, \delta} = \emptyset .证毕.

由引理2.2和引理2.3, 当 \lambda+\delta\in (0, \Lambda_{1}) 时, 有 {\cal N}_{\lambda, \delta} = {\cal N}^{+}_{\lambda, \delta}\cup {\cal N}^{-}_{\lambda, \delta} , 故可定义

{c_{\lambda , \delta }} = \mathop {\inf }\limits_{(u, v) \in {N_{\lambda , \delta }}} {I_{\lambda , \delta }}(u, v), \;\;\;c_{\lambda , \delta }^ + = \mathop {\inf }\limits_{(u, v) \in N_{\lambda , \delta }^ + } {I_{\lambda , \delta }}(u, v), \;\;\;c_{\lambda , \delta }^ - = \mathop {\inf }\limits_{(u, v) \in N_{\lambda , \delta }^ - } {I_{\lambda , \delta }}(u, v).

于是, 得到如下结果.

引理2.4   若 \lambda+\delta\in(0, \frac{q}{p}\Lambda_{1}) , 有

(ⅰ) c_{\lambda, \delta} = c^{+}_{\lambda, \delta}<0 ;

(ⅱ)存在常数 d_{0}>0 , c^{-}_{\lambda, \delta}\geq d_{0} .

  (ⅰ)对任意 (u, v)\in{\cal N}^{+}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} , 有

(\alpha+\beta-q)K_{\lambda, \delta}(u, v)> (\alpha+\beta-p)\|(u, v)\|^{p}.

于是, 得到

\begin{eqnarray*} I_{\lambda, \delta}(u, v)& = &\Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+ \Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big)K_{\lambda, \delta}(u, v)\\ &<& \Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}-\frac{\alpha+\beta-p}{q(\alpha+\beta)}\|(u, v)\|^{p}\\ & = & \frac{\alpha+\beta-p}{\alpha+\beta}\Big(\frac{1}{p}-\frac{1}{q}\Big)\|(u, v)\|^{p}<0. \end{eqnarray*}

因此, {c_{\lambda ,\delta }} = c_{\lambda ,\delta }^ + = \mathop {\inf }\limits_{(u,v) \in N_{\lambda ,\delta }^ + } {I_{\lambda ,\delta }}(u,v) < 0 .

(ⅱ)对任意 (u, v)\in{\cal N}^{-}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} , 由(2.2)式, (2.4)式和 {\cal N}^{-}_{\lambda, \delta} 的定义, 可得

(p-q)\|(u, v)\|^{p}<2(\alpha+\beta-q)\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}} {\rm d}x\leq 2(\alpha+\beta-q) C_{R}S^{-\frac{\alpha+\beta}{p}}\|(u, v)\|^{\alpha+\beta},

这就意味着

\begin{align} \|(u, v)\|>\bigg[\frac{(p-q)S^{\frac{\alpha+\beta}{p}}}{2(\alpha+\beta-q)C_{R}}\bigg]^{\frac{1}{\alpha+\beta-p}} . \end{align}
(2.5)

由(2.3)和(2.5)式, 得到

\begin{eqnarray*} I_{\lambda, \delta}(u, v)& = & \Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big)K_{\lambda, \delta}(u, v)\\ &\geq&\Big (\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big) (\lambda+\delta)M_{0}S_{0}\|(u, v)\|^{q}\\ & = & \|(u, v)\|^{q} \bigg[\Big(\frac{1}{p}-\frac{1}{\alpha+\beta}\Big)\|(u, v)\|^{p-q}+\Big(\frac{1}{\alpha+\beta}-\frac{1}{q}\Big) (\lambda+\delta)M_{0}S_{0}\bigg]. \end{eqnarray*}

0<\lambda+\delta<\frac{q(\alpha+\beta-p)}{p(\alpha+\beta-q)M_{0}S_{0}} \bigg[\frac{(p-q)S^{\frac{\alpha+\beta}{p}}}{2(\alpha+\beta-q)C_{R}}\bigg]^{\frac{p-q}{\alpha+\beta-p}} = \frac{q}{p}\Lambda_{1},

则存在常数 d_{0}>0 使得对任意 (u, v)\in {\cal N}^{-}_{\lambda, \delta} , I_{\lambda, \delta}(u, v)\geq d_{0}>0 .证毕.

为更好地理解Nehari流形和纤维映射, 我们考虑函数 \eta_{u, v}: {{\Bbb R}} ^{+}\rightarrow {{\Bbb R}} 定义如下

\eta_{u, v}(s) = s^{p-(\alpha+\beta)}\|(u, v)\|^{p}-s^{q-(\alpha+\beta)}K_{\lambda, \delta}(u, v),

则有

\phi'_{u, v}(s) = s^{\alpha+\beta-1}\bigg[\eta_{u, v}(s)-2\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x\bigg].

K_{\lambda, \delta}(u, v)>0 , 有 \mathop {\lim }\limits_{s \to {0^ + }} {\eta _{u, v}}(s) = - \infty , \mathop {\lim }\limits_{s \to + \infty } {\eta _{u, v}}(s) = 0 , 且 \eta_{u, v}(s)

s_{0} = s_{0}(u, v) = \bigg[\frac{(\alpha+\beta-q)K_{\lambda, \delta}(u, v)} {(\alpha+\beta-p)\|(u, v)\|^{p}}\bigg]^{\frac{1}{p-q}}>0

处达到最大值.

并且, 通过直接的计算, 可得

\eta_{u, v}(s_{0}) = \frac{p-q}{\alpha+\beta-q}\bigg[\frac{(\alpha+\beta-q)K_{\lambda, \delta}(u, v)} {(\alpha+\beta-p)\|(u, v)\|^{p}}\bigg]^{\frac{p-(\alpha+\beta)}{p-q}}\|(u, v)\|^{p}>0.

从而得到如下结果.

引理2.5   当 0<\lambda+\delta<\Lambda_{1} 时, 对任意 (u, v)\in X K_{\lambda, \delta}(u, v)>0 , 则若 \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x>0, 存在唯一的 0<s_{1}^{+}<s_{0}<s_{1}^{-} 使得 (s_{1}^{+}u, s_{1}^{+}v)\in {\cal N}^{+}_{\lambda, \delta} , (s_{1}^{-}u, s_{1}^{-}v)\in {\cal N}^{-}_{\lambda, \delta}, \phi_{u, v} (0, s_{1}^{+}) 上单调递减, 在 (s_{1}^{+}, s_{1}^{-}) 上单调递增, 在 (s_{1}^{-}, +\infty) 上单调递减.并且

{I_{\lambda , \delta }}(s_1^ + u, s_1^ + v) = \mathop {\inf }\limits_{0 < s \le {s_0}} {I_{\lambda , \delta }}(su, sv), \;\;\;{I_{\lambda , \delta }}(s_1^ - u, s_1^ - v) = \mathop {\sup }\limits_{s \ge 0} {I_{\lambda , \delta }}(su, sv).

  证明与文献[4]中的引理2.5类似, 故略去细节.

考虑函数 \psi_{u, v}: {{\Bbb R}} ^{+}\rightarrow {{\Bbb R}} 定义如下

\psi_{u, v}(s) = s^{p-q}\|(u, v)\|^{p}-2s^{\alpha+\beta-q}\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x,

则有

\phi'_{u, v}(s) = s^{q-1}[\psi_{u, v}(s)-K_{\lambda, \delta}(u, v)].

显然, 若 \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x>0, \mathop {\lim }\limits_{s \to {0^ + }} {\psi _{u, v}}(s) = 0 , \mathop {\lim }\limits_{s \to + \infty } {\psi _{u, v}}(s) = - \infty , 且 \psi_{u, v}(s)

\overline{s}_{0} = \overline{s}_{0}(u, v) = \bigg[\frac{(p-q)\|(u, v)\|^{p}}{2(\alpha+\beta-q) \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x}\bigg]^{\frac{1} {\alpha+\beta-p}}>0

处达到最大值.并且, 有

\psi_{u, v}(\overline{s}_{0}) = \frac{\alpha+\beta-p}{\alpha+\beta-q} \bigg[\frac{(p-q)\|(u, v)\|^{p}}{2(\alpha+\beta-q)\int_{\Omega}\frac{|u|^{\alpha} |v|^{\beta}}{|x|^{t}}{\rm d}x}\bigg]^{\frac{p-q}{\alpha+\beta-p}}\|(u, v)\|^{p}>0.

于是, 得到如下结果.

引理2.6   当 0<\lambda+\delta<\Lambda_{1} 时, 对任意 (u, v)\in X \int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x>0 , 有

(ⅰ)若 K_{\lambda, \delta}(u, v)\leq0 , 则存在唯一的 s_{2}^{-}>\overline{s}_{0} 使得 (s_{2}^{-}u, s_{2}^{-}v)\in {\cal N}^{-}_{\lambda, \delta} , \phi_{u, v} (0, s_{2}^{-}) 上单调递增, 在 (s_{2}^{-}, +\infty) 上单调递减.并且

{I_{\lambda , \delta }}(s_2^ - u, s_2^ - v) = \mathop {\sup }\limits_{s \ge 0} {I_{\lambda , \delta }}(su, sv);

(ⅱ)若 K_{\lambda, \delta}(u, v)>0 , 则存在唯一的 0<s_{2}^{+}<\overline{s}_{0}<s_{2}^{-} 使得 (s_{2}^{+}u, s_{2}^{+}v)\in {\cal N}^{+}_{\lambda, \delta} , (s_{2}^{-}u, s_{2}^{-}v)\in {\cal N}^{-}_{\lambda, \delta} , \phi_{u, v} (0, s_{2}^{+}) 上单调递减, 在 (s_{2}^{+}, s_{2}^{-}) 上单调递增, 在 (s_{2}^{-}, +\infty) 上单调递减.并且

{I_{\lambda , \delta }}(s_2^ + u, s_2^ + v) = \mathop {\inf }\limits_{0 < s \le {{\bar s}_0}} {I_{\lambda , \delta }}(su, sv), \;\;{I_{\lambda , \delta }}(s_2^ - u, s_2^ - v) = \mathop {\sup }\limits_{s \ge 0} {I_{\lambda , \delta }}(su, sv).

3 定理1.1的证明

首先, 我们证明 {\cal N}^{+}_{\lambda, \delta} 上正解的存在性.

引理3.1   当 0<\lambda+\delta<\Lambda_{1} 时, I_{\lambda, \delta} 存在极小元 (u^{1}, v^{1})\in {\cal N}^{+}_{\lambda, \delta} 且满足

(ⅰ) I_{\lambda, \delta}(u^{1}, v^{1}) = c_{\lambda, \delta}^{+} ;

(ⅱ) (u^{1}, v^{1}) 是问题(1.1)的一个正的弱解.

  由于 I_{\lambda, \delta} {\cal N}^{+}_{\lambda, \delta} 上下有界, 则存在极小化序列 \{(u_{n}, v_{n})\}\subset {\cal N}^{+}_{\lambda, \delta} 满足

\begin{align} \lim\limits_{n\rightarrow\infty}I_{\lambda, \delta}(u_{n}, v_{n}) = \inf\limits_{(u, v)\in {\cal N}^{+}_{\lambda, \delta}} I_{\lambda, \delta}(u, v) = c_{\lambda, \delta}^{+}<0. \end{align}
(3.1)

又由于 I_{\lambda, \delta} 是凸的, 易知 \{(u_{n}, v_{n})\} X 中有界.从而存在子序列(仍记为 \{(u_{n}, v_{n})\} ) (u^{1}, v^{1})\in X 使得当 n\rightarrow\infty 时, 有

(u_{n}, v_{n})\rightharpoonup (u^{1}, v^{1})\;\ \mbox{于} \;\ X,

这就意味着

u_{n}\rightharpoonup u^{1}, \;\ v_{n}\rightharpoonup v^{1}\;\ \mbox{于}\;\ W_{a}^{1, p}(\Omega),

u_{n}\rightarrow u^{1}, \;\ v_{n}\rightarrow v^{1}\;\ \mbox{于}\;\ L^{\tau}(\Omega, |x|^{-t}), \;\ 1\leq \tau<p^{*},

u_{n}\rightarrow u^{1}, \;\ v_{n}\rightarrow v^{1}\;\ \mbox{a.e.}\;\ \mbox{于}\;\ \Omega.

并且, 由(2.4)式和紧嵌入 W_{a}^{1, p}(\Omega)\hookrightarrow L^{q}(\partial\Omega) 可得

\begin{align} \int_{\Omega}\frac{|u_{n}|^{\alpha}|v_{n}|^{\beta}}{|x|^{t}}{\rm d}x\rightarrow \int_{\Omega}\frac{|u^{1}|^{\alpha}|v^{1}|^{\beta}}{|x|^{t}}{\rm d}x, \;\ \mbox{当}\;\ n\rightarrow\infty, \end{align}
(3.2)

\begin{align} K_{\lambda, \delta}(u_{n}, v_{n})\rightarrow K_{\lambda, \delta}(u^{1}, v^{1}), \;\ \mbox{当}\;\ n\rightarrow\infty. \end{align}
(3.3)

通过直接的计算, 对 (u_{n}, v_{n})\in {\cal N}^{+}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} , 有

K_{\lambda, \delta}(u_{n}, v_{n}) = \frac{q(\alpha+\beta-p)}{p(\alpha+\beta-q)} \|(u_{n}, v_{n})\|^{p}-\frac{q(\alpha+\beta)}{\alpha+\beta-q}I_{\lambda, \delta}(u_{n}, v_{n}).

由(3.1)和(3.3)式易知 K_{\lambda, \delta}(u^{1}, v^{1})>0 .

下面, 证明 (u_{n}, v_{n})\rightarrow (u^{1}, v^{1}) X .假设结论不成立, 则有

\begin{align} \|(u^{1}, v^{1})\|^{p}< \liminf\limits_{n\rightarrow\infty}\|(u_{n}, v_{n})\|^{p}. \end{align}
(3.4)

考虑函数

\eta_{u^{1}, v^{1}}(s) = s^{p-(\alpha+\beta)}\|(u^{1}, v^{1})\|^{p}-s^{q-(\alpha+\beta)}K_{\lambda, \delta}(u^{1}, v^{1}).

易证 \eta_{u^{1}, v^{1}}(s)

s_{0}(u^{1}, v^{1}) = \bigg[\frac{(\alpha+\beta-q)K_{\lambda, \delta}(u^{1}, v^{1})}{(\alpha+\beta-p)\|(u^{1}, v^{1})\|^{p}}\bigg]^{\frac{1}{p-q}}

处达到最大值.

于是, 由引理2.5知, 存在唯一的 s_{1}^{+}<s_{0}(u^{1}, v^{1}) 使得 (s_{1}^{+}u^{1}, s_{1}^{+}v^{1})\in {\cal N}^{+}_{\lambda, \delta} , 且

{I_{\lambda , \delta }}(s_1^ + {u^1}, s_1^ + {v^1}) = \mathop {\inf }\limits_{0 \le s \le {s_0}({u^1}, {v^1})} {I_{\lambda , \delta }}(s{u^1}, s{v^1}).

\zeta_{u, v}(s) = \eta_{u, v}(s)-2\int_{\Omega}\frac{|u|^{\alpha}|v|^{\beta}}{|x|^{t}}{\rm d}x.

于是, 有 \phi'_{u, v}(s) = s^{\alpha+\beta-1}\zeta_{u, v}(s).

由于 (s_{1}^{+}u^{1}, s_{1}^{+}v^{1})\in {\cal N}^{+}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} , 得到

\begin{align} \zeta_{u^{1}, v^{1}}(s_{1}^{+}) = (s_{1}^{+})^{-(\alpha+\beta-1)}\phi'_{u^{1}, v^{1}}(s_{1}^{+}) = 0. \end{align}
(3.5)

另一方面, 考虑函数

\begin{align} \zeta_{u_{n}, v_{n}}(s) = s^{p-(\alpha+\beta)}\|(u_{n}, v_{n})\|^{p}-s^{q-(\alpha+\beta)}K_{\lambda, \delta}(u_{n}, v_{n})- 2\int_{\Omega}\frac{|u_{n}|^{\alpha}|v_{n}|^{\beta}}{|x|^{t}}{\rm d}x. \end{align}
(3.6)

于是, 由(3.2)–(3.6)式知当 n 充分大时, 有

\begin{align} \zeta_{u_{n}, v_{n}}(s_{1}^{+})>\zeta_{u^{1}, v^{1}}(s_{1}^{+}) = 0. \end{align}
(3.7)

由于 (u_{n}, v_{n})\in {\cal N}^{+}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} , 则有 s_{0}(u_{n}, v_{n})>1 s_{0}(u^{1}, v^{1})>1 .同时, 易得 \zeta_{u_{n}, v_{n}}(1) = 0 \zeta_{u_{n}, v_{n}}(s) (0, s_{0}(u_{n}, v_{n})) 上单调递增, 这就意味着对任意 s\in (0, 1] n 充分大, \zeta_{u_{n}, v_{n}}(s)\leq0 .于是由(3.7)式知 1<s_{1}^{+}< s_{0}(u^{1}, v^{1}).

因此

{I_{\lambda , \delta }}(s_1^ + {u^1}, s_1^ + {v^1}) \le {I_{\lambda , \delta }}({u^1}, {v^1}) < \mathop {\lim }\limits_{n \to \infty } {I_{\lambda , \delta }}({u_n}, {v_n}) = c_{\lambda , \delta }^ + .

矛盾.于是

\mathop {\lim }\limits_{n \to \infty } {\left\| {\left( {{u_n}, {v_n}} \right)} \right\|^p} = {\left\| {\left( {{u^1}, {v^1}} \right)} \right\|^p}.

从而, 有

I_{\lambda, \delta}(u_{n}, v_{n})\rightarrow I_{\lambda, \delta}(u^{1}, v^{1}) = c_{\lambda, \delta}^{+}, \;\;\ \mbox{当}\;\ n\rightarrow\infty.

(\overline{u}_{n}, \overline{v}_{n}) = (u_{n}, v_{n})-(u^{1}, v^{1}) .利用Brezis-Lieb引理[2, 19], 得到

\|(\overline{u}_{n}, \overline{v}_{n})\|^{p} = \|(u_{n}, v_{n})\|^{p}-\|(u^{1}, v^{1})\|^{p}+o(1).

因此, (u_{n}, v_{n})\rightarrow (u^{1}, v^{1}) X .又由于 I_{\lambda, \delta}(u^{1}, v^{1}) = I_{\lambda, \delta}(|u^{1}|, |v^{1}|) (|u^{1}|, |v^{1}|)\in {\cal N}^{+}_{\lambda, \delta} , 结合引理2.1, 易得 (u^{1}, v^{1}) 是问题(1.1)的一个正解.证毕.

接下来, 我们证明 {\cal N}^{-}_{\lambda, \delta} 上正解的存在性.

引理3.2   当 0<\lambda+\delta<\frac{q}{p}\Lambda_{1} 时, I_{\lambda, \delta} 存在极小元 (u^{2}, v^{2})\in {\cal N}^{-}_{\lambda, \delta} 且满足

(ⅰ) I_{\lambda, \delta}(u^{2}, v^{2}) = c_{\lambda, \delta}^{-} ;

(ⅱ) (u^{2}, v^{2}) 是问题(1.1)的一个正的弱解.

  由 I_{\lambda, \delta} {\cal N}^{-}_{\lambda, \delta} 上的有界性可知, 存在极小化序列 \{(u_{n}, v_{n})\}\subset {\cal N}^{-}_{\lambda, \delta} 满足

\begin{align} \lim\limits_{n\rightarrow\infty}I_{\lambda, \delta}(u_{n}, v_{n}) = \inf\limits_{(u, v)\in {\cal N}^{-}_{\lambda, \delta}} I_{\lambda, \delta}(u, v) = c_{\lambda, \delta}^{-}. \end{align}
(3.8)

利用引理3.1类似的证明方法, 存在子序列(仍记为 \{(u_{n}, v_{n})\} ) (u^{2}, v^{2})\in X 使得当 n\rightarrow\infty 时, (u_{n}, v_{n})\rightharpoonup (u^{2}, v^{2}) .

显然, 当 (u^{2}, v^{2})\in {\cal N}^{-}_{\lambda, \delta}\subset {\cal N}_{\lambda, \delta} 时, 有

\int_{\Omega}\frac{|u_{n}|^{\alpha}|v_{n}|^{\beta}}{|x|^{t}}{\rm d}x = \frac{(p-q)(\alpha+\beta)}{2p(\alpha+\beta-q)}\|(u_{n}, v_{n})\|^{p}+ \frac{q(\alpha+\beta)}{2(\alpha+\beta-q)}I_{\lambda, \delta}(u_{n}, v_{n}).

利用引理2.4(ⅱ), 得到 \int_{\Omega} \frac{|u_{n}|^{\alpha}|v_{n}|^{\beta}}{|x|^{t}}{\rm d}x>0 , 从而有

\begin{align} \int_{\Omega}\frac{|u^{2}|^{\alpha}|v^{2}|^{\beta}}{|x|^{t}}{\rm d}x>0. \end{align}
(3.9)

现在, 我们证明 (u_{n}, v_{n})\rightarrow (u^{2}, v^{2}) X .采用反证法.假设结论不成立, 则有

\begin{align} \|(u^{2}, v^{2})\|^{p}< \liminf\limits_{n\rightarrow\infty}\|(u_{n}, v_{n})\|^{p}. \end{align}
(3.10)

利用(3.9)式和引理2.6, 存在唯一的 s_{2}^{-}>0 使得 (s_{2}^{-}u^{2}, s_{2}^{-}v^{2})\in {\cal N}^{-}_{\lambda, \delta} .另一方面, 由引理2.6知当 (u_{n}, v_{n})\in {\cal N}^{-}_{\lambda, \delta} 时, 存在 s_{2}^{-}>0 满足

{I_{\lambda , \delta }}(s_2^ - {u_n}, s_2^ - {v_n}) = \mathop {\sup }\limits_{s \ge 0} {I_{\lambda , \delta }}(s{u_n}, s{v_n}).

通过简单的变换可知对任意 s>0 , 有

\begin{align} I_{\lambda, \delta}(u_{n}, v_{n})\geq I_{\lambda, \delta}(s u_{n}, s v_{n}), \;\ \forall (u_{n}, v_{n})\in {\cal N}^{-}_{\lambda, \delta}. \end{align}
(3.11)

于是, 利用(3.8), (3.10)和(3.11)式, 得到

{I_{\lambda , \delta }}(s_2^ - {u^2}, s_2^ - {v^2}) < \mathop {\lim }\limits_{n \to \infty } {I_{\lambda , \delta }}(s_2^ - {u_n}, s_2^ - {v_n}) \le \mathop {\lim }\limits_{n \to \infty } {I_{\lambda , \delta }}({u_n}, {v_n}) = c_{\lambda , \delta }^ - .

矛盾.于是, 有

\mathop {\lim }\limits_{n \to \infty } {\left\| {\left( {{u_n}, {v_n}} \right)} \right\|^p} = {\left\| {\left( {{u^2}, {v^2}} \right)} \right\|^p}.

从而, 可得

I_{\lambda, \delta}(u_{n}, v_{n})\rightarrow I_{\lambda, \delta}(u^{2}, v^{2}) = c_{\lambda, \delta}^{-}, \;\ \mbox{当}\;\;\ n\rightarrow\infty.

利用引理3.1类似的证明方法, 易得 (u^{2}, v^{2}) 是问题(1.1)在 {\cal N}^{-}_{\lambda, \delta} 上的一个正的弱解.

现在, 我们给出定理1.1的证明.

定理1.1的证明   由于 {\cal N}^{+}_{\lambda, \delta}\cap {\cal N}^{-}_{\lambda, \delta} = \emptyset, 结合引理3.1和3.2, 易知当 \lambda+\delta\in(0, \frac{q}{p}\Lambda_{1}) 时, 问题(1.1)至少存在两个正解.

最后, 给出临界情形下, 问题(1.1)解的存在性结果.

注3.1   利用山路引理, 易知如下拟线性椭圆型方程组

\left\{ \begin{array}{ll} { } -\mbox{div}(|x|^{-ap}|\nabla u|^{p-2}\nabla u)-\mu \frac{|u|^{p-2}u}{|x|^{p(a+1)}} = \frac{2\alpha}{\alpha+\beta}\frac{|u|^{\alpha-2}u|v|^{\beta}}{|x|^{bp^{*}}}, &x\in \Omega, \\ { } -\mbox{div}(|x|^{-ap}|\nabla v|^{p-2}\nabla v)-\mu \frac{|v|^{p-2}v}{|x|^{p(a+1)}} = \frac{2\beta}{\alpha+\beta}\frac{|u|^{\alpha}|v|^{\beta-2}v}{|x|^{bp^{*}}}, &x\in \Omega, \\ { } |x|^{-ap}|\nabla u|^{p-2}\frac{\partial u}{\partial n} = \lambda f(x)|u|^{q-2}u, \;\ |x|^{-ap}|\nabla v|^{p-2}\frac{\partial v}{\partial n} = \delta g(x)|v|^{q-2}v, &x\in \partial\Omega \end{array}\right.

至少存在一个正解, 其中 1<p<q<p^{*} \alpha>1 , \beta>1 满足 \alpha+\beta = p^{*} .

参考文献

Abdellaoui B , Colorado E , Peral I .

Some critical quasilinear elliptic problems with mixed Dirichlet-Neumann boundary conditions:relation with Sobolev and Sobolev-Hardy optimal constants

J Math Anal Appl, 2007, 332: 1165- 1188

[本文引用: 2]

Brezis H , Lieb E .

A relation between pointwise convergence of functions and convergence of functions

Proc Amer Math Soc, 1983, 88: 486- 490

[本文引用: 1]

Caffarelli L , Kohn R , Nirenberg L .

First order interpolation inequalities with weights

Compos Math, 1984, 53: 259- 275

[本文引用: 1]

Drabek P , Pohozaev S .

Positive solutions for the p-Laplacian:Application of the fibering method

Proc Roy Soc Edinburgh Sect A, 1997, 127: 703- 726

[本文引用: 3]

Felli V , Schneider M .

Perturbation results of critical elliptic equations of Caffarelli-Kohn-Nirenberg type

J Differ Equ, 2003, 191: 121- 142

[本文引用: 1]

Huang X , Wu X , Tang C .

Multiple positive solutions for semilinear elliptic equations with critical weighted Hardy-Sobolev exponents

Nonlinear Anal, 2011, 74: 2602- 2611

[本文引用: 1]

Horiuchi T .

Best constant in weighted Sobolev inequality with weights being powers of distance from the origin

J Inequal Appl, 1997, 1: 275- 292

[本文引用: 1]

Kang D .

On elliptic problems with critical weighted Sobolev-Hardy exponents

Nonlinear Anal, 2007, 66: 1037- 1050

[本文引用: 1]

Benmansour S , Matallah A .

Multiple solutions for nonhomogeneous elliptic equations involving critical Caffarelli-Kohn-Nirenberg exponent

Mediterr J Math, 2016, 13: 4679- 4691

[本文引用: 1]

D , Xiao J .

Multiple solutions for weighted nonlinear elliptic system involving critical exponents

Math Comput Modelling, 2012, 55: 816- 827

[本文引用: 1]

Kang D , Kang Y .

Quasilinear elliptic systems involving critical Hardy-Sobolev and Sobolev exponents

Bull Malays Math Sci Soc, 2017, 40: 1- 17

[本文引用: 1]

Li G , Peng S .

Remarks on elliptic problems involving the Caffarelli-Kohn-Nirenberg inequalities

Proc Amer Math Soc, 2008, 136: 1221- 1228

[本文引用: 2]

Nyamoradi N , Shekarbigi M .

Existence of positive solutions for a quasilinear elliptic system involving critical Sobolev-Hardy exponents and concave-convex nonlinearities

Arab J Math, 2013, 2: 365- 379

[本文引用: 2]

Nyamoradi N. A variational approach to a singular elliptic system involving critical Sobolev-Hardy exponnets and concave-convex nonlinearities. Math Sci, 2013, 7, Article number: 11

[本文引用: 1]

Nyamoradi N , Hsu T .

Existence of multiple positive solutions for semilinear elliptic systems involving m critical Hardy-Sobolev exponents and m sign-changing weight function

Acta Math Sci, 2014, 34B (2): 483- 500

[本文引用: 1]

Secchi S , Smets D , Willem M .

Remarks on a Hardy-Sobolev inequality

C R Acad Sci Paris, 2003, 336: 811- 815

[本文引用: 1]

Talenti G .

Best constant in Sobolev inequality

Ann Mat Pur Appl, 1976, 110: 353- 372

[本文引用: 1]

Wang L .

Multiple solutions for a class of concave-convex quasilinear elliptic systems with nonlinear boundary condition

Appl Math, 2013, 4: 449- 455

[本文引用: 1]

Xiu Z , Chen C , Huang J .

Existence of multiple solutions for an elliptic system with sign-changing weight functions

J Math Anal Appl, 2012, 395: 531- 541

[本文引用: 2]

Kang D .

Positive solutions to the weighted critical quasilinear problems

Appl Math Comput, 2009, 213: 432- 439

[本文引用: 1]

Xiu Z , Chen C .

Existence of multiple solutions for singular elliptic problems with nonlinear boundary conditions

J Math Anal Appl, 2014, 410: 625- 641

[本文引用: 1]

Li Y , Gao W .

Existence of multiple solutions for singular quasilinear elliptic system with critical Sobolev-Hardy exponents and concave-convex terms

Acta Math Sci, 2013, 33B (1): 107- 121

/