数学物理学报, 2020, 40(5): 1305-1318 doi:

论文

形变Boussinesq型方程族及其守恒律和Darboux变换

何国亮,, 郑真真, 徐涛

A Deformed Boussinesq-Type Hierarchy, Conservation Laws and Darboux Transformation

He Guoliang,, Zheng Zhenzhen, Xu Tao

通讯作者: 何国亮, E-mail: glhemath@163.com

收稿日期: 2018-11-13  

基金资助: 国家自然科学基金.  11871232
河南省高等学校青年骨干教师培养计划基金

Received: 2018-11-13  

Fund supported: the NSFC.  11871232
the Training Plan of Young Key Teachers in Universities of Henan Province

摘要

该文借助于零曲率方程得到了一个与3×3矩阵谱问题相关的形变Boussinesq型非线性演化可积方程族.通过考虑两个线性谱问题,给出了方程族中前两个方程的无穷多守恒律.借助于Darboux变换得到了第一个形变Boussinesq型方程的一些显式解.

关键词: 形变Boussinesq型方程族 ; 守恒律 ; Darboux变换

Abstract

In this paper, we propose a deformed Boussinesq-type integrable hierarchy of nonlinear evolution equations associated with a 3×3 matrix spectral problem by using the zero-curvature equation. Based on two linear spectral problems, we obtain the infinite many conservation laws of the first two members in the hierarchy. Some explicit solutions to the first deformed Boussinesq-type equation are given by utilizing the Darboux transformation.

Keywords: Deformed Boussinesq-type hierarchy ; Conservation laws ; Darboux transformation

PDF (807KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

何国亮, 郑真真, 徐涛. 形变Boussinesq型方程族及其守恒律和Darboux变换. 数学物理学报[J], 2020, 40(5): 1305-1318 doi:

He Guoliang, Zheng Zhenzhen, Xu Tao. A Deformed Boussinesq-Type Hierarchy, Conservation Laws and Darboux Transformation. Acta Mathematica Scientia[J], 2020, 40(5): 1305-1318 doi:

1 引言

在非线性数学物理领域,特别是可积系统中,如何寻找具有Lax对的新的非线性演化方程,并研究这些可积方程的显式解,一直以来都是一项重要的研究课题.寻找显式解和守恒律为考察孤子方程的很多性质都提供了重要的途径.众所周知,有许多求解可积方程的显式解的有效方法,比如:反散射变换[1-2]、Hirota方法[3]、Backlund变换和Darboux变换[4-8]、代数几何方法[9-11],等等[12-16].在这些方法中, Darboux变换方法是非常有效的[17-21].

用来描述水波沿两个方向运动的Boussinesq方程出现在很多物理系统里,也有很多的变形方程[22-23].该文的目的就是提出一个与$ 3\times3 $矩阵谱问题相联系的形变Boussinesq型非线性演化微分方程族,方程族中前两个非平凡的方程为

$ \begin{equation} \begin{array}{lcl} u_{t} = 3u_{xx}-u_{x}-6v_{x}, \\ v_{t} = 2u_{xxx}-2uu_{x}-3v_{xx}-2u_{xx}+3v_{x}, \end{array} \end{equation} $

$ \begin{equation} \begin{array}{lcl} u_{t} = (18v_{xx}-9u_{xxx}+6u_{xx}+18uu_{x}+3u_{x}-36uv-6v-12u^2-4u)_x, \\ v_{t} = (9v_{xxx}-6u_{xxxx}+6u_{xxx}-6v_{xx}+18uu_{xx}+9u_{x}^2+2u_{xx}-18uv_{x}-3v_{x}\\ \quad\quad-12uu_{x}-2u_{x}-18v^2-4u^3-u^2)_x. \end{array} \end{equation} $

然后我们得到了这两个非平凡方程的无穷多守恒律.最后,通过考虑相应的$ 3\times 3 $矩阵谱问题之间的规范变换,得到了方程(1.1)的Darboux变换和一些显式解.

2 型方程族及无穷多守恒律

为了得到形变Boussinesq型方程族,我们首先引入一个如下的$ 3\times 3 $矩阵谱问题

$ \begin{equation} \psi_x = U\psi, \quad \psi = \left(\begin{array}{ccc}\psi_1\\ \psi_2\\ \psi_3\end{array}\right), \quad U = \left(\begin{array}{ccc}0&{\quad} u{\quad}&\lambda+v\\ 1&1&0\\ 0&1&0\end{array}\right), \end{equation} $

其中$ u, v $是两个位势, $ \lambda $是一个常值谱参数.我们先求解驻定的零曲率方程

$ \begin{equation} V_x-[U, V] = 0, \quad V = \left(\begin{array}{ccc}V_{11}&V_{12}&V_{13}\\ V_{21}&{\quad} V_{22}{\quad}&V_{23}\\ V_{31}&V_{32}&V_{33}\end{array}\right). \end{equation} $

该方程等价于

$ \begin{equation} \begin{array}{lll} &V_{11, x}+V_{12}-uV_{21}-(\lambda+v)V_{31} = 0, \\ &V_{12, x}+V_{12}+V_{13}+u(V_{11}- V_{22})-(\lambda+v)V_{32} = 0, \\ &V_{13, x}-uV_{23}+(\lambda+v)(V_{11}- V_{33}) = 0, \\ &V_{21, x}-V_{21}+V_{22}-V_{11} = 0, \\ &V_{22, x}+V_{23}-V_{12}+uV_{21} = 0, \\ &V_{23, x}-V_{13}-V_{23}+(\lambda+v)V_{21} = 0, \\ &V_{31, x}+V_{32}-V_{21} = 0, \\ &V_{32, x}+V_{33}-V_{22}+uV_{31}+V_{32} = 0, \\ &V_{33, x}-V_{23}+(\lambda+v)V_{31} = 0. \end{array} \end{equation} $

如果令$ (A, B) = \sum\limits_{j = 0}^{\infty}(A_j, B_j)\lambda^{-j} $,有

$ \begin{equation} \begin{array}{rl} V_{11} = &{ } \frac{1}{3}(3\partial-1)A-\frac{1}{3}(\partial^2+\partial-u)B, \\ V_{12} = &{ } \frac{1}{3}(\partial-3\partial^2+3u)A+\frac{1}{3}(\partial^3+\partial^2-\partial u+3v)B+\lambda B, \\ V_{13} = &{ } \frac{1}{3}(2\partial^2-3\partial^3+\partial+3v)A+\frac{1}{3}(2\partial^4-2\partial^2u-2\partial^2+2\partial u+3\partial v-3v)B\\ &+\lambda[A+(\partial-1)B], \\ V_{21} = &A, \quad V_{22} = { } \frac{2}{3}A-\frac{1}{3}(\partial^2+\partial-u)B, \\ V_{23} = &{ } \frac{1}{3}(2\partial^3+2\partial^2-2\partial u+3v)B-\frac{1}{3}(3\partial^2+\partial)A+\lambda B, \\ V_{31} = &{ } B, \quad V_{32} = A-\partial B, \quad V_{33} = \frac{1}{3}(2\partial^2+2\partial-2u)B-\frac{1}{3}(3\partial+1)A, \end{array} \end{equation} $

然后把(2.4)式代入(2.3)式可得

$ \begin{equation} K S_j = J S_{j+1}, \quad j\geq 0, \quad JS_0 = 0, \end{equation} $

其中$ S_j = (A_j, B_j)^T $,两个斜称算子分别为$ (\partial\partial^{-1} = \partial^{-1}\partial = 1) $

$ \begin{equation} K = \left(\begin{array}{ccc} { } -2\partial^3+\partial u+u\partial+\frac{2}{3}\partial & \begin{array}{c}{ } \partial^4 +\frac{2}{3}\partial^3-\partial^2 u -\frac{1}{3}\partial^2\\ { }+2\partial v+v\partial+\frac{1}{3}\partial u\end{array} \\ { } -\partial^4+\frac{2}{3}\partial^3+u\partial^2+\frac{1}{3}\partial^2+\partial v+2v\partial+\frac{1}{3}u\partial&K_{22} \end{array}\right), \end{equation} $

$ \begin{equation} J = \left(\begin{array}{ccc} 0&{\quad} -3\partial\\ -3\partial&{\quad} 2\partial\\ \end{array}\right), \end{equation} $

其中

为了方便地求解$ S_j $,我们定义两组Lenard递归方程

$ \begin{equation} \begin{array}{lcr} K s_j = J s_{j+1}, \quad j\geq 0, \quad s_j\mid_{(u, v) = 0} = 0, \quad j\geq 1, \\ K \hat{s}_j = J \hat{s}_{j+1}, \quad j\geq 0, \quad \hat{s}_j\mid_{(u, v) = 0} = 0, \quad j\geq1, \end{array} \end{equation} $

此处的初值为$ s_0 = (1, 0)^T $, $ \hat{s}_0 = (0, 1)^T $.从而,我们可以唯一的得到$ s_j $$ \hat{s}_j $,例如

$ \begin{equation} s_1 = \left(\begin{array}{ccc} { } -\frac{1}{9}(2u+3v)\\ { } -\frac{1}{3}u \end{array}\right), \quad \hat{s}_1 = \left(\begin{array}{ccc}{ } \frac{1}{27}(6u_{xx}-3u^2-2u-9v_{x}-3v)\\ { } \frac{1}{9}(3u_{x}-u-6v)\end{array}\right), \end{equation} $

$ \begin{equation} s_2 = \left(\begin{array}{ccc}s_2^{(1)}\\ s_2^{(2)} \end{array}\right), \quad\quad \hat{s}_2 = \left(\begin{array}{ccc}\hat{s}_2^{(1)}\\ \hat{s}_2^{(2)}\end{array}\right), \end{equation} $

其中

易见方程$ JS_0 = 0 $具有通解

$ \begin{equation} S_0 = \alpha_0s_0+\hat{\alpha}_0\hat{s}_0, \end{equation} $

从而函数$ S_j $可以表示为

$ \begin{equation} S_j = \alpha_0s_j+\hat{\alpha}_0\hat{s}_j, \end{equation} $

该函数满足递归方程(2.5),且$ \alpha_0 $$ \hat{\alpha}_0 $为任意常数.

假设$ \psi $满足谱问题(2.1)和辅谱问题

$ \begin{equation} \psi_{t_n} = {V}^{(n)}\psi, \quad {V}^{(n)} = \left(\begin{array}{ccc} V^{(n)}_{11}&{\quad} V^{(n)}_{12}{\quad} & V^{(n)}_{13}\\ V^{(n)}_{21}& V^{(n)}_{22}& V^{(n)}_{23}\\ V^{(n)}_{31}& V^{(n)}_{32}& V^{(n)}_{33}\end{array}\right), \end{equation} $

其中$ {V}_{ij}^{(n)} = V_{ij} (A^{(n)}, B^{(n)}), (A^{(n)}, B^{(n)}) = \sum\limits_{l = 0}^{n}(A_l, B_l)\lambda^{n-l} $.方程(2.1)和(2.13)的相容性条件为零曲率方程$ U_{t_n}-{V}_x^{(n)}+[U, {V}^{(n)}] = 0 $,该方程等价于如下的非线性演化方程族

$ \begin{equation} (u_{t_n}, v_{t_n})^T = K S_n = J S_{n+1}, \qquad n\geq0. \end{equation} $

方程族(2.14)中前两个非平凡的方程为

$ \begin{eqnarray} u_{t_0}& = &\alpha_0u_{x}-\frac{1}{3}\hat{\alpha}_0(3u_{xx}-u_{x}-6v_{x}), {}\\ v_{t_0}& = &\alpha_0v_{x}-\frac{1}{3}\hat{\alpha}_0(2u_{xxx}-2uu_{x}-3v_{xx}-2u_{xx}+3v_{x}), {}\\ u_{t_1}& = &\frac{1}{27}\alpha_0(18v_{xxx}-9u_{xxxx}+6u_{xxx}+18uu_{xx}+3u_{xx} -36uv_{x}-6v_{x}+18u_{x}^2{}\\ &&-36u_{x}v-24uu_{x}-4u_{x})+\frac{1}{81}\hat{\alpha}_0(9u_{xxxx}-9u_{xxxxx}-18v_{xxx}+45uu_{xxx} {}\\ &&+9u_{xxx}+45u_{x}u_{xx}+135u_{xx}v+27uu_{xx}+3u_{xx} +135u_{x}v_{x}-270vv_{x}{}\\ &&-54uv_{x}-6v_{x}+27u_{x}^2-54u_{x}v-45u^2u_{x}-36uu_{x}-4u_{x}), \end{eqnarray} $

$ \begin{eqnarray} v_{t_1}& = &\frac{1}{27}\alpha_0(9v_{xxxx}-6u_{xxxxx}+6u_{xxxx}-6v_{xxx} +18uu_{xxx}+2u_{xxx}-18uv_{xx}{}\\ &&-12uu_{xx}-3v_{xx}-2u_{xx}+36u_{x}u_{xx}-18u_{x}v_{x}-36vv_{x}-12u_{x}^2-12u^2u_{x}-2uu_{x}) {}\\ && +\frac{1}{81}\hat{\alpha}_0(6u_{xxxxx}-9v_{xxxxx}+45uv_{xxx} -9v_{xxxx}-6u_{xxxx}+90u_{xxx}v+12uu_{xxx}{}\\ &&+2u_{xxx}+21v_{xxx}+135u_{x}v_{xx}-135vv_{xx}-27uv_{xx} -3v_{xx}+180u_{xx}v_{x}{}\\ &&+54u_{x}u_{xx}-90u_{xx}v-18uu_{xx} -2u_{xx}-135v_{x}^2-45u^2v_{x}-18u_{x}^2-2uu_{x} {}\\ &&-117u_{x}v_{x}+126vv_{x}-90uu_{x}v-18u^2u_{x}). \end{eqnarray} $

如果选取$ \alpha_0 = 0, \hat{\alpha}_0 = -3, t_0 = t $,则方程(2.15)就约化为方程(1.1),如果令$ \alpha_0 = 27, $$ \hat{\alpha}_0 = 0, $$ t_1 = t $,则方程(2.16)可以约化为方程(1.2).

接下来,我们将考虑方程(2.15)和(2.16)的无穷多守恒律.令$ \phi = \frac{\psi_{3, x}}{\psi_3} $,从谱问题(2.1)可得如下的Riccati方程

$ \begin{equation} \phi_{xx}+3\phi\phi_x+\phi^3-\phi^2-\phi_x-u\phi = \lambda+v. \end{equation} $

另一方面,从辅谱问题(2.13)可知

$ \begin{equation} \frac{\psi_{3, t}}{\psi_3} = V_{31}^{(n)}(\phi^2+\phi_x-\phi)+V_{32}^{(n)}\phi+V_{33}^{(n)}. \end{equation} $

由于

从而

$ \begin{equation} \phi_t = \theta_x. \end{equation} $

假设$ \lambda = \eta^3 $.把下面的假设

$ \begin{equation} \phi = \sum\limits_{j = -1}^{\infty}\phi_j\eta^{-j} \end{equation} $

代入(2.17)式,并比较$ \lambda $的同次幂系数,可以得到$ \phi_j $的如下表达式

$ \begin{eqnarray} &&\phi_{-1} = 1, \quad\phi_0 = \frac{1}{3}, \quad \phi_1 = \frac{1}{3}u+\frac{1}{9}, {}\\ &&\phi_2 = -\frac{1}{3}u_x+\frac{1}{9}u+\frac{1}{3}v+\frac{2}{81}, \quad \phi_3 = \frac{2}{9}u_{xx}-\frac{1}{9}u_{x}-\frac{1}{3}v_x, {}\\ &&\phi_j = \frac{1}{3}\bigg( {\sum\limits_{l = -1}^{j-1}\phi_l\phi_{j-2-l}}- {\sum\limits_{{l+m+n = j-2\atop -1\leq l, m, n<j}}\phi_l\phi_m\phi_n}-3 {\sum\limits_{l = -1}^{j-1}\phi_l\phi_{j-2-l, x}}\\ &&{\qquad}{\quad} +\phi_{j-2, x}-\phi_{j-2, xx}+u\phi_{j-2}\bigg), \quad j\geq3.{} \end{eqnarray} $

对于方程(2.15),我们选取$ n = 0 $,从而

$ \begin{equation} V_{31}^{(0)} = \hat{\alpha}_0, \quad V_{32}^{(0)} = \alpha_0, \quad V_{33}^{(0)} = -\frac{1}{3}\alpha_0-\frac{2}{3}u\hat{\alpha}_0, \end{equation} $

同时把$ \theta $展开成如下关于$ \lambda $的级数

$ \begin{equation} \theta = \hat{\alpha}_0\eta^2+\frac{1}{3}(3\alpha_0-\hat{\alpha}_0)\eta+ \sum\limits_{j = 1}^{\infty}\theta_j\eta^{-j}. \end{equation} $

接着,从(2.19)式即可得到$ \theta_j $的表示式

$ \begin{eqnarray} &&\theta_1 = \alpha_0(\frac{1}{3}u+\frac{1}{9})+\hat{\alpha}_0(\frac{1}{9}u-\frac{1}{3}u_{x}+\frac{2}{3}v+\frac{1}{81}), {}\\ &&\theta_j = \hat{\alpha}_0\bigg(\sum\limits_{l = -1}^{j+1}\phi_l\phi_{j-l}+\phi_{j, x}-\phi_j\bigg)+\alpha_0\phi_j, \quad j\geq1. \end{eqnarray} $

$ \phi $$ \theta $的展开式中的系数$ \phi_j $$ \theta_j $分别被称为守恒密度和守恒流.方程(2.15)的第一个守恒律为

$ \begin{equation} (\frac{1}{3}u+\frac{1}{9})_{t_0} = \alpha_0(\frac{1}{3}u+\frac{1}{9})_x+\hat{\alpha}_0(\frac{1}{9}u-\frac{1}{3}u_{x}+\frac{2}{3}v+\frac{1}{81})_x. \end{equation} $

对于方程(2.16),我们选取$ n = 1 $,从而

$ \begin{eqnarray} V_{31}^{(1)}& = &{ } \frac{1}{9}\hat{\alpha}_0(3u_{x}-u-6v)-\frac{1}{3}\alpha_0u+\hat{\alpha}_0\lambda, {}\\ V_{32}^{(1)}& = &{ } \frac{1}{9}\alpha_0(3u_{x}-2u-3v)+\alpha_0\lambda+\frac{1}{27}\hat{\alpha}_0(3u_{x}-3u_{xx}-3u^2-2u+9v_{x}-3v), {}\\ V_{33}^{(1)}& = &{ } \frac{1}{81}\hat{\alpha}_0(6u_{xx}-9v_{xx}-18v_{x}+9u^2+2u+3v+36uv)-\frac{1}{3}(\alpha_0+2u\hat{\alpha}_0)\lambda{}\\ &&{ } -\frac{1}{27}\alpha_0(6u_{xx}-6u^2-9v_{x}-2u-3v). \end{eqnarray} $

借助于$ \theta $关于$ \lambda $的如下级数

$ \begin{equation} \theta = \hat{\alpha}_0\eta^5+\frac{1}{3}(3\alpha_0-\hat{\alpha}_0)\eta^4+\frac{1}{81}(9\alpha_0+\hat{\alpha}_0)\eta^2 +\frac{1}{243}(6\alpha_0+\hat{\alpha}_0)\eta+ \sum\limits_{j = 1}^{\infty}\theta_j\eta^{-j}, \end{equation} $

我们可以从(2.19)式立即得到$ \theta_j $的表达式

$ \begin{eqnarray} \theta_1& = &\frac{1}{81}\alpha_0(6u_{xx}-9u_{xxx}+18v_{xx}+18uu_{x}+3u_{x}-12u^2-36uv-4u-6v-\frac{2}{9}){}\\ &&+\frac{1}{243}\hat{\alpha}_0(9u_{xxx}-9u_{xxxx}+27uu_{x} +135u_{x}v+3u_{x}+9u_{xx}-18v_{xx}{}\\ &&-54uv+45uu_{xx}-4u-15u^3-18u^2-6v-135v^2-\frac{4}{27}), {}\\ \theta_j& = &(\alpha_0-\hat{\alpha}_0)\phi_{j+3}+\bigg[\frac{1}{9}\alpha_0(u-3v+3u_{x}){}\\ &&-\frac{1}{27}\hat{\alpha}_0(3u_{xx}+3u^2-u+6u_{x}-9v_{x}-15v)\bigg]\phi_{j} +\hat{\alpha}_0 \bigg( \sum\limits_{l = -1}^{j+4}\phi_l\phi_{j+3-l}+\phi_{j+3, x}\bigg){}\\ &&+\frac{1}{9}[\hat{\alpha}_0(3u_{x}-u-6v)-3\alpha_0u] \bigg( \sum\limits_{l = -1}^{j+1}\phi_l\phi_{j-l}+\phi_{j, x}\bigg), \quad j\geq1. \end{eqnarray} $

方程(2.16)的第一个守恒律为

$ \begin{eqnarray} (\frac{1}{3}u+\frac{1}{9})_{t_1}& = &\frac{1}{81}\alpha_0(6u_{xx}-9u_{xxx}+18v_{xx}+18uu_{x} +3u_{x}-12u^2-36uv-4u-6v-\frac{2}{9})_x{}\\ && +\frac{1}{243}\hat{\alpha}_0(9u_{xxx}-9u_{xxxx}+27uu_{x} +135u_{x}v+3u_{x}+9u_{xx}-18v_{xx}{}\\ &&+45uu_{xx}-54uv-4u-15u^3-18u^2-6v-135v^2-\frac{4}{27})_x. \end{eqnarray} $

3 方程(1.1)的Darboux变换与显式解

本节,我们将通过Darboux变换给出方程(1.1)的一些显式解.该方程所满足的Lax对为如下的矩阵谱问题和辅谱问题

$ \begin{eqnarray} \psi_x = U\psi = \left(\begin{array}{cccc} 0&{\quad} u{\quad} &\lambda+v\\ 1&1&0\\ 0&1&0\\ \end{array}\right)\psi, \end{eqnarray} $

$ \begin{eqnarray} \psi_t = V^{(0)}\psi = \left(\begin{array}{cccc} -u&{\quad} u_x-3v-3\lambda{\quad} &2u_{xx}-2u_x-3v_x+3v+3\lambda\\ 0&-u&2u_x-3v-3\lambda\\ -3&0&2u\\ \end{array}\right)\psi. \end{eqnarray} $

为了构造方程(1.1)的Darboux变换,我们假设$ \psi^{(l)} = (\psi^{(l)}_1, \psi^{(l)}_2, \psi^{(l)}_3)^T\; (l = 1, 2, 3) $是方程(3.1)和(3.2)的3个解,由此可以定义一个基解矩阵$ \Psi = (\psi^{(1)}, \psi^{(2)}, \psi^{(3)}). $接下来我们引入方程(3.1)和(3.2)的如下的规范变换, $ \Psi \rightarrow \hat\Psi $

$ \begin{equation} \hat\Psi = T\Psi = \left(\begin{array}{cccc} T_{11}&T_{12}&T_{13}\\ b_x+c&{\quad} \lambda+c_x+bu+c+d{\quad} &\lambda b+d_x+bv\\ b&c&\lambda+d \end{array}\right)\Psi, \end{equation} $

其中

这里的$ b, c $$ d $为待定函数.通过复杂的计算可得

$ \begin{equation} \det T = \lambda^3+f_1\lambda+f_2, \end{equation} $

其中

$ \lambda_1, \lambda_2, \lambda_3 $是3个给定的任意常数,并且是三次多项式$ \det T $的根,即

$ \begin{equation} \det T = (\lambda-\lambda_1)(\lambda-\lambda_2)(\lambda-\lambda_3). \end{equation} $

易知当$ \lambda = \lambda_i\; (i = 1, 2, 3 $)时, $ \hat\Psi $的列向量线性相关.由此,我们得到了下面的线性代数方程组

$ \begin{eqnarray} &&\lambda_i+b_{xx}+2c_x+bu+d-b_x+(\lambda_i b+c_{xx}+2b_xu+bu_x+c_x+2d_x+bv+cu)\sigma_1^{(i)}{}\\ &&+[\lambda_i(2b_x+c-b)+d_{xx}+2b_xv+bv_x+cv-d_x-bv]\sigma_2^{(i)} = 0, \end{eqnarray} $

$ \begin{equation} b_x+c+(\lambda_i+c_x+bu+c+d)\sigma_1^{(i)}+(\lambda_i b+d_x+bv)\sigma_2^{(i)} = 0, \end{equation} $

$ \begin{equation} b+c\sigma_1^{(i)}+(\lambda_i+d)\sigma_2^{(i)} = 0, \end{equation} $

其中

$ \begin{equation} \sigma_1^{(i)} = \frac{r_1^{(i)}\psi_2^{(1)}(\lambda_i)+r_2^{(i)}\psi_2^{(2)}(\lambda_i)+r_3^{(i)}\psi_2^{(3)}(\lambda_i)} {r_1^{(i)}\psi_1^{(1)}(\lambda_i)+r_2^{(i)}\psi_1^{(2)}(\lambda_i)+r_3^{(i)}\psi_1^{(3)}(\lambda_i)}, \end{equation} $

$ \begin{equation} \sigma_2^{(i)} = \frac{r_1^{(i)}\psi_3^{(1)}(\lambda_i)+r_2^{(i)}\psi_3^{(2)}(\lambda_i)+r_3^{(i)}\psi_3^{(3)}(\lambda_i)} {r_1^{(i)}\psi_1^{(1)}(\lambda_i)+r_2^{(i)}\psi_1^{(2)}(\lambda_i)+r_3^{(i)}\psi_1^{(3)}(\lambda_i)}, \end{equation} $

$ r_k^{(i)}(k = 1, 2, 3) $是相关系数.直接计算可知,由(3.8)式可以推出(3.7)式,由(3.7)式可以推出(3.6)式.如果合理选择参数$ \lambda_i $$ r_k^{(i)} $,使得(3.8)式所确定的系数行列式非零,那么$ b, c $$ d $可以由线性代数系统(3.8)唯一确定.

我们考虑线性变换

$ \begin{equation} \hat\psi = T\psi. \end{equation} $

$ \lambda\not = \lambda_i $的情况下,问题(3.1)和(3.2)可以变换成关于$ \hat\psi $的两个如下的$ 3\times 3 $矩阵谱问题

$ \begin{equation} \hat\psi_x = \hat U\hat\psi, \end{equation} $

$ \begin{equation} \hat\psi_t = \hat V^{(0)}\hat\psi, \end{equation} $

此处

$ \begin{equation} \hat U = (T_x+TU)T^{-1}, \quad \hat V^{(0)} = (T_t+TV^{(0)})T^{-1}. \end{equation} $

可以证明$ \lambda = \lambda_i $$ \hat U $$ \hat V^{(0)} $的可去孤立奇点.因此,我们可以借助于解析延拓的办法来定义$ \lambda\not = 0 $时的$ \hat U $$ \hat V^{(0)} $.

命题3.1  由(3.14)式确定的矩阵$ \hat U $$ \hat V^{(0)} $$ U $$ V^{(0)} $具有相同的形式.特别地,从原始位势$ u, v $到新位势$ \hat u, \hat v $的变换由下式给出

$ \begin{equation} \begin{array}{l} \hat u = u+3b_x, \\ \hat v = v+3b_{xx}+3c_x-2b_x-3bb_x. \end{array} \end{equation} $

 令$ T^{-1} = T^*/\det T $并且

$ \begin{equation} (T_x+TU)T^* = F = (f_{sl}(\lambda))_{3\times 3}. \end{equation} $

通过计算,我们可以得到

$ \begin{equation} T_x+TU = \left(\begin{array}{cccc} h_{11}&{\quad} h_{12}{\quad} &h_{13}\\ h_{21}&h_{22}&h_{23}\\ h_{31}&h_{32}&h_{33}\\ \end{array}\right), \end{equation} $

其中

利用(3.9)式, (3.10)式和当$ \lambda = \lambda_i\ (i = 1, 2, 3) $时的谱问题(3.1),我们可以得到两个Riccati方程

$ \begin{equation} \begin{array}{l} \sigma_{1, x}^{(i)} = 1+\sigma_1^{(i)}-u(\sigma_1^{(i)})^2-(\lambda_i+v)\sigma_1^{(i)}\sigma_2^{(i)}, \\ \sigma_{2, x}^{(j)} = \sigma_1^{(i)}-u\sigma_1^{(i)}\sigma_2^{(i)}-(\lambda_i+v)(\sigma_2^{(i)})^2. \end{array} \end{equation} $

将(3.8)式关于$ x $求导,我们可以得到(3.7)式;将(3.7)式关于$ x $求导,我们可以得到(3.6)式.

由(3.16)和(3.17)式,我们可以得到

$ \begin{equation} (T_x+TU)T^* = (\det T)P(\lambda), \end{equation} $

其中$ P(\lambda) $形式如下

$ \begin{equation} P(\lambda) = \left(\begin{array}{cccc} 0&{\quad} p_{12}^{(0)}{\quad} &p_{13}^{(1)}\lambda+p_{13}^{(0)}\\ 1&1&0\\ 0&1&0\\ \end{array}\right). \end{equation} $

这里$ p^{(i)}_{sl}(1\leq s, l\leq3, i = 0, 1) $是与$ \lambda $无关的$ (x, t) $的函数.通过比较(3.19)式中$ \lambda $的同次幂系数,我们可以得到

即有$ P(\lambda) = \hat U $.

同理,我们令

$ \begin{equation} (T_t+TV^{(0)})T^* = G = (g_{sl}(\lambda))_{3\times 3} \end{equation} $

$ T_t+TV^{(0)} = M = (m_{sl}(\lambda))_{3\times 3}. $直接计算可得

通过比较(3.21)式中$ \lambda $的同次幂系数,我们可以得到

$ \begin{equation} (T_t+TV^{(0)})T^* = (\det T)Q(\lambda), \end{equation} $

其中

$ \begin{equation} Q(\lambda) = \left(\begin{array}{cccc} q^{(0)}_{11}&{\quad} q^{(1)}_{12}\lambda+q^{(0)}_{12}{\quad} &q^{(1)}_{13}\lambda+q_{13}^{(0)}\\ 0&q^{(0)}_{22}&q^{(1)}_{23}\lambda+q^{(0)}_{23}\\ -3&0&q^{(0)}_{33} \end{array}\right), \end{equation} $

这里$ q^{(i)}_{sl}(1\leq s, l\leq3) $是与$ \lambda $无关的$ (x, t) $的函数.借助于(3.22)式,直接计算可知

即证$ Q(\lambda) = \hat V^{(0)} $,证毕.

根据命题3.1,通过变换(3.11)和(3.15),我们把Lax对(3.1)和(3.2)变成了另一个具有相同形式的Lax对

$ \begin{equation} \hat\psi_x = \hat U\hat\psi, \end{equation} $

$ \begin{equation} \hat\psi_t = \hat V^{(0)}\hat\psi. \end{equation} $

因此,两个Lax对都可以推出方程(1.1).变换(3.15), $ (u, v)\longrightarrow(\hat u, \hat v) $,叫做方程(1.1)的Darboux变换.

定理3.1  Darboux变换(3.15)把方程(1.1)的任一解$ (u, v) $变成一个新解$ (\hat u, \hat v) $,其中$ b, c, d $由方程(3.8)唯一确定.

为了构造方程(1.1)的精确解,我们将方程(3.8)改写为

$ \begin{eqnarray} &&b+c\sigma_{1}^{(1)}+d\sigma_{2}^{(1)} = -\lambda_{1}\sigma_{2}^{(1)}, {}\\ &&b+c\sigma_{1}^{(2)}+d\sigma_{2}^{(2)} = -\lambda_{2}\sigma_{2}^{(2)}, \\ &&b+c\sigma_{1}^{(3)}+d\sigma_{2}^{(3)} = -\lambda_{3}\sigma_{2}^{(3)}.{} \end{eqnarray} $

由克莱姆法则得

$ \begin{equation} b = \frac{\Delta_1}{\Delta}, \quad c = \frac{\Delta_2}{\Delta}, \quad d = \frac{\Delta_3}{\Delta}, \end{equation} $

其中

合理选择$ \lambda_1, \lambda_2, \lambda_3, r_1^{(1)}, r_2^{(1)}, r_3^{(1)}, r_1^{(2)}, r_2^{(2)}, r_3^{(2)}, r_1^{(3)}, r_2^{(3)}, r_3^{(3)} $使得系数行列式$ \Delta\not = 0. $把(3.27)式代入(3.15)式,我们可以得到Darboux变换的显式形式

$ \begin{equation} \hat u = u+3\left(\frac{\Delta_1}{\Delta}\right)_x, \quad\hat v = v+3\left(\frac{\Delta_1}{\Delta}\right)_{xx}+3\left(\frac{\Delta_2}{\Delta}\right)_x -2\left(\frac{\Delta_1}{\Delta}\right)_x-3\left(\frac{\Delta_1}{\Delta}\right)\left(\frac{\Delta_1}{\Delta}\right)_x. \end{equation} $

接下来,我们将应用Darboux变换来构造方程(1.1)的显式解.

1)取$ u = -\frac{1}{3}, \ v = \frac{1}{27} $,则(3.1)和(3.2)式可表示为

$ \begin{equation} \left\{\begin{array}{l} { } \psi_{1, x} = -\frac{1}{3}\psi_{2}+(\lambda+\frac{1}{27})\psi_{3}, \\ { } \psi_{2, x} = \psi_1+\psi_2, \\ { } \psi_{3, x} = \psi_2, \\ { } \psi_{1, t} = \frac{1}{3}\psi_{1}+(-\frac{1}{9}-3\lambda)\psi_{2}+(\frac{1}{9}+3\lambda)\psi_{3}, \\ { } \psi_{2, t} = \frac{1}{3}\psi_{2}+(-\frac{1}{9}-3\lambda)\psi_{3}, \\ { } \psi_{3, t} = -3\psi_1-\frac{2}{3}\psi_{3}. \end{array}\right. \end{equation} $

从而方程(3.29)有基础矩阵

$ \begin{equation} \Psi = \left(\begin{array}{cccc} { } (\eta^2-\frac{1}{3}\eta-\frac{2}{9})e^M&\ e^Q(n_1\cos N+n_2\sin N)\ &e^Q(n_1\sin N-n_2\cos N)\\ { } (\frac{1}{3}+\eta)e^M&\begin{array}{c} { } \{e^Q[(\frac{1}{3}-\frac{1}{2}\eta)\cos N\\ { } -\frac{\sqrt3}{2}\eta\sin N]\}\end{array}& \begin{array}{c} { } \{e^Q[(\frac{1}{3}-\frac{1}{2}\eta)\sin N\\ { } +\frac{\sqrt3}{2}\eta\cos N]\}\end{array}\\ e^M&e^Q\cos N&e^Q\sin N \end{array}\right), \end{equation} $

其中

由(3.9)和(3.10)式可得

通过Darboux变换(3.15),我们得到方程(1.1)的一个显式解

$ \begin{eqnarray} \hat u& = &3\frac{{\Delta_{1, x}}\Delta-{\Delta_1\Delta_x}}{\Delta^2}, {}\\ \hat v& = &\frac{3\Delta_{1, xx}+3\Delta_{2, x}-2\Delta_{1, x}}{\Delta}+3\frac{{2\Delta_x}^2\Delta_1+{\Delta_1}^2\Delta_x}{\Delta^3}-\lambda{}\\ &&+\frac{2\Delta_1\Delta_x -3\Delta_2\Delta_x-3\Delta_1\Delta_{1, x}-6\Delta_{1, x}\Delta_x-3\Delta_1\Delta_{xx}}{\Delta^2}. \end{eqnarray} $

图 1

图 1   参数选取为$u = -\frac{1}{3}, v = \frac{1}{27}, $$\eta_1 = 0, \eta_2 = 1, \eta_3 = -1, $$r_1^{(1)} = 1, $$r_2^{(1)} = 1$, $r_3^{(1)} = 1, $$r_1^{(2)} = 1, r_2^{(2)} = 1, r_3^{(2)} = 1, $$r_1^{(3)} = 1, r_2^{(3)} = 1, r_3^{(3)} = 1$


2)取$ u = 0, \ v = 0 $,则(3.1)和(3.2)式可表示为

$ \begin{equation} \left\{\begin{array}{c} \psi_{1, x} = \lambda\psi_3, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \psi_{2, x} = \psi_1+\psi_2, \ \ \ \psi_{3, x} = \psi_2, \ \ \\ \psi_{1, t} = -3\lambda(\psi_2-\psi_3), \ \ \psi_{2, t} = -3\lambda\psi_3, \ \ \ \ \psi_{3, t} = -3\psi_1. \end{array}\right. \end{equation} $

此时方程(3.32)有基解矩阵

$ \begin{equation} \Psi = \left(\begin{array}{cccc} (k_1^2-k_1)e^{\Gamma_1}&\psi_1^{(2)} &\psi_1^{(3)}\\ k_1e^{\Gamma_1}&\psi_2^{(2)}&\psi_2^{(3)}\\ e^{\Gamma_1}&\ e^{\Gamma_2}{\rm cos}{\Gamma_3}\ &e^{\Gamma_2}{\rm sin}{\Gamma_3} \end{array}\right), \end{equation} $

其中

由(3.9)和(3.10)式可得

通过Darboux变换(3.15),我们得到方程(1.1)的显式解

$ \begin{eqnarray} \hat u& = &3\frac{{\Delta_{1, x}}\Delta-{\Delta_1\Delta_x}}{\Delta^2}, {}\\ \hat v& = &\frac{3\Delta_{1, xx}+3\Delta_{2, x}-2\Delta_{1, x}}{\Delta}+3\frac{{2\Delta_x}^2\Delta_1+{\Delta_1}^2\Delta_x}{\Delta^3}{}\\ && \qquad+\frac{2\Delta_1\Delta_x -3\Delta_2\Delta_x-3\Delta_1\Delta_{1, x}-6\Delta_{1, x}\Delta_x-3\Delta_1\Delta_{xx}}{\Delta^2}. \end{eqnarray} $

图 2

图 2   参数选取为$u = 0, v = 0, $$\lambda_1 = \frac{49}{216}, \lambda_2 = -\frac{4}{27}, \lambda_3 = -\frac{3}{8}, $$r_1^{(1)} = 1, $$r_2^{(1)} = 1, $$r_3^{(1)} = 1, $$r_1^{(2)} = 1, r_2^{(2)} = 1, r_3^{(2)} = 1, $$r_1^{(3)} = 1, r_2^{(3)} = 1, r_3^{(3)} = 1$


参考文献

Ablowitz M J , Clarkson P A . Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge: Cambridge University Press, 1991

[本文引用: 1]

Maeda M , Sasaki H , Segawa E .

Scattering and inverse scattering for nonlinear quantum walks

Discrete Cont Dyn, 2018, 38, 3687- 3703

DOI:10.3934/dcds.2018159      [本文引用: 1]

Hirota R . The Direct Method in Soliton. Cambridge: Cambridge University Press, 2004

[本文引用: 1]

Rogers C , Schief W K . Backlund and Darboux Transformations, Geometry and Modern Applications in Soliton Theory. Cambridge: Cambridge University Press, 2002

[本文引用: 1]

Matveev V B , Salle M A . Darboux Transformations and Solitons. Berlin: Springer, 1991

Geng X G , Ren H F , He G L .

Darboux transformation for a generalized Hirota-Satsuma coupled Kortewegde Vries equation

Phys Rev E, 2009, 79, 056602

DOI:10.1103/PhysRevE.79.056602     

Xue L L , Liu Q P , Wang D S .

A generalized Hirota-Satsuma coupled KdV system:Darboux transformations and reductions

J Math Phys, 2016, 57, 083506

DOI:10.1063/1.4960747     

Gordoa P R , Pichering A , Zhu Z N .

Backlund transformations for a matrix second Painleve' equation

Phys Lett A, 2010, 374, 3422- 3424

DOI:10.1016/j.physleta.2010.06.034      [本文引用: 1]

Gesztesy F , Holden H . Soliton Equations and Their Algebro-Geometric Solutions. Cambridge: Cambridge University Press, 2003

[本文引用: 1]

Belokolos E D , Bobenko A I , Enolskii V Z , et al. Algebro-Geometric Approach to Nonlinear Integrable Equations. Berlin: Springer, 1994

He G L , Geng X G , Wu L H .

Algebro-geometric quasi-periodic solutions to the three-wave resonant interaction hierarchy

SIAM J Math Analy, 2014, 46, 1348- 1384

DOI:10.1137/130918794      [本文引用: 1]

Anton I .

Algebraic geometry and stability for integrable systems

Phys D, 2015, 291, 74- 82

DOI:10.1016/j.physd.2014.10.006      [本文引用: 1]

Yang X J , Gao F , Srivastava H F .

Exact travelling wave solutions for the local fractional two-dimensional Burgers-type equations

Comput Math Appl, 2017, 73, 203- 210

DOI:10.1016/j.camwa.2016.11.012     

Fan E G .

Extended tanh-function method and its applications to nonlinear equations

Phys Lett A, 2000, 277, 212- 218

DOI:10.1016/S0375-9601(00)00725-8     

Wang D S .

Integrability of the coupled KdV equations derived from two-layer fluids:Prolongation structures and Miura transformations

Nonlinear Anal, 2010, 73, 270- 281

DOI:10.1016/j.na.2010.03.021     

郝晓红, 程智龙.

一类广义浅水波KdV方程的可积性研究

数学物理学报, 2019, 39A (3): 451- 460

URL     [本文引用: 1]

Hao X H , Cheng Z L .

The integrability of the KdV-shallow water wave equation

Acta Math Sci, 2019, 39A, 451- 460

URL     [本文引用: 1]

Geng X G , Lv Y Y .

Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation

Nonlinear Dyn, 2012, 69, 1621- 1630

DOI:10.1007/s11071-012-0373-7      [本文引用: 1]

Geng X G , He G L .

Some new integrable nonlinear evolution equations and Darboux transformation

J Math Phys, 2010, 51, 033514

DOI:10.1063/1.3355192     

Zhao H Q , Yuan J Y , Zhu Z N .

Integrable semi-discrete Kundu-Eckhaus Eequation:Darboux transformation, breather, rogue wave and continuous limit theory

J Nonlinear Sci, 2018, 28, 43- 68

DOI:10.1007/s00332-017-9399-9     

Liu L , Wang D S , Han K .

An integrable lattice hierarchy for Merola-Ragnisco-Tu Lattice:N-fold Darboux transformation and conservation laws

Commun Nonlinear Sci Numer Simulat, 2018, 63, 57- 71

DOI:10.1016/j.cnsns.2018.03.010     

Wang X , Wang L .

Darboux transformation and nonautonomous solitons for a modified Kadomtsev-Petviashvili equation with variable coefficients

Comput Math Appl, 2018, 75, 4201- 4213

DOI:10.1016/j.camwa.2018.03.022      [本文引用: 1]

Sachs R L .

On the integrable variant of the boussinesq system:Painlevé property, rational solutions, a relate many-body system, and equivalence with the AKNS hierarchy

Physica D, 1988, 30, 1- 27

DOI:10.1016/0167-2789(88)90095-4      [本文引用: 1]

Whitham G B . Linear and Nonlinear Waves. New York: Wiley, 1974

[本文引用: 1]

/