Processing math: 6%

数学物理学报, 2020, 40(5): 1235-1247 doi:

论文

含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解的分歧性

王明旻,, 贾高,

Bifurcation of Positive Solutions for Quasilinear Elliptic Equations with Φ-Laplacian Operator and Concave-Convex Nonlinearities

Wang Mingmin,, Jia Gao,

通讯作者: 贾高, E-mail: gaojia89@163.com

收稿日期: 2019-10-15  

基金资助: 国家自然科学基金.  11171220

Received: 2019-10-15  

Fund supported: the NSFC.  11171220

作者简介 About authors

王明旻,E-mail:745136863@qq.com , E-mail:745136863@qq.com

摘要

该文利用临界点理论、截断技巧和比较原理,研究了一类含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解关于参数λ的分歧性,进一步得到了最小正解的存在性和关于参数λ的单调性.

关键词: 拟线性椭圆型方程 ; 分歧性 ; 截断技巧

Abstract

In this paper, we study the bifurcation of positive solutions about parameter λ for the quasilinear elliptic equations with Φ-Laplacian operator and concave-convex nonlinearities by using the critical point theory, appropriate truncation and comparison techniques. Furthermore, we obtain the existence of the smallest positive solution and the monotonicity with respect to parameter λ.

Keywords: Quasilinear elliptic equation ; Bifurcation ; Truncation techniques

PDF (531KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

王明旻, 贾高. 含Φ-Laplace算子和凹凸非线性项的拟线性椭圆型方程正解的分歧性. 数学物理学报[J], 2020, 40(5): 1235-1247 doi:

Wang Mingmin, Jia Gao. Bifurcation of Positive Solutions for Quasilinear Elliptic Equations with Φ-Laplacian Operator and Concave-Convex Nonlinearities. Acta Mathematica Scientia[J], 2020, 40(5): 1235-1247 doi:

1 引言

考虑如下具有Φ-Laplace算子的拟线性椭圆型方程正解的存在性、多重性和分歧性

{Φu=uτ1+λf(x,u),xΩ,u>0,xΩ,u=0,xΩ,
(1.1)

其中ΩRN是一个具有光滑边界的有界区域, ΔΦu=div(ϕ(|u|)u)Φ-Laplace算子, Φ(t)=t0sϕ(s)ds, f:Ω×RR是Carathéodory函数, λ>0, τ>1.

在过去几十年里,对具有Φ-Laplace算子的拟线性椭圆型方程解的存在性等相关问题得到广泛研究(参见文献[1-4]).同时, Φ-Laplace算子具有很强的物理背景,在偏微分方程、非牛顿流体、图像处理、等离子物理等领域有着广泛的应用.例如,对非牛顿流体问题,即当p>1, Φ(t)=1p|t|p时,问题(1.1)转化为p-Laplace方程

{Δpu=fλ(u),xΩ,u=0,xΩ.
(1.2)

作者Azorero等[5]利用局部极小化方法和山路定理研究了当fλ(u)=|u|r2u+λ|u|p2u, 1<p<r<p, λ>0时问题(1.2)正解的存在性和多重性.

关于拟线性椭圆型方程解的分歧性的研究,一个具有代表性的结果是由Marano等[6]给出.当1<q<p<N, p(q,q), Φ(t)=1p|t|p+1q|t|q时问题(1.1)转化为(p,q)-Laplace方程

{puqu=uτ1+λf(x,u),xΩ,u>0,xΩ,u=0,xΩ.
(1.3)

作者利用临界点理论、截断技巧和比较原理研究了当1<τ<q<p<+,λ>0时问题(1.3)正解的存在性和分歧性.

近年来,关于分歧性的研究成果还有很多(参见文献[7-8]),其中文献[8]是研究带有Robin边界条件的边值问题.

本文的目的是探究问题(1.1)的正解随参数λ变化时解集的变化规律.

现在给出函数ϕ和函数f的基本假设.函数ϕ:(0,+)(0,+), ϕC1(Ω),且满足下列条件

(ϕ1)t0时, tϕ(t)0;当t时, tϕ(t);

(ϕ2) tϕ(t)(0,)上是严格增的;

(ϕ3)存在常数,m(1,N),使得对于任意的t>0,成立

1=inf

( \phi_{4} ) t\mapsto\Phi(t^{\frac{1}{\ell}}) (0, +\infty) 上是凸函数.

进一步,假设 f:\Omega\times{{\Bbb R}} \rightarrow{{\Bbb R}} 是Carathéodory函数,当 t\leq0 时, f(x, t) = 0 , F(x, t): = \int^{t}_{0}f(x, s){\rm d}s .此外, f 还满足以下条件

( f_{1} )存在常数 \theta\in[\tau, \ell] , r\in(m, \ell^{*}) ,使得

c_{1}t^{m-1}+c_{2}t^{\ell-1}\leq f(x, t)\leq c_{0}(t^{\theta-1}+t^{r-1}), \; \; \; \; \forall(x, t)\in\Omega\times{\Bbb R_{+}},

其中 c_{2}>\frac{\overline{\lambda}_{1}\ell\|\phi_{1}\|^{\ell}_{\Phi}}{\lambda\|\phi_{1}\|^{\ell}_{\ell}} , \overline{\lambda}_{1} 是算子 -\Delta_{\Phi} 的第一特征值, \phi_{1} 是对应的特征函数;

(f_{2}) \lim\limits_{t\rightarrow+\infty}\frac{F(x, t)}{t^{m}} = +\infty 对几乎所有的 x\in\Omega 一致成立;

(f_{3}) \lim\limits_{t\rightarrow+\infty}\frac{f(x, t)t-mF(x, t)}{t^{\beta}}\geq c_{3} 对几乎所有的 x\in\Omega 一致成立,其中 \beta>\tau

\frac{N(r-\ell)}{\ell}<\beta<\ell^{*}.

由条件 (f_{2}) (f_{3}) 可知, f(x, t) +\infty 处为 (m-1) 次超线性增长.其次,我们知道在运用山路定理研究拟线性方程解的存在性时, (AR)条件起着关键作用.但 \tau<\ell<m , t\mapsto t^{\tau-1} +\infty 处为 (\ell-1) 次线性增长,而 t\mapsto f(x, t) +\infty 处为 (m-1) 次超线性增长不满足一般的(AR)条件.另外,问题(1.1)具有凹凸非线性的特征,这一点增加了研究的难度.为了克服这些困难,需要采用适当的技巧.我们的方法主要基于临界点理论,结合截断技巧和比较原理.

在叙述本文的主要结果之前,先定义下列几类集合

{\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) = \left\{u | u \in C_{0}^{1}(\overline{\Omega})_{+}: \; u(x)>0, \; \forall x \in \Omega;\; \frac{\partial u}{\partial n}(x)<0, \; \forall x \in \partial \Omega\right\},

其中 n(x) 是边界 \partial\Omega 上在 x 点处的单位外法向量, C_{0}^{1}(\overline{\Omega})_{+} = \left\{u | u \in C_{0}^{1}(\overline{\Omega}): \; u\geq 0, \; x \in \overline{\Omega}\right\} ;记 S(\Omega): = \{u:\Omega\rightarrow{{\Bbb R}} , \; u\mbox{是可测的}\} ,对 u, v\in S(\Omega), \; \mbox{定义}[u, v]: = \{\omega\in S(\Omega):u\leq\omega\leq v\} , [u): = \{\omega\in S(\Omega):u\leq\omega\} ;定义 \Lambda = \{\lambda>0, \; E_{\lambda}\neq\emptyset\} ,其中 E_{\lambda} = \{u|u\in W^{1, \Phi}_{0}(\Omega) 是问题(1.1)的正解 \}; K_{I}: = \{u\in W^{1, \Phi}_{0}(\Omega):I'(u) = 0\} .

定理1.1  设 (\phi_{1})-(\phi_{3}) (f_{1})-(f_{3}) 成立,则存在 \lambda^{*}>0 ,使得下列结论成立:当 \lambda \in\left(0, \lambda^{*}\right) 时,问题(1.1)至少存在两个解 \hat{u}_{e}, \overline{u}_{e} \in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,且 \hat{u}_{e} \leq \overline{u}_{e} ;当 \lambda = \lambda^{\ast} 时,问题(1.1)至少存在一个解 u^{\ast}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ;当 \lambda>\lambda^{\ast} 时,问题(1.1)无解.

定理1.2  设 (\phi_{1})-(\phi_{4}) (f_{1})-(f_{3}) 成立,则当 \lambda\in(0, \lambda^{*}] 时,问题(1.1)存在最小正解 \overline{u}_{\lambda}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

定理1.3  设 (\phi_{1})-(\phi_{4}) (f_{1})-(f_{3}) 成立,若 \lambda\in(0, \lambda^{*}] , \overline{u}_{\lambda} 为问题(1.1)的最小正解,则 \lambda \mapsto \overline{u}_{\lambda} \in C_{0}^{1}(\overline{\Omega}) 是严格增和左连续的,即若 \lambda_{1}<\lambda_{2} ,则 \overline{u}_{\lambda_{2}}-\overline{u}_{\lambda_{1}} \in {\rm int}( C_{0}^{1}(\overline{\Omega})_{+}) ,且对任意的 \lambda_{n} \rightarrow \lambda^{-} (n\rightarrow\infty) ,有 \overline{u}_{\lambda_{n}} \rightarrow \overline{u}_{\lambda} \in C_{0}^{1}(\overline{\Omega}) .

2 预备知识和基本引理

L_{\Phi}(\Omega) = \big\{u|u:\Omega\rightarrow {{\Bbb R}}\ \mbox{是可测的, }\ \int_{\Omega}\Phi(|u(x)|){\rm d}x<\infty\big\} ,在 L_{\Phi}(\Omega) 上定义Luxemburg范数

\|u\|_{\Phi} = \inf\limits_{k}\left\{k>0\; \Big|\; \int_{\Omega}\Phi\left(\frac{|u(x)|}{k}\right){\rm d}x\leq1\right\}.

W^{1, \Phi}(\Omega) = \left\{u | u \in L_{\Phi}(\Omega), \; D_{i} u \in L_{\Phi}(\Omega), \; i = 1, \cdots , n\right\} ,在 W^{1, \Phi}(\Omega) 上定义范数

\|u\|_{1, \Phi} = \|u\|_{\Phi}+\|\nabla u\|_{\Phi}.

W^{1, \Phi}_{0}(\Omega) C^{\infty}_{0}(\Omega) W^{1, \Phi}(\Omega) 中的闭包. L_{\Phi}(\Omega) W^{1, \Phi}(\Omega) 是可分、自反的Banach空间(参见文献[1]).

根据 (\phi_{3}) {\rm Poincar\acute{e}} 不等式(参见文献[9]),有

\overline{\lambda}_{1}\int_{\Omega}\Phi(u){\rm d}x\leq\int_{\Omega} \Phi( | \nabla u|){\rm d}x, {\quad} u\in W^{1, \Phi}_{0}(\Omega).

d_{\Omega} = {\rm diam}(\Omega) ,则对于任意 u\in W^{1, \Phi}_{0}(\Omega) ,有

\int_{\Omega}\Phi(u){\rm d}x\leq \int_{\Omega}\Phi\left(2d_{\Omega} |\nabla u|\right){\rm d}x,

这样,得到 \|u\|_{\Phi} \leq 2d_{\Omega}\|\nabla u\|_{\Phi} ,因此定义在 W^{1, \Phi}_{0}(\Omega) 上的范数 \|u\|: = \|\nabla u\|_{\Phi} \|\cdot\|_{1, \Phi} 等价.

\Phi_{\ast}^{-1}(t) = \int_{0}^{t}{s^{-\frac{N+1}{N}}}\Phi^{-1}(s){\rm d}s ( t\geq0 ),且当 t<0 时, \Phi_{\ast}(t) = \Phi_{\ast}(-t) .如果对于所有的 \nu>0 ,都有 \lim\limits _{t \rightarrow \infty} \frac{\Upsilon(\nu t)}{\Phi_{\ast}(t)} = 0 ,则称N -函数 \Upsilon 在无穷远处比 \Phi_{\ast} 增长得更慢,记 \Upsilon\ll\Phi_{\ast} .如果 \Upsilon\ll\Phi_{\ast} ,则 W^{1, \Phi}_{0}(\Omega)\hookrightarrow\hookrightarrow L_{\Upsilon}(\Omega) (参见文献[9]).进一步,有 W^{1, \Phi}_{0}(\Omega)\hookrightarrow L_{\Phi_{\ast}}(\Omega) .在条件 (\phi_{1})-(\phi_{3}) 下,还有如下连续嵌入: L^{m}(\Omega)\hookrightarrow L_{\Phi}(\Omega)\hookrightarrow L^{\ell}(\Omega) , L_{\Phi_{\ast}}(\Omega)\hookrightarrow L^{\ell^{\ast}}(\Omega) (参见文献[10]).

注2.1  在条件 (\phi_{3}) 下,可推得下式成立

\ell-2 \leq \frac{\phi^{\prime}(t) t}{\phi(t)} \leq m-2, \; \ell\leq\frac{\phi(t)t^{2}}{\Phi(t)}\leq m, \; t>0.

下面给出本文需要的几个基本引理.

引理2.1[2]  设 (\phi_{1})-(\phi_{3}) 成立,对 t\geq0 ,令

\eta_{0}(t) = \min\{t^{\ell-2}, t^{m-2}\}, \; \; \eta_{1}(t) = \max\{t^{\ell-2}, t^{m-2}\},

则对于任意 \rho, t>0 ,成立 \eta_{0}(t)\phi(\rho)\leq\phi(\rho t)\leq\eta_{1}(t)\phi(\rho) .

引理2.2[2]  设 (\phi_{1})-(\phi_{3}) 成立,对 t\geq0 ,令

\eta_{2}(t) = \min\{t^{\ell}, t^{m}\}, \; \; \eta_{3}(t) = \max\{t^{\ell}, t^{m}\},

则对于任意 \rho, t>0 , u\in L_{\Phi}(\Omega) ,成立

\eta_{2}(t)\Phi(\rho)\leq\Phi(\rho t)\leq\eta_{3}(t)\Phi(\rho), \; \; \eta_{2}(\|u\|_{\Phi})\leq\int_{\Omega}\Phi(u){\rm d}x\leq\eta_{3}(\|u\|_{\Phi}).

众所周知,寻找问题(1.1)的非负弱解等价于求泛函

I(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-G(x, u)\Big){\rm d}x, \; \; u\in W^{1, \Phi}_{0}(\Omega)

的临界点,其中 G(x, t) = \int^{t}_{0}g(x, s){\rm d}s , g(x, t) = (t^{+})^{\tau-1}+\lambda f(x, t^{+}) .

引理2.3[11]  设 (\phi_{1})-(\phi_{3}) (f_{1})-(f_{3}) 成立,若 u\in W^{1, \Phi}_{0}(\Omega) I C_{0}^{1}(\overline{\Omega}) 上的局部极小点,则存在常数 \eta\in(0, 1) ,有 u\in C^{1, \eta}(\overline{\Omega}) ,且 u 也是 I W^{1, \Phi}_{0}(\Omega) 上的局部极小点.

引理2.4[11]  设 (\phi_{1})-(\phi_{3}) 成立, b_{1}, b_{2}\in L^{\infty}(\Omega) , b_{2}\geq b_{1} ,且集合 S = \{x\in\Omega:b_{1}(x) = b_{2}(x)\} 的测度为零,若 u_{1}, u_{2}\in W^{1, \Phi}_{0}(\Omega) 满足 -\triangle_{\Phi}u_{i} = b_{i}, \; i = 1, 2, \; x\in\Omega ,则 u_{2}-u_{1}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

引理2.5[12]  设 (\phi_{1})-(\phi_{3}) 成立,则 -\triangle_{\Phi} (S_{+}) 型算子,即对任意给定的序列 \{u_{n}\}\subseteq W^{1, \Phi}_{0}(\Omega) ,若 u_{n}\rightharpoonup u ,且 \limsup\limits_{n\rightarrow\infty}\langle-\triangle_{\Phi}u_{n}, u_{n}-u\rangle\leq0 ,则在 W^{1, \Phi}_{0}(\Omega) 中有 u_{n}\rightarrow u .

3 定理1.1的证明

本节的主要工作是证明定理1.1,先给出几个关键引理.

引理3.1  设 (\phi_{1})-(\phi_{3}) (f_{1}) 成立,则对每一个 \lambda>0 ,有 E_{\lambda}\subseteq {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

  设 \lambda\in\Lambda (否则 E_{\lambda} = \emptyset ),那么存在 u\in W^{1, \Phi}_{0}(\Omega), \; u\geq0 u\neq0 ,使得

\begin{equation} -\triangle_{\Phi}u = u^{\tau-1}+\lambda f(x, u). \end{equation}
(3.1)

由文献[13]推得 u\in L^{\infty}(\Omega) .又由于

\nabla(\phi(|\zeta|)\zeta)|\zeta|\leq(m-1)\Phi^{\prime}(|\zeta|), \; \; (\nabla(\phi(|\zeta|)\zeta)y, y)|\zeta|\geq(\ell-1)\Phi^{\prime}(|\zeta|)|y|^{2},

所以, \Phi -Laplace算子满足文献[14]中的定理1.7条件,由该定理的结论有 u\in C_{0}^{1}(\overline{\Omega})_{+}\backslash\{0\} .

在(3.1)式两边同时加上 L\phi(u)u ,得

-\triangle_{\Phi}u+L\phi(u)u = u^{\tau-1}+\lambda f(x, u)+L\phi(u)u: = \overline{h}(x, u).

因为 u\geq0 u\neq0, \; \lambda>0 ,若 L>0 且充分大,则有 \overline{h}(x, u)\geq0 ,即 -\triangle_{\Phi}u+L\phi(u)u\geq0 .

定义 H(t) = t^{2}\phi(t)-\Phi(t), t\in{{\Bbb R}} ,那么存在足够小 \delta>0 ,使得[12]

\begin{equation} \int^{\delta}_{0}\frac{1}{H^{-1}(\Phi(s))}{\rm d}s = +\infty; \end{equation}
(3.2)

利用Pucci-Serrin强极大值原理[15],对任意的 x\in\Omega ,有 u>0 ;再由文献[15,定理5.5.1]的结论推得 u\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,故 E_{\lambda}\subseteq {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .证毕.

为了验证 \Lambda\neq\emptyset ,考虑如下辅助问题

\begin{equation} \left\{ \begin{array}{ll} -\triangle_{\Phi}u = g_{\lambda}(u), \; \; &x\in\Omega, \\ u>0, \; &x\in\Omega, \\ u = 0, &x\in\partial\Omega \end{array} \right. \end{equation}
(3.3)

与问题(3.3)对应的能量泛函为 I_{\lambda}:W^{1, \Phi}_{0}(\Omega)\rightarrow{{\Bbb R}} ,有

\begin{equation} I_{\lambda}(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-G_{\lambda}(u)\Big){\rm d}x, \end{equation}
(3.4)

其中

\begin{equation} G_{\lambda}(t) = \int_{0}^{t}g_{\lambda}(s){\rm d}s, \; \; g_{\lambda}(t) = (t^{+})^{\tau-1}+\lambda c_{0}((t^{+})^{\theta-1}+(t^{+})^{r-1}). \end{equation}
(3.5)

引理3.2  设 (\phi_{1})-(\phi_{3}) (f_{1}) (f_{3}) 成立,则对每一个 \lambda>0 ,能量泛函 I_{\lambda} 满足 \rm Cerami 条件.

  给定 \lambda>0 ,设序列 \{u_{n}\}\subseteq W^{1, \Phi}_{0}(\Omega) ,满足

\begin{equation} |I_{\lambda}(u_{n})|\leq A\; \; (A>0), \end{equation}
(3.6)

\begin{equation} (1+\|u_{n}\|)\|I_{\lambda}'(u_{n})\|\rightarrow0 \; \; \mbox{(在$W^{-1, \widetilde{\Phi}}_{0}(\Omega)$中), } \; n\rightarrow\infty. \end{equation}
(3.7)

由(3.5)式易得,存在 M^{\ast}>0 ,当 t>M^{\ast} , \sigma\in(m, r) 时,有

\begin{equation} 0<\sigma G_{\lambda}(t)<g_{\lambda}(t)t. \end{equation}
(3.8)

又由(3.4)式, (3.6)–(3.8)式和注2.1,当 n 足够大时,有

A+1+o_{n}(1)\|u_{n}\|\geq(\sigma-m)\min\{\|u_{n}\|^{\ell}, \|u_{n}\|^{m}\}-c_{6}.

由此推得 \{u_{n}\} W^{1, \Phi}_{0}(\Omega) 中是有界的.因此,存在 \{u_{n}\} 的子列(仍记为其本身),有

\begin{equation} u_{n}\rightharpoonup u\ \mbox{(在$W^{1, \Phi}_{0}(\Omega)$中), } \end{equation}
(3.9)

\begin{equation} u_{n}\rightarrow u\ \mbox{(在$L_{\Phi}(\Omega)$中).} \end{equation}
(3.10)

由(3.7)式知

|\langle I_{\lambda}'(u_{n}), h\rangle|\leq \frac{o_{n}(1)\|h\|}{1+\|u_{n}\|}, \; \; \forall h\in W_{0}^{1, \Phi}(\Omega),

\begin{equation} \Big|\int_{\Omega}\phi(|\nabla u_{n}|)\nabla u_{n}\nabla h {\rm d}x-\int_{\Omega}g_{\lambda}(u_{n})h {\rm d}x\Big|\leq\frac{o_{n}(1)\|h\|}{1+\|u_{n}\|}, \; \; \forall h\in W^{1, \Phi}_{0}(\Omega). \end{equation}
(3.11)

取测试函数 h = u_{n}-u 代入(3.11)式中,并利用Hölder不等式和插值不等式,那么存在 t\in(0, 1) , \ell<r<\ell^{\ast} ,使得

\begin{eqnarray*} &&\int_{\Omega}\phi(|\nabla u_{n}|)\nabla u_{n}\nabla(u_{n}-u){\rm d}x\\ &\leq&\|u_{n}\|^{\tau-1}\|u_{n}-u\|_{\tau}+\lambda c_{0}\Big(\|u_{n}\|^{\theta-1}\|u_{n} -u\|_{\theta}+\|u_{n}\|^{r-1}\|u_{n}-u\|^{t}_{\ell}\|u_{n}-u\|^{1-t}_{\ell^{*}}\Big)\\ && +\frac{o_{n}(1)c_{7}}{1+\|u_{n}\|}. \end{eqnarray*}

在上式中,由于 W^{1, \Phi}_{0}(\Omega)\hookrightarrow L_{\Phi_{\ast}}(\Omega) , L_{\Phi_{\ast}}(\Omega)\hookrightarrow L^{\ell^{\ast}}(\Omega) W^{1, \Phi}_{0}(\Omega)\hookrightarrow\hookrightarrow L_{\Phi}(\Omega)\hookrightarrow L^{\ell}(\Omega) ,故当 n\rightarrow\infty 时,有

\begin{equation} \limsup\limits_{n\rightarrow\infty}\langle-\triangle_{\Phi}u_{n}, u_{n}-u\rangle\leq0. \end{equation}
(3.12)

即算子 -\triangle_{\Phi} 满足 (S_{+}) 型条件,由引理2.5、(3.9)和(3.12)式推得在 W^{1, \Phi}_{0}(\Omega) u_{n}\rightarrow u .

引理3.3  设 (\phi_{1})-(\phi_{3}) (f_{1}) 成立,则 \Lambda\neq\emptyset ,且对每一个 \lambda\in\Lambda ,有 (0, \lambda]\subseteq\Lambda .

  首先,证明当 \lambda>0 且足够小,能量泛函 I_{\lambda} 满足山路几何条件.

一方面,由引理2.2,对 u\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,当 t\rightarrow\infty 时,有 I_{\lambda}(tu)\rightarrow -\infty .另一方面,令

\beta_{\lambda}(s) = c_{8}s^{\tau-\ell}+\lambda c_{9}(s^{\theta-\ell}+s^{r-\ell}), \ \beta^{\ast}_{\lambda}(s) = (c_{8}+\lambda c_{9})s^{\tau-\ell}+2\lambda c_{9}s^{r-\ell}, \; s>0.

\tau\leq\theta\leq\ell<m<r 可推得 \lambda c_{9}s^{\theta-\ell}\leq\lambda c_{9}(s^{\tau-\ell}+s^{r-\ell}) ,从而 0<\beta_{\lambda}(s)\leq\beta^{\ast}_{\lambda}(s) .

因为 \lim\limits_{s\rightarrow 0^{+}}\beta^{\ast}_{\lambda}(s) = \lim\limits_{s\rightarrow +\infty}\beta^{\ast}_{\lambda}(s) = +\infty ,所以存在 s_{0}>0 ,使得 \beta^{\ast\prime}_{\lambda}(s_{0}) = 0 .通过简单的计算,可得

s_{0} = \left(\frac{(c_{8}+\lambda c_{9})(\ell-\tau)}{2\lambda c_{9}(r-\ell)}\right)^{\frac{1}{r-\tau}} ,

且当 \lambda\rightarrow0^{+} 时, s_{0}\rightarrow+\infty \beta^{\ast}_{\lambda}(s_{0})\rightarrow0 ,则可以找到 \lambda_{0}>0 ,使得 s_{0}\geq1 \beta^{\ast}_{\lambda}(s_{0})\leq\frac{1}{2} .故当 \lambda\in(0, \lambda_{0}) , u\in\partial B_{s_{0}}(0) 时,有

I_{\lambda}(u)\geq \min\{\|u\|^{\ell}, \|u\|^{m}\}-c_{8}\|u\|^{\tau}_{\tau}-\lambda c_{9}\|u\|^{\theta}_{\theta}-\lambda c_{9}\|u\|^{r}_{r} \geq\frac{1}{2}\|u\|^{\ell}>0 = I_{\lambda}(0).

由山路引理,便存在 u_{\lambda}\in W^{1, \Phi}_{0}(\Omega) ,且 u_{\lambda}\neq0 ,使得 I_{\lambda}^{\prime}(u_{\lambda}) = 0 ,即对任意 v\in W^{1, \Phi}_{0}(\Omega) ,有

\begin{equation} \int_{\Omega}\phi(|\nabla u_{\lambda}|)\nabla u_{\lambda}\nabla v{\rm d}x = \int_{\Omega}\Big((u_{\lambda}^{+})^{\tau-1}+\lambda c_{0}((u_{\lambda}^{+})^{\theta-1}+(u_{\lambda}^{+})^{r-1})\Big)v{\rm d}x. \end{equation}
(3.13)

v = -u_{\lambda}^{-} (u_{\lambda}^{-} = \max\{-u_{\lambda}, 0\}) 作为测试函数代入(3.13)式,有 u_{\lambda}^{-} = 0 ,从而得到 u_{\lambda}\geq0 ,再利用引理3.1,便有 u_{\lambda}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

其次,考虑如下截断函数

\overline{g}_{\lambda}(x, u(x)) = \left\{ \begin{array}{ll} (u(x)^{+})^{\tau-1}+\lambda f(x, u(x)^{+}), \; \; &u(x)\leq u_{\lambda}(x), \\ u_{\lambda}(x)^{\tau-1}+\lambda f(x, u_{\lambda}(x)), &\mbox{其它}. \end{array} \right.

此时能量泛函 I(u) 成为 \overline{I}_{\lambda}:W^{1, \Phi}_{0}(\Omega)\rightarrow{{\Bbb R}} ,有

\begin{equation} \overline{I}_{\lambda}(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-\overline{G}_{\lambda}(x, u)\Big){\rm d}x, \end{equation}
(3.14)

其中 \overline{G}_{\lambda}(x, t) = \int^{t}_{0}\overline{g}_{\lambda}(x, s){\rm d}s .

容易验证泛函 \overline{I}_{\lambda}(u) 是强制且弱下半连续的,因此存在极小值点 \overline{u}_{\lambda}\in W^{1, \Phi}_{0}(\Omega) ,使得对任意 v\in W^{1, \Phi}_{0}(\Omega) ,成立

\begin{equation} \int_{\Omega}\phi(|\nabla \overline{u}_{\lambda}|)\nabla \overline{u}_{\lambda}\nabla v{\rm d}x = \int_{\Omega}\overline{g}_{\lambda}(x, \overline{u}_{\lambda})v{\rm d}x. \end{equation}
(3.15)

在(3.15)式中取 v = -\overline{u}_{\lambda}^{-} 作为测试函数便得到 \overline{u}_{\lambda}\geq0 .利用 (f_{1}) 和引理2.2,取 u = \frac{t}{2}u_{\lambda} ,则当 t 足够小时,我们有 \overline{I}_{\lambda}(\frac{t}{2}u_{\lambda})<0 .因此存在 \widetilde{t}_{0}>0 ,使得 \overline{I}_{\lambda}(\widetilde{t_{0}}u_{\lambda})<0 . \overline{I}_{\lambda}(\overline{u} _{\lambda}) = \min\limits_{v\in W^{1, \Phi}_{0}(\Omega)}\overline{I}_{\lambda}(v)\leq\overline{I} _{\lambda}(\widetilde{t}_{0}u_{\lambda})<0 = \overline{I}_{\lambda}(0) \overline{u}_{\lambda}\neq0 .

v = (\overline{u}_{\lambda}-u_{\lambda})^{+} ((\overline{u}_{\lambda}-u_{\lambda})^{+} = \max\{(\overline{u}_{\lambda}-u_{\lambda}), 0\}) 作为测试函数代入(3.15)式中,由 (f_{1}) 和(3.14)式,有

\int_{\Omega}\phi(|\nabla \overline{u}_{\lambda}|)\nabla \overline{u}_{\lambda}\nabla(\overline{u}_{\lambda}-u_{\lambda})^{+}{\rm d}x\leq\int _{\Omega}\phi(|\nabla u_{\lambda}|)\nabla u_{\lambda}\nabla(\overline{u}_{\lambda}-u_{\lambda})^{+}{\rm d}x.

(\phi_{2}) 可得 \overline{u}_{\lambda}\leq u_{\lambda} ,故存在 \lambda\in(0, \lambda_{0}) ,即 \Lambda\neq\emptyset .

最后,验证若 \lambda\in\Lambda ,则 (0, \lambda]\subseteq\Lambda .

\lambda\in\Lambda ,存在 u_{\lambda}\in E_{\lambda} ,任取 \gamma\in(0, \lambda] ,在 u_{\lambda} 点处作与前面相似的截断 \widetilde{g}_{\lambda} 以及 \widetilde{G}_{\lambda} ,对应的能量泛函类似于(3.14)式,重复前面的证明过程,可得存在 u_{\gamma}\in E_{\gamma} ,即 \gamma\in\Lambda .因此 (0, \lambda]\subseteq\Lambda .证毕.

利用上述引理结合引理2.4容易得到下面推论.

推论3.1  设 (\phi_{1})-(\phi_{3}) (f_{1}) 成立,则对每一个 \lambda\in\Lambda ,存在 u_{\lambda}\in E_{\lambda} ,当 \gamma\in(0, \lambda) 时,存在 u_{\gamma}\in E_{\gamma} 满足 u_{\lambda}-u_{\gamma}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

引理3.4  设 1<\ell<m<\infty ,有

\begin{equation} h(m, \ell;t) = \frac{(m-1)t^{m-2}+(\ell-1)t^{\ell-2}}{(m-1)(t^{m-1}+t^{\ell-1})^{\frac{m-2}{m-1}}}, \end{equation}
(3.16)

\inf\limits_{t>0}h(m, \ell;t)>0 \inf\limits_{t>0}h(\ell, m;t)>0 .

此引理的证明是初等的(参见文献[16]).

引理3.5  设 (\phi_{1})-(\phi_{3}) 成立,则存在常数 \omega>0 ,使得对一切 u>0 , \varphi\geq0 ,有

\begin{equation} \phi(|\nabla u|)\nabla u\nabla\Big(\frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\Big)\leq\frac{1}{\omega}(|\nabla\varphi|^{m}+|\nabla\varphi^{\frac{m}{\ell}}|^{\ell}), \; \; \forall x\in\Omega. \end{equation}
(3.17)

  首先,由简单的计算,有

\begin{eqnarray*} &&\phi(|\nabla u|)\nabla u\nabla\Big(\frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\Big)\\ &\leq& m\phi(|\nabla u|)|\nabla u||\nabla\varphi|\frac{\varphi^{m-1}}{u^{m-1}+u^{\ell-1}}-\phi(|\nabla u|)|\nabla u|^{2}\varphi^{m}\frac{(m-1)u^{m-2}+(\ell-1)u^{\ell-2}}{(u^{m-1}+u^{\ell-1})^{2}}. \end{eqnarray*}

利用Young不等式和引理3.4,当 x\in\Omega\cap\{|\nabla u|>1\} 时,有

\begin{eqnarray*} &&\phi(|\nabla u|)\nabla u\nabla\Big(\frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\Big)\\ & = &\frac{|\nabla\varphi|^{m}}{\omega^{m-1}}+\frac{\omega(m-1)\varphi^{m}\phi(|\nabla u|)|\nabla u|^{2}}{(u^{m-1}+u^{\ell-1})^{\frac{m}{m-1}}} ((\phi(1))^\frac{1}{m-1}-\frac{1}{\omega}(h(m, \ell;u))), \end{eqnarray*}

其中 h(m, \ell;u) 为(3.16)式所定义.由引理3.4,有 \inf\limits_{u>0}h(m, \ell;u)>0 ,则存在足够小的常数 \omega_{1}>0 满足 \omega_{1}(\phi(1))^{\frac{1}{m-1}}\leq \inf\limits_{u>0}h(m, \ell;u) ,于是

\begin{equation} \phi(|\nabla u|)\nabla u\nabla\Big(\frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\Big)\leq\frac{1}{\omega^{m-1}_{1}}|\nabla\varphi|^{m}, \; \; x\in\Omega\cap\{|\nabla u|>1\}. \end{equation}
(3.18)

类似地,如果取 \psi = \varphi^{\frac{m}{\ell}} ,则存在足够小的常数 \omega_{2}>0 满足 \omega_{2}(\phi(1))^{\frac{1}{\ell-1}}\leq \inf\limits_{u>0}h(\ell, m;u) ,因此

\begin{equation} \phi(|\nabla u|)\nabla u\nabla\Big(\frac{\psi^{\ell}}{u^{m-1}+u^{\ell-1}}\Big)\leq\frac{1}{\omega^{\ell-1}_{2}}|\nabla(\varphi^{\frac{m}{\ell}})|^{\ell}, \; \; x\in\Omega\cap\{|\nabla u|\leq1\}. \end{equation}
(3.19)

\omega = \min\{\omega_{1}^{m-1}, \omega_{2}^{\ell-1}\} ,结合(3.18)式和(3.19)式, (3.17)式得证.证毕.

引理3.6  设 (\phi_{1})-(\phi_{3}) (f_{1}) 成立,若 \lambda^{\ast} = \sup\Lambda ,则 \lambda^{\ast}<\infty .

  给定 \lambda\in\Lambda, \; u_{\lambda}\in E_{\lambda} ,不妨设 \lambda>1 (否则 \Lambda 有界).考虑如下截断函数

\begin{eqnarray*} z(x, u(x)) = \left\{ \begin{array}{ll} \lambda\big(c_{1}(u(x)^{+})^{m-1}+c_{2}(u(x)^{+})^{\ell-1}\big), \; \; &u(x)\leq u_{\lambda}(x), \\ \lambda\big(c_{1}(u_{\lambda}(x))^{m-1}+c_{2}(u_{\lambda}(x))^{\ell-1}\big), &\mbox{其它}. \end{array} \right. \end{eqnarray*}

此时能量泛函 I(u) 成为 \Psi:W^{1, \Phi}_{0}(\Omega)\rightarrow{{\Bbb R}} ,有

\begin{equation} \Psi(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-Z(x, u)\Big){\rm d}x, \end{equation}
(3.20)

其中 Z(x, t) = \int^{t}_{0}z(x, s){\rm d}s .

重复引理3.3的证明方法,则存在极小值点 u_{z} ,使得 \Psi'(u_{z}) = 0 ,且 u_{z}\in [0, u_{\lambda}] .注意到 u_{z} , \phi_{1}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,当 t>0 且足够小,则有 t\phi_{1}\leq u_{z} .又由 \overline{\lambda}_{1}\int_{\Omega}\Phi(u) {\rm d}x\leq\int_{\Omega}\Phi(|\nabla u|){\rm d}x ,推得

\Psi(t\phi_{1})\leq\Big(\overline{\lambda}_{1}^{\ell}\|\phi_{1}\|^{\ell}_{\Phi} -\frac{\lambda c_{2}}{\ell}\|\phi_{1}\|^{\ell}_{\ell}\Big)t^{\ell}.

因此

\Psi(u_{z}) = \min\limits_{v\in W^{1, \Phi}_{0}(\Omega)}\Psi(v)\leq \Psi(t\phi_{1})<0 = \Psi(0),

则有 u_{z}\neq0 .于是方程

\begin{equation} -\triangle_{\Phi}u = \lambda c_{1}|u|^{m-2}u+\lambda c_{2}|u|^{\ell-2}u \end{equation}
(3.21)

存在正解 u\in W^{1, \Phi}_{0}(\Omega) .

现在,我们断言 \lambda^{\ast}<\infty .事实上,由引理3.1,有 u\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,从而可以选取 \varphi\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,使得 \frac{\varphi}{u}\in L^{\infty}(\Omega) (参见文献[16]),故有 \frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\in W^{1, \Phi}_{0}(\Omega) .由于 u 是方程(3.21)的正解,取测试函数 \varsigma = \frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}} ,利用引理3.5,那么存在不依赖于 u, \; \lambda 的常数 \omega>0 ,使得

\begin{eqnarray*} \int_{\Omega}\phi(|\nabla u|)\nabla u\nabla\Big(\frac{\varphi^{m}}{u^{m-1}+u^{\ell-1}}\Big){\rm d}x&\leq& \frac{1}{\omega}\int_{\Omega\cap\{|\nabla u|>1\}}|\nabla\varphi|^{m}{\rm d}x+\frac{1}{\omega}\int_{\Omega\cap\{|\nabla u|\leq1\}}|\nabla\varphi^{\frac{m}{\ell}}|^{\ell}{\rm d}x\\ &\leq&\frac{1}{\omega}\int_{\Omega}|\nabla\varphi|^{m}{\rm d}x+\frac{1}{\omega}\int_{\Omega}|\nabla\varphi^{\frac{m}{\ell}}|^{\ell}{\rm d}x, \end{eqnarray*}

则有

\begin{equation} \lambda \min\{c_{1}, c_{2}\}\int_{\Omega}\varphi^{m}{\rm d}x\leq\frac{1}{\omega}\int_{\Omega}(|\nabla\varphi|^{m} +|\nabla\varphi^{\frac{m}{\ell}}|^{\ell}){\rm d}x. \end{equation}
(3.22)

因此,由(3.22)式可推出 \lambda^{\ast}<\infty .证毕.

引理3.7  设 (\phi_{1})-(\phi_{3}) (f_{1})-(f_{3}) 成立,则对每一个 \lambda \in\left(0, \lambda^{*}\right) ,问题(1.1)至少存在两个解 \hat{u}_{e}, \overline{u}_{e} \in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,且 \hat{u}_{e} \leq \overline{u}_{e} .

  令 e\in (\lambda, \lambda^{\ast}) ,则由引理3.3,存在 u_{e}\in E_{e}\subseteq {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .作截断函数

\begin{eqnarray*} \widehat{g}_{\lambda}(x, u(x)) = \left\{ \begin{array}{ll} (u(x)^{+})^{\tau-1}+\lambda f(x, u(x)^{+}), \; \; &u(x)\leq u_{e}(x), \\ (u_{e}(x))^{\tau-1}+\lambda f(x, u_{e}(x)), &\mbox{其它}. \end{array} \right. \end{eqnarray*}

此时能量泛函 I(u) 成为

\widehat{I}_{\lambda}(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-\widehat{G}_{\lambda}(x, u)\Big){\rm d}x, \; u\in W^{1, \Phi}_{0}(\Omega),

其中 \widehat{G}_{\lambda}(x, t) = \int^{t}_{0}\widehat{g}_{\lambda}(x, s){\rm d}s .类似引理3.3的证明方法,可以找到 \widehat{u}_{e}\in W^{1, \Phi}_{0}(\Omega) ,使得

\widehat{u}_{e}(x)\in K_{\widehat{I}_{\lambda}}\subseteq[0, u_{e}(x)]\cap {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}).

作另一截断函数

\begin{eqnarray*} g_{\lambda}^{\ast}(x, u(x)) = \left\{ \begin{array}{ll} (\widehat{u}_{e}(x))^{\tau-1}+\lambda f(x, \widehat{u}_{e}(x)), \; \; &u(x)\leq \widehat{u}_{e}(x), \\ (u(x))^{\tau-1}+\lambda f(x, u(x)), &\mbox{其它}. \end{array} \right. \end{eqnarray*}

此时能量泛函 I(u) 成为

I_{\lambda}^{\ast}(u) = \int_{\Omega}\Big( \Phi(|\nabla u|)-G_{\lambda}^{\ast}(x, u)\Big){\rm d}x, \; u\in W^{1, \Phi}_{0}(\Omega),

其中 G_{\lambda}^{\ast}(x, t) = \int^{t}_{0}g_{\lambda}^{\ast}(x, s){\rm d}s .同样,可知 K_{I_{\lambda}^{\ast}}\subseteq[\widehat{u}_{e}(x))\cap {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) ,故假设 K_{I_{\lambda}^{\ast}}\cap[0, u_{e}(x)] = \widehat{u}_{e}(x) (否则问题(1.1)存在另一个正解且大于 \widehat{u}_{e}(x) ).

考虑截断函数

\begin{eqnarray*} \widetilde{g}_{\lambda}^{\ast}(x, u(x)) = \left\{ \begin{array}{ll} g_{\lambda}^{\ast}(x, u(x)), \; \; &u(x)\leq u_{e}(x), \\ g_{\lambda}^{\ast}(x, u_{e}(x)), &\mbox{其它}. \end{array} \right. \end{eqnarray*}

此时能量泛函 I(u) 成为

\widetilde{I}_{\lambda}^{\ast}(u) = \int_{\Omega}\Big(\Phi(|\nabla u|) -\widetilde{G}_{\lambda}^{\ast}(x, u)\Big){\rm d}x, \; u\in W^{1, \Phi}_{0}(\Omega),

其中 \widetilde{G}_{\lambda}^{\ast}(x, t) = \int^{t}_{0}\widetilde{g}_{\lambda}^{\ast}(x, s){\rm d}s .类似地,存在 \widetilde{u}^{\ast}_{e}\in W^{1, \Phi}_{0}(\Omega) ,使得

\widetilde{u}_{e}^{\ast}(x)\in K_{\widetilde{I}_{\lambda}^{\ast}}\subseteq[ \widehat{u}_{e}(x), u_{e}(x)]\cap {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}).

注意到

I^{\ast}_{\lambda}(u)|_{[u_{1}, u_{2}]}: = \{I^{\ast}_{\lambda}(u)|u\in W^{1, \Phi}_{0}(\Omega), \; u_{1}\leq u\leq u_{2}\},

则有 \widetilde{I}_{\lambda}^{\ast}(u) |_{[0, u_{e}]} = I^{\ast}_{\lambda}(u)|_{[0, u_{e}]} ,因此 \widetilde{u}_{e}^{\ast}(x)\in K_{{I}_{\lambda}^{\ast}}\cap[0, u_{e}(x)] ,故有 \widetilde{u}_{e}^{\ast} = \widehat{u}_{e} .进一步,由引理2.3,推出 \widehat{u}_{e} I^{\ast}_{\lambda} W^{1, \Phi}_{0}(\Omega) 上的局部极小点.

K_{I_{\lambda}^{\ast}} 是有限的(否则问题(1.1)存在无限个正解且大于 \widehat{u}_{e} ),因此存在 \alpha\in (0, 1) ,使得 I_{\lambda}^{\ast}(\widehat{u}_{e})<m_{\alpha}: = \inf\{I_{\lambda}^{\ast}(u):\|u-\widehat{u}_{e}\| = \alpha\} . (f_{2}) 知当 t\rightarrow\infty 时, I_{\lambda}^{\ast}(tu)\rightarrow-\infty .于是利用山路引理,则存在 \overline{u}_{e}\in W^{1, \Phi}_{0}(\Omega) 满足 \overline{u}_{e}\in K_{I_{\lambda}^{\ast}} ,且 I_{\lambda}^{\ast}(\overline{u}_{e})\geq m_{\alpha} .又因为 K_{\widetilde{I}_{\lambda}^{\ast}} \subseteq[\widehat{u}_{e}(x), u_{e}(x)] ,便有 \widehat{u}_{e}\leq\overline{u}_{e} ,且 \widehat{u} _{e}\neq\overline{u}_{e} .证毕.

引理3.8  设 (\phi_{1})-(\phi_{3}) (f_{1})-(f_{3}) 成立,则 \lambda^{\ast}\in\Lambda .

  设 \{\lambda_{n}\}\subseteq(0, \lambda^{\ast}) ,且 \lambda_{n}\uparrow\lambda^{\ast} .由推论3.1,可以找到序列 \{u_{n}\}\subseteq W^{1, \Phi}_{0}(\Omega) ,使得 u_{n}\in E_{\lambda_{n}} , u_{n}\leq u_{n+1} ,且满足

\begin{equation} \int_{\Omega}\phi(|\nabla u_{n}|)\nabla u_{n}\nabla v{\rm d}x = \int_{\Omega}u_{n}^{\tau-1}v{\rm d}x+\lambda_{n}\int_{\Omega}f(x, u_{n})v{\rm d}x, \; \; \; \forall v\in W^{1, \Phi}_{0}(\Omega). \end{equation}
(3.23)

由引理3.3,有 I(u_{n})<0 ,即

\begin{equation} \int_{\Omega}\Phi(|\nabla u_{n}|){\rm d}x-\frac{1}{\tau}\|u_{n}\|^{\tau}_{\tau}-\lambda_{n}\int_{\Omega}F(x, u_{n}){\rm d}x<0. \end{equation}
(3.24)

对(3.23)式取测试函数 v = u_{n} ,由(3.24)式和注2.1,有

\int_{\Omega}\phi(|\nabla u_{n}|)|\nabla u_{n}|^{2}{\rm d}x\leq \frac{m}{\tau}\|u_{n}\|^{\tau}_{\tau}+\lambda_{n}m\int_{\Omega}F(x, u_{n}){\rm d}x.

通过计算可得

\lambda_{n}\int_{\Omega}(f(x, u_{n})u_{n}-mF(x, u_{n})){\rm d}x\leq(\frac{m}{\tau}-1)\|u_{n}\|^{\tau}_{\tau}.

由于 \lambda_{1}\leq\lambda_{n} ,因此

\begin{equation} \int_{\Omega}(f(x, u_{n})u_{n}-mF(x, u_{n})){\rm d}x\leq\frac{1}{\lambda_{1}}(\frac{m}{\tau}-1)\|u_{n}\|^{\tau}_{\tau}, \; \; \; n\in{\Bbb N}. \end{equation}
(3.25)

(f_{1}) (f_{3}) f(x, u_{n})u_{n}-mF(x, u_{n})\geq c_{10}u_{n}^{\beta}-c_{11} , (x, u_{n})\in\Omega\times{\Bbb R_{+}} ,从(3.25)式可得

c_{10}\|u_{n}\|^{\beta}_{\beta}\leq \frac{1}{\lambda_{1}}(\frac{m}{\tau}-1)\|u_{n}\|^{\tau}_{\tau}+c_{12}\leq c_{13}\|u_{n}\|^{\tau}_{\beta}+c_{14}, \quad n\in{\Bbb N}.

注意到 \tau<\beta ,故 \|u_{n}\|_{\beta}\leq c_{15}, \; n\in{\Bbb N} .

下面将分两种情况证明 \{u_{n}\} W^{1, \Phi}_{0}(\Omega) 中有界.

情形1  若 r\leq\beta ,则 \{u_{n}\}\subseteq L^{r}(\Omega) 有界,由条件 (f_{1}) 、注2.1和引理2.2,有

\ell\min\{\|u_{n}\|^{\ell}, \|u_{n}\|^{m}\}\leq|\Omega|^{1-\frac{\tau}{r}}\|u_{n}\|^{\tau}_{r}+\lambda^{\ast}c_{0}\int_{\Omega}(1+2u_{n}^{r}){\rm d}x,

因此可得 \{u_{n}\} W^{1, \Phi}_{0}(\Omega) 中有界.

情形2  若 \beta<r<\ell^{\ast} ,令 t\in(0, 1) 满足

\begin{equation} \frac{1}{r} = \frac{1-t}{\beta}+\frac{t}{\ell^{\ast}}. \end{equation}
(3.26)

由插值不等式,得到 \|u_{n}\|_{r}\leq\|u_{n}\|^{1-t}_{\beta}\|u_{n}\|^{t}_{\ell^{\ast}} ,从而 \|u_{n}\|^{r}_{r}\leq c_{16}\|u_{n}\|^{tr}_{\ell^{\ast}} ,因此

\ell\min\{\|u_{n}\|^{\ell}, \|u_{n}\|^{m}\}\leq\ell\int_{\Omega}\Phi(|\nabla u_{n}|){\rm d}x\leq c_{17}(1+\|u_{n}\|^{tr}_{\ell^{\ast}})\leq c_{18}(1+\|u_{n}\|^{tr}).

由条件 (f_{3}) 和(3.26)式知 tr<\ell ,故 \{u_{n}\} W^{1, \Phi}_{0}(\Omega) 中有界.

于是,存在 \{u_{n}\} 的子列(仍记为其本身),有

\begin{equation} u_{n}\rightharpoonup u_{\lambda^{\ast}}\ \mbox{(在$W^{1, \Phi}_{0}(\Omega)$中), } \end{equation}
(3.27)

\begin{equation} u_{n}\rightarrow u_{\lambda^{\ast}}\ \mbox{(在$L_{\Phi}(\Omega)$中).} \end{equation}
(3.28)

在(3.23)式中取 v = u_{n}-u_{\lambda^{\ast}} 为测试函数并结合(3.28)式,有

\begin{equation} \limsup\limits_{n\rightarrow\infty}\langle-\triangle_{\Phi}u_{n}, u_{n}-u_{\lambda^{\ast}}\rangle\leq0. \end{equation}
(3.29)

注意到算子 -\triangle_{\Phi} 满足 (S_{+}) 型条件,由(3.27)式, (3.29)式和引理2.5,得到在 W^{1, \Phi}_{0}(\Omega) u_{n}\rightarrow u_{\lambda^{\ast}} ,且 0\leq u_{n}\leq u_{\lambda^{\ast}} .在(3.23)式中令 n\rightarrow\infty ,推得

\langle-\triangle_{\Phi}u_{\lambda^{\ast}}, v\rangle = \int_{\Omega}(u_{\lambda^{\ast}})^{\tau-1}v {\rm d}x+\lambda^{\ast} \int_{\Omega}f(x, u_{\lambda^{\ast}})v {\rm d}x, \; \; \; \forall v\in W^{1, \Phi}_{0}(\Omega).

因此 u_{\lambda^{\ast}}\in E_{\lambda^{\ast}} ,即 \lambda^{\ast}\in\Lambda .证毕.

定理1.1的证明  根据引理3.7,对每一个 \lambda\in(0, \lambda^{\ast}) ,问题(1.1)至少存在两个解 \hat{u}_{e}, \overline{u}_{e} \in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) \hat{u}_{e} \leq \overline{u}_{e} ;由引理3.8知 \lambda^{\ast}\in\Lambda ,进一步,当 \lambda = \lambda^{\ast} 时,问题(1.1)至少存在一个解 u_{\lambda^{\ast}} ;最后,当 \lambda>\lambda^{\ast} 时,易知问题(1.1)无解.证毕.

4 定理1.2的证明

首先,考虑下列Dirichlet问题

\begin{equation} \left\{ \begin{array}{ll} -\triangle_{\Phi}u = u^{\tau-1}, \; \; &x\in\Omega, \\ u>0, &x\in\Omega, \\ u = 0, &x\in\partial\Omega. \end{array} \right. \end{equation}
(4.1)

易知(4.1)式对应的能量泛函为 \widetilde{\Psi}(u) = \int_{\Omega} \big(\Phi(|\nabla u|)-\frac{1}{\tau}(u^{+})^{\tau}\big){\rm d}x W^{1, \Phi}_{0}(\Omega) 上是强制且弱下半连续的,则存在 \widetilde{u}_{\lambda}\in W^{1, \Phi}_{0}(\Omega) ,使得 \widetilde{\Psi}(\widetilde{u}_{\lambda}) = \inf\limits_{v\in W^{1, \Phi}_{0}(\Omega)} \widetilde{\Psi}(v) ,且 \widetilde{\Psi}(\widetilde{u}_{\lambda})<0 = \widetilde{\Psi}(0) ,所以 \widetilde{u}_{\lambda}\neq0 .进一步,有 \widetilde{\Psi}^{\prime}(\widetilde{u}_{\lambda}) = 0 ,即

\begin{equation} \int_{\Omega}\phi(|\nabla\widetilde{u}_{\lambda}|)\nabla\widetilde{u}_{\lambda}\nabla v{\rm d}x = \int_{\Omega}(\widetilde{u}_{\lambda}^{+})^{\tau-1}v{\rm d}x, \; \; \; \forall v\in W^{1, \Phi}_{0}(\Omega). \end{equation}
(4.2)

在(4.2)式中取 v = -\widetilde{u}_{\lambda}^{-} 作为测试函数,得 \widetilde{u}_{\lambda}\geq0 ,且 \widetilde{u}_{\lambda}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

下面我们证明由(4.2)式给出的 \widetilde{u}_{\lambda} 是问题(4.1)的唯一解,为此,我们先证明下列引理.

引理4.1  设 (\phi_{1})-(\phi_{4}) (f_{1})-(f_{3}) 成立,则 \widetilde{u}_{\lambda}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) 是问题(4.1)的唯一解且对所有的 \overline{u}\in E_{\lambda} ,有 \widetilde{u}_{\lambda}\leq\overline{u} .

  定义 Q:L^{1}(\Omega)\rightarrow{{\Bbb R}} \cup\{\infty\} ,有

Q(v) = \left\{ \begin{array}{ll} { } \int_{\Omega}\Phi(|\nabla v^{\frac{1}{\ell}}|){\rm d}x, \; \; &v\geq0, \; v^{\frac{1}{\ell}}\in W^{1, \Phi}_{0}(\Omega), \\ +\infty, &\mbox{其它}. \end{array} \right.

我们断言映射 v\mapsto\int_{\Omega}\Phi(|\nabla v^{\frac{1}{\ell}}|){\rm d}x 是凸的.事实上,若令 v = ((1-t)v_{1}+tv_{2})^{\frac{1}{\ell}} , t\in[0, 1] , v_{1} , v_{2}\in \overline{Q} = \{v|v\in L^{1}(\Omega), \; Q(v)<+\infty\} ,那么

|\nabla v|\leq\Big((1-t)|\nabla v_{1}^{\frac{1}{\ell}}|^{\ell}+t|\nabla v_{2}^{\frac{1}{\ell}}|^{\ell}\Big)^{\frac{1}{\ell}}.

又因为 \Phi(t) 是增函数且 \Phi(t^{\frac{1}{\ell}}) 是凸的,从而 \int_{\Omega}\Phi(|\nabla v^{\frac{1}{\ell}}|){\rm d}x 也是凸的.

由Fatou引理,易知 Q 是弱下半连续的.若 \widetilde{u}_{\lambda}^{\ast}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) 是问题(4.1)的另一个解,对每一个 h\in C_{0}^{1}(\Omega) ,当 t 足够小时, \widetilde{u}^{\ell}_{\lambda}+th, \; \widetilde{u}^{\ast\ell}_{\lambda}+th\in\overline{Q} ,进一步,对所有的 h\in W^{1, \Phi}_{0}(\Omega) (注意到 C_{0}^{1}(\Omega) W^{1, \Phi}_{0}(\Omega) 中稠密).又由 Q 是凸的,则 Q' 是单调的,对 \tau<\ell ,便有

0\leq\frac{1}{\ell}\int_{\Omega}\Big(\frac{(\widetilde{u}_{\lambda}^{+})^{\tau-1}} {\widetilde{u}_{\lambda}^{\ell-1}}-\frac{({\widetilde{u}^{\ast+}_{\lambda}})^{\tau-1}}{{\widetilde{u}^{\ast(\ell-1)}_{\lambda}}}\Big) (\widetilde{u}^{\ell}_{\lambda}-\widetilde{u}^{\ast\ell}_{\lambda}){\rm d}x \leq0.

因此 \widetilde{u}_{\lambda} = \widetilde{u}^{\ast}_{\lambda}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) 是方程(4.1)的唯一解.

对任意 \overline{u}\in E_{\lambda} ,作截断函数

\widehat{z}(x, u(x)) = \left\{ \begin{array}{ll} ({u(x)^{+}})^{\tau-1}, \; \; &u(x)\leq\overline{u}(x), \\ u_{\lambda}(x)^{\tau-1}, &\mbox{其它}. \end{array} \right.

此时能量泛函 \widetilde{\Psi}(u) 成为

\widehat{\Psi}(u) = \int_{\Omega}\Big(\Phi(|\nabla u|)-\widehat{Z}(x, u(x))\Big){\rm d}x, \; u\in W^{1, \Phi}_{0}(\Omega),

其中 \widehat{Z}(x, t) = \int^{t}_{0}\widehat{z}(x, s){\rm d}s .与引理3.3的证明类似,存在 \widehat{u}_{\lambda}\in W^{1, \Phi}_{0}(\Omega) ,使得

\widehat{\Psi}(\widehat{u}_{\lambda}) = \inf\limits_{v\in W^{1, \Phi}_{0}(\Omega)}\widehat{\Psi}(v)<0 = \widehat{\Psi}(0),

从而 \widehat{u}_{\lambda}\neq0 ,且 \widehat{u}_{\lambda}\in [0, \overline{u}] .由唯一性,则有 0<\widetilde{u}_{\lambda} = \widehat{u}_{\lambda}\leq \overline{u} .证毕.

定理1.2的证明  首先,我们有 E_{\lambda} 是下有向集,即若 u_{1}, \; u_{2}\in E_{\lambda} ,则存在 \widetilde{u}_{0}(x)\in E_{\lambda} ,使得 \widetilde{u}_{0}(x)\leq\widetilde{u}(x): = \min\{u_{1}, \; u_{2}\} .由文献[17]知,可找到减序列 \{u_{n}\}\subseteq E_{\lambda} ,使得 \inf E_{\lambda} = \inf\{u_{n}:n\in {\Bbb N}\} ,且

\int_{\Omega}\phi(|\nabla u_{n}|)\nabla u_{n}\nabla v{\rm d}x = \int_{\Omega}u_{n}^{\tau-1}v{\rm d}x+\lambda\int_{\Omega}f(x, u_{n})v{\rm d}x, \; \; \; \forall v\in W^{1, \Phi}_{0}(\Omega).

重复引理3.7的证明,存在 \overline{u}_{\lambda}\in W^{1, \Phi}_{0}(\Omega) ,使得 u_{n}\rightarrow\overline{u}_{\lambda} (在 W^{1, \Phi}_{0}(\Omega) 中),由此可得

\int_{\Omega}\phi(|\nabla \overline{u}_{\lambda}|)\nabla \overline{u}_{\lambda}\nabla v{\rm d}x = \int_{\Omega}\overline{u}_{\lambda}^{\tau-1}v{\rm d}x+\lambda\int_{\Omega}f(x, \overline{u}_{\lambda})v{\rm d}x, \; \; \; \forall v\in W^{1, \Phi}_{0}(\Omega).

由引理4.1,对任意的 n\in {\Bbb N} , \widetilde{u}_{\lambda}\leq u_{n} ,从而 \widetilde{u}_{\lambda}\leq\overline{u}_{\lambda} ,即 \overline{u}_{\lambda} = \inf E_{\lambda} .证毕.

5 定理1.3的证明

\lambda_{1}, \lambda_{2}\in\Lambda ,且 \lambda_{2}>\lambda_{1} ,由定理1.2知存在 \overline{u}_{\lambda_{2}}\in E_{\lambda_{2}} , \overline{u}_{\lambda_{1}}\in E_{\lambda_{1}} ,利用推论3.1,有 \overline{u}_{\lambda_{2}}-\overline{u}_{\lambda_{1}}\in {\rm int}(C_{0}^{1}(\overline{\Omega})_{+}) .

\{\lambda_{n}\}\subseteq\Lambda ,且 \lambda_{n}\leq\lambda_{n+1}, \; \lim\limits_{n\rightarrow\infty}\lambda_{n} = \lambda ,由正则性结果(参见文献[10]),存在 \eta\in(0, 1) 和常数 c_{19}>0 ( c_{19} n 无关),使得 \overline{u}_{\lambda_{n}}\in C_{0}^{1, \eta}(\overline{\Omega}) ,且 \|\overline{u}_{\lambda_{n}}\|_{C_{0}^{1, \eta}(\overline{\Omega})}\leq c_{19} .又由 C_{0}^{1, \eta}(\overline{\Omega})\hookrightarrow C_{0}^{1}(\overline{\Omega}) 是紧的,因此存在子列(仍记为其本身)及 \widetilde{u}_{\lambda}\in C_{0}^{1}(\overline{\Omega}) ,使得 \overline{u}_{\lambda_{n}}\rightarrow \widetilde{u}_{\lambda} (n\rightarrow\infty) .

最后,我们断言 \overline{u}_{\lambda} = \widetilde{u}_{\lambda} .用反证法,若 \overline{u}_{\lambda}\neq\widetilde{u}_{\lambda} ,则存在 x_{0}\in\Omega ,使得 \overline{u}_{\lambda}(x_{0})<\widetilde{u}_{\lambda}(x_{0}) .对上述的 \lambda_{n} ,当 n 足够大时, \overline{u}_{\lambda}(x_{0})<\overline{u}_{\lambda_{n}}(x_{0}) ,而 \lambda_{n}\leq\lambda ,这与定理1.3的第一个结论矛盾,因此 \overline{u}_{\lambda} = \widetilde{u}_{\lambda} .

参考文献

Rao M N , Ren Z D . Theory of Orlicz Spaces. New York: Marcel Dekker, 1991

[本文引用: 2]

Fukagai N , Ito M , Narukawa K .

Positive solutions of quasilinear elliptic equations with critical Orlicz-Sobolev nonlinearity on {\Bbb {R^{N}}}

Funkc Ekvacioj, 2006, 49 (2): 235- 267

DOI:10.1619/fesi.49.235      [本文引用: 2]

Huentutripay J , Manasevich R .

Nonlinear eigenvalues for a quasilinear elliptic system in Orlicz-Sobolev spaces

J Dyn Differ Equ, 2006, 18 (4): 901- 929

DOI:10.1007/s10884-006-9049-7     

Li X W , Jia G .

Multiplicity of solutions for quasilinear elliptic problems involving Φ-Laplacian operator and critical growth

Electronic J Qual Theo, 2019, (6): 1- 15

URL     [本文引用: 1]

Azorero J G , Manfredi J , Alonso I P .

Sobolev versus Hölder local minimizers and global multiplicity for some quasilinear elliptic equations

Commun Contemp Math, 2000, 2 (3): 385- 404

DOI:10.1142/S0219199700000190      [本文引用: 1]

Marano S A , Marino G , Papageorgiou N S .

On a Dirichlet problem with (p, q)-Laplacian and parametric concave-convex nonlinearity

J Math Anal Appl, 2019, 475 (2): 1093- 1107

URL     [本文引用: 1]

Marano S A , Papageorgiou N S .

Positive solutions to a Dirichlet problem with p-Laplacian and concave-convex nonlinearity depending on a parameter

Commun Pur Appl Anal, 2013, 12 (2): 815- 829

URL     [本文引用: 1]

Papageorgiou N S , Radulescu V D , Repovs D .

Robin problems with indefinite linear part and competition phenomena

Commun Pur Appl Anal, 2017, 16 (4): 1293- 1314

DOI:10.3934/cpaa.2017063      [本文引用: 2]

Gossez J P .

Orlicz-Sobolev Spaces and Nonlinear Elliptic Boundary Value Problems

Leipzig: Teubner, 1979, 59- 94

URL     [本文引用: 2]

Philippe C , Pagter B D , Sweers G .

Existence of solutions to a semilinear elliptic system through Orlicz-Sobolev spaces

Mediterr J Math, 2004, 1 (3): 241- 267

DOI:10.1007/s00009-004-0014-6      [本文引用: 2]

Tan Z , Fang F .

Orlicz-Sobolev vs Hölder local minimizer and multiplicity results for quasilinear elliptic equations

J Math Anal Appl, 2013, 402 (1): 348- 370

[本文引用: 2]

Carvalho M L , Goncalves V , Silva E D .

On quasilinear elliptic problems without the Ambrosetti-Rabinowitz condition

J Math Anal Appl, 2015, 426 (1): 466- 483

URL     [本文引用: 2]

Ladyzhenskaya O A , Ural'tseva N N . Linear and Quasilinear Elliptic Equations. New York: Academic Press, 1968

[本文引用: 1]

Lieberman G .

The natural generalization of the natural conditions of Ladyshenskaya and Ural'tseva for elliptic equations

Commun Part Diff Eq, 1991, 16 (2/3): 311- 361

URL     [本文引用: 1]

Pucci P , Serrin J . The Maximum Principle. Basel: Birkhäuser, 2007

[本文引用: 2]

Bobkov V , Tanaka M .

On positive solutions for (p, q)-Laplace equations with two parameters

Calc Var Partial Diff, 2015, 54 (3): 3277- 3301

DOI:10.1007/s00526-015-0903-5      [本文引用: 2]

Hu S , Papageorgiou N S . Handbook of Multivalued Analysis. Boston: Springer, 1997

[本文引用: 1]

/