一类具有毒素的非均匀chemostat模型正解的存在性和唯一性
Existence and Uniqueness of Positive Solutions to an Unstirred Chemostat with Toxins
收稿日期: 2019-09-18
基金资助: |
|
Received: 2019-09-18
Fund supported: |
|
作者简介 About authors
李海侠,E-mail:
研究了一类具有毒素的非均匀chemostat食物链模型.运用稳定性理论分析了平凡解和半平凡解的稳定性,并采用最大值原理和上下解方法给出了正解的先验估计.接着,利用不动点指数理论得到了正解存在的充分条件.最后,通过扰动理论和分歧理论讨论了毒素对动力学行为的影响,得到正解的稳定性和唯一性.结果表明毒素存在时,当微生物u和v的生长率较大时物种能共存.进而当毒素的影响充分大且微生物v的生长率介于一定范围内时系统存在唯一且稳定的正解.
关键词:
A food chain model in the unstirred chemostat with toxins is studied. The stability of the trivial solution and semi-trivial solution is analyzed by means of the stability theory, and a priori estimate of positive solution is given by the maximum principle and the super and sub-solution method. Then, by using the fixed point index theory, the sufficient conditions for the existence of positive solutions are achieved. Finally, the effect of the toxins on the dynamic behavior is discussed by virtue of the perturbation theory and bifurcation theory, and the stability and uniqueness of positive solutions are obtained. The results show that the species can coexist when the growth rates of the microorganisms u and v are larger in the presence of the toxins. Furthermore, if the effect of the toxins is sufficiently large, the system has unique stable positive solution when the growth rate of the microorganism v belongs to a certain range.
Keywords:
本文引用格式
李海侠.
Li Haixia.
1 引言
微生物的连续培养是近几十年来发展起来的一门数学与微生物学交叉的学科,是通过微分方程建立数学模型来刻画微生物连续培养的一门生物技术.恒化器(chemostat)是一种用于微生物连续培养的实验装置,被广泛地应用于微生物的生产、环境污染的控制、污水处理、生物制药以及废料处理等领域,因而chemostat模型受到了国内外许多专家学者的广泛关注[1-20].在微生物的连续培养过程中微生物会受到污染环境中毒素的侵入,导致培养的微生物数量降低,因此在微生物培养中考虑毒素等因素的影响是非常有意义的.如文献[2, 15]分别考察了具有内部毒素和外加毒素的均匀chemostat模型正解的定性性质.文献[13]分析了具有毒素的非均匀chemostat模型平衡态正解的存在性和稳定性.文献[14, 16]讨论了具有质粒载体微生物与质粒自由微生物以及毒素的非均匀chemostat模型平衡态正解的存在性、稳定性、唯一性和多解性.有关污染环境中毒素对种群影响的研究可见文献[21-24]及其参考文献.
本文讨论如下具有毒素的非均匀chemostat食物链模型
其中
本文主要研究系统
令
由线性椭圆方程的性质和最大值原理可知,
纵观近几十年来对chemostat模型的研究成果,基本都是均匀chemostat模型或者非均匀chemostat竞争模型,对具有毒素的非均匀chemostat食物链模型的研究很少见,诸如毒素对微生物的影响分析都是需要解决的新问题.当
2 正解的存在性
首先给出一些预备知识和半平凡解的性质.
引理 2.1[25] 设
则
由椭圆方程的极值原理可知如下问题
存在唯一正解,记为
令
相应的特征函数为
引理 2.2[19] 问题
当
(i)
(ii) 当
(iii) 若记(2.1)式在
的所有特征值都大于0.
于是,当
引理 2.3 (i) 若
(ii) 设
相应的特征函数为
证 因为(i)和(ii)的证明一样,故证明(ii).考虑如下特征值问题
令
由Riesz-Schauder定理和特征值理论可知系统(2.4)的特征值由算子:
其次给出系统
引理 2.4 如果
(i)
(ii)
证 首先由强最大值原理可知
又由强最大值原理可知
故
设
显然(0, 0, 0)是系统(2.5)的平凡解,当
记
定义算子
其中
接下来运用Dancer指数定理[26]给出算子
引理 2.5 设
(i)
(ii)
(iii) 若
{\heiti\bf定理2.1}{\quad}若
证 由前提条件、引理2.5和不动点指数的可加性有
矛盾.于是当
3 正解的稳定性和唯一性
本小节通过详细分析毒素的影响来讨论系统
引理 3.1 设
(i)
(ii) 存在正常数
证 (i) 证明与引理2.4类似.
(ii) 显然系统(3.1)存在平凡解
由(i)和
根据强最大值原理可知
利用与文献[14,引理4.3]类似的证明过程可得如下引理,在此省略其证明.
引理 3.2 设
引理 3.3 设
证 考虑如下问题
由引理2.4可知
上式同乘以
因此
上式两边同乘以
上式取极限得对任意的
若
假设
上式取极限,则
因此
由
由此可得
下面证明存在
再由
由强最大值原理可知
这与
则存在
因此,
这表明
最后给出系统
定理 3.1 设
证 首先由定理2.1得系统
令
显然,
这里
显然系统(3.6)在邻域
取
因为
故若
最后证明正解的稳定性.令
令
容易验证
另外
通过简单计算可知
故,
参考文献
Global bifurcation of coexistence state for the competition model in the chemostat
,DOI:10.1016/S0362-546X(98)00250-8 [本文引用: 2]
A model of the effect of anti-competitor toxins on plasmid-bearing, plamid-free competition
,DOI:10.11650/twjm/1500407405 [本文引用: 1]
Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model
,
A system of reaction-diffusion equations in the unstirred chemostat with an inhibitor
,
The effect of inhibitor on the plasmid-bearing and plasmid-free model in the unstirred chemostat
,
Analysis of a Beddington-DeAngelis food chain chemostat with periodically varying substrate
,
Positive solutions of a competition model for two resources in the unstirred chemostat
,DOI:10.1016/j.jmaa.2009.01.045
一类非均匀Chemostat模型的共存态
,
Coexistence states of the unstirred chemostat model
On a system of reaction-diffusion equations arising from competition with internal storage in an unstirred chemostat
,
Coexistence and stability of an unstirred chemostat model with Beddington-DeAngelis function
,DOI:10.1016/j.camwa.2010.08.057
Coexistence of an unstirred chemostat model with Beddington-DeAngelis functional response and inhibitor
,DOI:10.1016/j.nonrwa.2010.01.010
Global dynamics of the periodic un-stirred chemostat with a toxin-producing competitor
,DOI:10.3934/cpaa.2010.9.1639 [本文引用: 1]
The effect of toxins on the plasmid-bearing and plasmid-free model in the unstirred chemostat
,
Analysis of a model for the effects of an external toxin on anaerobic digestion
,DOI:10.3934/mbe.2012.9.445 [本文引用: 1]
Multiple coexistence solutions to the unstirred chemostat model with plasmid and toxin
,DOI:10.1017/S0956792514000096 [本文引用: 1]
一类带B-D反应项的非均匀Chemostat模型正解的存在性和多解性
,
Existence and multiplicity of positive solutions for an unstirred chemostat model with B-D functional response
Crowding effects on coexistence solutions in the unstirred chemostat
,
Positive solutions to the unstirred chemostat model with Crowley-Martin functional response
,
Steady-state solutions of a reaction-diffusion system arising from intraguild predation and internal storage
,DOI:10.1016/j.jde.2018.12.035 [本文引用: 1]
Dynamical analysis of two-nutrient and one-microorganism delayed chemostat model with pulsed input in the polluted environment
,
污染环境下具有脉冲输人的随机捕食-食饵模型的动力学研究
,
Dynamics of a stochastic predaroe-prey model with pulse input in a polluted environment
Analysis of a delayed stochastic one-predator two-prey population model in a polluted environment
,
The effects of impulsive toxicant input on a single-species population in a small polluted environment
,DOI:10.3934/mbe.2019413 [本文引用: 1]
On the indices of fixed points of mapping in cones and applications
,DOI:10.1016/0022-247X(83)90098-7 [本文引用: 1]
Bifurcation from simple eigenvalue
,DOI:10.1016/0022-1236(71)90015-2 [本文引用: 1]
/
〈 | 〉 |