数学物理学报, 2020, 40(4): 869-881 doi:

论文

一类拟线性薛定谔方程的多重扰动问题

韩晓丽,

Multiple Pertubations to a Quasilinear Schrödinger Equation

Han Xiaoli,

收稿日期: 2019-11-5  

基金资助: 国家科学基金.  11771324
国家科学基金.  11831009

Received: 2019-11-5  

Fund supported: the NSFC.  11771324
the NSFC.  11831009

作者简介 About authors

韩晓丽,E-mail:hxl_math798@163.com , E-mail:hxl_math798@163.com

摘要

该文研究了一类含有位势项、Hartree项和多重非线性项的拟线性薛定谔方程的初值问题,得到解的全局存在和有限时刻爆破的充分性条件.

关键词: 拟线性薛定谔方程 ; 全局存在 ; 有限时刻爆破

Abstract

In this paper, we will deal with the Cauchy problem of a class of quasilinear Schrödinger equations. The main goal is to obtain some sufficient conditions on the blow up in finite time and global existence of the solution.

Keywords: Quasilinear Schrödinger equation ; Global existence ; Blow-up

PDF (292KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩晓丽. 一类拟线性薛定谔方程的多重扰动问题. 数学物理学报[J], 2020, 40(4): 869-881 doi:

Han Xiaoli. Multiple Pertubations to a Quasilinear Schrödinger Equation. Acta Mathematica Scientia[J], 2020, 40(4): 869-881 doi:

1 引言

本文研究如下柯西问题

$ \begin{equation} \left\{ \begin{array}{lll} {\rm i}u_t = \Delta u+2\alpha u|u|^{2\alpha-2}\Delta (|u|^{2\alpha})+V(x)u+(W*|u|^2)u\\ \qquad +A_1|u|^{r_1-1}u+\cdots+A_m|u|^{r_m-1}u\\ \qquad -B_1|u|^{s_1-1}u-\cdots-B_n|u|^{s_n-1}u, \quad x\in {{\Bbb R}} ^N, \quad t>0\\ u(x, 0) = u_0(x), \quad x\in {{\Bbb R}} ^N, \end{array}\right. \end{equation} $

其中$ N\geq3 $,系数$ \alpha, r_1, \cdots , r_m, s_1, \cdots , s_n $,实值函数$ V(x) $, $ W(x) $满足如下条件

(CD1)  $ \alpha, r_1, \cdots , r_m, s_1, \cdots , s_n\in Z^+ $$ (Z^+ $表示正整数集), $ 1<r_1<\cdots<r_m $, $ 1<s_1<\cdots<s_n $, $ A_1, \cdots, $$ A_m\geq0, $$ B_1, \cdots, B_n\geq0 $;

(CD2)  $ V(x)\geq 0 $, $ V(x)\in {\mathfrak B}^{\infty}({{\Bbb R}} ^N) $, $ W(x) $是偶函数,并且$ \partial^KW(x)\in L^1({{\Bbb R}} ^N) $, $ K\in Z^+ $, $ W(x) = W_1(x)+W_2(x) $, $ W_1(x)\in L^{p}({{\Bbb R}} ^N) $, $ p>1 $, $ W_2(x)\in L^{\infty}({{\Bbb R}} ^N) $,其中

$ {\mathfrak B}^{\infty}({{\Bbb R}} ^N) $定义为由所有属于$ C^{\infty}({{\Bbb R}} ^N) $且任意阶偏导数在$ {{\Bbb R}} ^N $中有界的函数构成的函数空间.

方程(1.1)通常出现在等离子体物理、流体力学以及凝聚态物理中.关于该问题解的适定性已有很多结果[1-4].本文主要关注解的全局存在和有限时刻爆破现象.

首先给出方程(1.1)的解的全局存在和有限时刻爆破的定义.

定义1.1 假设$ u(x, t) $是方程(1.1)的解,如果$ u(x, t) $关于时间的最大存在区间是$ [0, +\infty) $,我们称$ u(x, t) $是全局存在的.反之,如果存在$ 0<T_0<+\infty $使得

$ \begin{eqnarray} \lim\limits_{t\rightarrow T_0^-} \int_{{{\Bbb R}} ^N}\left[|\nabla u(x, t)|^2+|\nabla(|u(x, t)|^{2\alpha})|^2\right]{\rm d}x = +\infty, \end{eqnarray} $

我们称$ u(x, t) $会在有限时刻爆破.

其次,我们回顾下相关的文献. 1977年Glassey$ ^{[5]} $研究了非线性薛定谔方程$ {\rm i}u_t = \Delta u+F(|u|^2)u $的初值问题.给出了证明有限时刻爆破的方法和一些引理.此后越来越多的学者开始研究非线性薛定谔方程的全局存在和有限时刻爆破问题,特别是带有Hartree项的半线性薛定谔方程问题,参见文献[6-11].然而,研究拟线性薛定谔方程的全局存在和爆破现象的论文很少,参见文献[12-14].

定义方程(1.1)解的质量和能量如下.

定义1.2 $ \rm(i) $质量

$ \rm(ii) $能量

我们的第一个结果建立了方程(1.1)解的全局存在的充分性条件.

定理1.1 假设$ u(x, t) $为方程(1.1)的解, $ u_0\in \Lambda $, $ E(u_0)\in (0, +\infty), M(u_0)\in (0, +\infty), $满足条件(CD1), (CD2),那么当下列任一条件成立时,解$ u(x, t) $全局存在.即对于任意$ t>0 $,

$ \rm(SA1) $  $ p>1 $, $ r_m<s_n $;

$ \rm(SA2) $  $ p>1 $, $ s_n\leq r_m $, $ r_m<\frac{4\alpha N-N+4}{N} $;

$ \rm(SA3) $ $ p>1 $, $ s_n\leq r_m $, $ r_m = \frac{4\alpha N-N+4}{N} $,对任意初值$ u_0 \in \Lambda $满足

这里$ C_s $表示为Sobolev不等式的最佳常数($ 2^* = \frac{2N}{N-2} $, $ N>2 $),

$ \begin{eqnarray} \int_{{{\Bbb R}} ^N}w^{2^*}{\rm d}x\leq C_s\left(\int_{{{\Bbb R}} ^N}|\nabla w|^2{\rm d}x\right)^{\frac{2^*}{2}}, \quad w\in H^1(\mathbb{R^N}). \end{eqnarray} $

我们的第二个结果建立了方程(1.1)解的有限时刻爆破的充分性条件.

定理1.2 假设$ u(x, t) $为方程(1.1)的解, $ u_0\in \Lambda $, $ E(u_0)\in (-\infty, 0), M(u_0)\in (0, +\infty), $满足条件$ \rm(CD1), (CD2) $,并且

存在正常数$ C_\varepsilon $满足

那么当下列任一条件成立时,解$ u(x, t) $在有限时间$ T_0 $处爆破,也就是说

$ \rm(SA1) $ $ r_m>s_n $, $ r_m\geq4\alpha-1+\frac{4}{N} $;

$ \rm(SA2) $ $ r_m = s_n $, $ r_m\geq4\alpha-1+\frac{4}{N} $, $ A_m\geq B_n $;

$ \rm(SA3) $ $ r_m<s_n $, $ s_n\leq4\alpha-1+\frac{4}{N} $.

这里

2 预备知识

本节将证明一个引理.以下用符号$ C $, $ C' $, $ \tilde{C} $, $ \hat{C} $, $ \cdots $, $ \varepsilon $定义与变量$ x $, $ t $无关的有限正常数.

引理2.1 假设$ u(x, t) $为方程(1.1)的解, $ u_0\in \Lambda $,则解$ u $在其存在的时间区间$ [0, t] $内满足

$ \rm(1) $质量守恒

$ \rm(2) $能量守恒

$ \rm(3) $

$ \rm(4) $

 (1) (1.1)式左右同乘以$ 2\bar{u} $,计算结果取虚部,得

$ \begin{eqnarray} \frac{\partial}{\partial t}|u|^2 = \Im(2\bar{u}\Delta u) = \nabla \cdot(2\Im(\bar{u}\nabla u)), \end{eqnarray} $

然后在$ {{\Bbb R}} ^N\times [0, t] $上积分,得

(2) (1.1)式左右同乘以$ 2\bar{u}_t $,计算结果取实部,然后在$ {{\Bbb R}} ^N\times [0, t] $上积分,得

也就是说

(3) (1.1)式左右同乘以$ |x|^2 $,然后在$ {{\Bbb R}} ^N $上积分,得

$ \begin{eqnarray} \frac{\partial}{\partial t}\int_{{{\Bbb R}} ^N}|x|^2|u|^2{\rm d}x = \int_{{{\Bbb R}} ^N}|x|^2\nabla \cdot(2\Im (\bar{u}\nabla u)){\rm d}x = -4\Im \int_{{{\Bbb R}} ^N}\bar{u}(x\cdot \nabla u){\rm d}x. \end{eqnarray} $

(4)定义$ u(x, t) = a(x, t)+{\rm i}b(x, t) $,其中$ a(x, t) = \Re u(x, t) $, $ b(x, t) = \Im u(x, t) $.

$ \begin{eqnarray} &&\frac{\partial}{\partial t}\Im \int_{{{\Bbb R}} ^N}\bar{u}(x\cdot \nabla u){\rm d}x\\ & = &\int_{{{\Bbb R}} ^N} \sum\limits_{k = 1}^N\left[x_k(b_t)_{x_k}a-x_k(a_t)_{x_k}b\right]{\rm d}x +\int_{{{\Bbb R}} ^N} \sum\limits_{k = 1}^N (x_ka_{x_k}\Delta a+x_kb_{x_k}\Delta b){\rm d}x\\ &&+\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N x_k(|u|^2)_{x_k}\alpha|u|^{2\alpha-2}\Delta(|u|^{2\alpha}){\rm d}x\\ &&+\frac{1}{2}\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N x_k(|u|^2)_{x_k}V{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N x_k(|u|^2)_{x_k}(W*|u|^2){\rm d}x\\ &&+\frac{1}{2}\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N x_k(|u|^2)_{x_k}\left(A_1|u|^{r_1-1}+\cdots+A_m|u|^{r_m-1}\right){\rm d}x\\ &\quad&-\frac{1}{2}\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N x_k(|u|^2)_{x_k}\left(B_1|u|^{s_1-1}+\cdots+B_n|u|^{s_n-1}\right){\rm d}x\\ & = &N\int_{{{\Bbb R}} ^N}(a_tb-ab_t){\rm d}x+\int_{{{\Bbb R}} ^N}\sum\limits_{k = 1}^N(x_kb_{x_k}a_t-x_ka_{x_k}b_t){\rm d}x\\ &\quad&+\frac{N-2}{2}\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x+\frac{N-2}{2}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\\ &\quad&-\frac{1}{2}\int_{{{\Bbb R}} ^N}(NV+x\cdot{\nabla V})|u|^2{\rm d}x-\frac{1}{2}\int_{{{\Bbb R}} ^N}\left[(NW+\frac{x\cdot{\nabla W}}{2})*|u|^2\right]|u|^2{\rm d}x\\ &\quad&-\int_{{{\Bbb R}} ^N}\left[\frac{N A_1}{r_1+1}|u|^{r_1+1}+\cdots+\frac{N A_m}{r_m+1}|u|^{r_m+1}\right]{\rm d}x\\ &&+\int_{{{\Bbb R}} ^N}\left[\frac{N B_1}{s_1+1}|u|^{s_1+1}+\cdots+\frac{N B_n}{s_n+1}|u|^{s_n+1}\right]{\rm d}x\\ & = &-N\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x+{2\alpha}N\int_{{{\Bbb R}} ^N}|u|^{2\alpha}\Delta(|u|^{2\alpha}){\rm d}x+N\int_{{{\Bbb R}} ^N}V|u|^2{\rm d}x\\ &\quad& +N\int_{{{\Bbb R}} ^N}(W*|u|^2)|u|^2{\rm d}x+N\int_{{{\Bbb R}} ^N}(A_1|u|^{r_1-1}+\cdots+A_m|u|^{r_m-1})|u|^2{\rm d}x\\ &\quad& -N\int_{{{\Bbb R}} ^N}(B_1|u|^{s_1-1}+\cdots+B_n|u|^{s_n-1})|u|^2{\rm d}x+(N-2)\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x\\ &\quad& +(N-2)\int_{{{\Bbb R}} ^N}|\nabla(|u|^{2\alpha})|^2{\rm d}x-\int_{{{\Bbb R}} ^N}(NV+x\cdot \nabla V)|u|^2{\rm d}x\\ &\quad& -\int_{{{\Bbb R}} ^N}\left[(NW+\frac{x\cdot \nabla W}{2})*|u|^2\right]|u|^2{\rm d}x\\ &\quad &-2\int_{{{\Bbb R}} ^N}\left(\frac{N A_1}{r_1+1}|u|^{r_1+1}+\cdots+\frac{N A_m}{r_m+1}|u|^{r_m+1}\right){\rm d}x\\ &\quad &+2\int_{{{\Bbb R}} ^N}\left(\frac{N B_1}{s_1+1}|u|^{s_1+1}+\cdots+\frac{N B_n}{s_n+1}|u|^{s_n+1}\right){\rm d}x\\ & = &-2\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x-\left[({2\alpha}-1)N+2\right]\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\\ &\quad& -\int_{{{\Bbb R}} ^N}(x\cdot {\nabla V})|u|^2{\rm d}x-{1\over2}\int_{{{\Bbb R}} ^N}\left[(x\cdot {\nabla W})*|u|^2\right]|u|^2{\rm d}x\\ &\quad &+\int_{{{\Bbb R}} ^N}\left[\frac{NA_1(r_1-1)}{r_1+1}|u|^{r_1+1}+\cdots+\frac{NA_m(r_m-1)}{r_m+1}|u|^{r_m+1}\right]{\rm d}x\\ &\quad& -\int_{{{\Bbb R}} ^N}\left[\frac{NB_1(s_1-1)}{s_1+1}|u|^{s_1+1}+\cdots+\frac{NB_n(s_n-1)}{s_n+1}|u|^{s_n+1}\right]{\rm d}x. \end{eqnarray} $

引理2.1证毕.

3 解的全局存在

本节将给出定理1.1的证明,并建立方程(1.1)解的全局存在的充分性条件.

 由引理2.1(2)能量守恒得

$ \begin{eqnarray} &\quad &\int_{{{\Bbb R}} ^N}\left[|\nabla u|^2+|\nabla (|u|^{2\alpha})|^2\right]{\rm d}x\\ & = &\left(2E(u_0)+\int_{{{\Bbb R}} ^N}V|u|^2{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^N}(W*|u|^2)|u|^2{\rm d}x\right)\\ &\quad& +\left\{\int_{{{\Bbb R}} ^N}\left(\frac{2A_1}{r_1+1}|u|^{r_1+1}+\cdots+\frac{2A_m}{r_m+1}|u|^{r_m+1}\right){\rm d}x\right.\\ &\quad &\left.-\int_{{{\Bbb R}} ^N}\left(\frac{2B_1}{s_1+1}|u|^{s_1+1}+\cdots+\frac{2B_n}{s_n+1}|u|^{s_n+1}\right){\rm d}x\right\}: = (I)+{II}. \end{eqnarray} $

下面分别讨论(I), {II}式.

首先由质量守恒, H$ \ddot{\rm o} $lder不等式,插值不等式, Sobolev不等式计算得

$ \begin{eqnarray} (I)& = &2E(u_0)+\int_{{{\Bbb R}} ^N}V|u|^2{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^N}(W*|u|^2)|u|^2{\rm d}x\\ &\leq &2E(u_0)+\|V\|_{L^{\infty}({{\Bbb R}} ^N)}\|u\|_{L^2({{\Bbb R}} ^N)}^2+\frac{1}{2}\|W_1\|_{L^{p}({{\Bbb R}} ^N)}\|u\|_{L^{\frac{4p}{2p-1}}({{\Bbb R}} ^N)}^4{}\\ &&+\frac{1}{2}\|W_2\|_{L^{\infty}({{\Bbb R}} ^N)}\|u\|_{L^2({{\Bbb R}} ^N)}^4\\ &\leq &C_0+\frac{1}{2}\|W_1\|_{L^{p}({{\Bbb R}} ^N)}\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{4p(2\alpha N-N+2)-4\alpha N}{p(2\alpha N-N+2)}}\|u\|_{L^{2\alpha \cdot 2^*}({{\Bbb R}} ^N)}^{\frac{4\alpha N}{p(2\alpha N-N+2)}}\\ &\leq &C_0+\frac{1}{2}\|W_1\|_{L^{p}({{\Bbb R}} ^N)}\|u_0\|_{L^2({{\Bbb R}} ^N)}^{\frac{4p(2\alpha N-N+2)-4\alpha N}{p(2\alpha N-N+2)}} C_s^{\frac{N-2}{p(2\alpha N-N+2)}}\left(\int_{{{\Bbb R}} ^N}|\nabla(|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N}{p(2\alpha N-N+2)}}\\ & = &C_0+C_1\left(\int_{{{\Bbb R}} ^N}|\nabla(|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N}{p(2\alpha N-N+2)}}, \end{eqnarray} $

其中

将{II}式分为以下两种情况讨论.

(i) $ r_m<s_n $.取常数$ 0<\varepsilon_1, \cdots, \varepsilon_m\leq\frac{1}{m}<1 $,

$ \begin{eqnarray} && \left(\frac{2A_1}{r_1+1}\|u\|_{L^{r_1+1}({{\Bbb R}} ^N)}^{r_1+1}+\cdots+\frac{2A_m}{r_m+1}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\right)\\ &&-\left(\frac{2B_1}{s_1+1}\|u\|_{L^{s_1+1}({{\Bbb R}} ^N)}^{s_1+1}+\cdots+\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\right)\\ &\leq & \frac{2A_1}{r_1+1}\|u\|_{L^{r_1+1}({{\Bbb R}} ^N)}^{r_1+1}+\cdots+\frac{2A_m}{r_m+1}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}-\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\\ &\leq& \frac{2A_1}{r_1+1}\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(s_n-r_1)}{s_n-1}}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{\frac{(r_1+1)(s_n-1)-2(s_n-r_1)}{s_n-1}}\\ && +\cdots+\frac{2A_m}{r_m+1}\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(s_n-r_m)}{s_n-1}}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{\frac{(r_m+1)(s_n-1)-2(s_n-r_m)}{s_n-1}}-\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\\ &\leq& C_{\varepsilon_1}\|u\|_{L^2({{\Bbb R}} ^N)}^2+\varepsilon_1\cdot \frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\\ && +\cdots+C_{\varepsilon_m}\|u\|_{L^2({{\Bbb R}} ^N)}^2+\varepsilon_m\cdot \frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}-\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\\ & = &\|u_0\|_{L^2({{\Bbb R}} ^N)}^2\cdot C_{\varepsilon}-\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\left(1-\varepsilon_1-\cdots-\varepsilon_m\right)\\ &\leq &M(u_0)\cdot C_{\varepsilon}, \end{eqnarray} $

其中$ C_{\varepsilon} = C_{\varepsilon_1}+\cdots+C_{\varepsilon_m} $.

(ii) $ r_m\geq s_n $.不失一般性,假设$ r_{m-1}<s_n $,取常数$ 0<\varepsilon_1, \cdots, \varepsilon_{m-1}\leq\frac{1}{m-1}<1 $,

$ \begin{eqnarray} &&\left(\frac{2A_1}{r_1+1}\|u\|_{L^{r_1+1}({{\Bbb R}} ^N)}^{r_1+1}+\cdots+\frac{2A_m}{r_m+1}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\right)\\ &&-\left(\frac{2B_1}{s_1+1}\|u\|_{L^{s_1+1}({{\Bbb R}} ^N)}^{s_1+1}+\cdots+\frac{2B_n}{s_n+1}\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}\right)\\ &\leq& M(u_0)\cdot C_{\varepsilon}+\frac{2A_m}{r_m+1}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\\ &\leq &M(u_0)\cdot C_{\varepsilon}+\frac{2A_m}{r_m+1}\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{4\alpha N-(r_m+1)(N-2)}{2\alpha N-N+2}}\|u\|_{L^{2\alpha \cdot {2^*}}({{\Bbb R}} ^N)}^{\frac{2\alpha N(r_m+1)-4\alpha N}{2\alpha N-N+2}}\\ &\leq &M(u_0)\cdot C_{\varepsilon}+\frac{2A_m}{r_m+1}\|u_0\|_{L^2({{\Bbb R}} ^N)}^{\frac{4\alpha N-(r_m+1)(N-2)}{2\alpha N-N+2}}C_s^{\frac{(N-2)(r_m-1)}{4\alpha N-2N+4}}\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N(r_m-1)}{4\alpha N-2N+4}}\\ & = & M(u_0)\cdot C_{\varepsilon}+C_2\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N(r_m-1)}{4\alpha N-2N+4}}. \end{eqnarray} $

其中

下面依据定理1.1的三种情形依次证明之.

(SA1)  $ p>1 $, $ r_m<s_n $.在这种情况下

然后用Young不等式,有

$ \begin{eqnarray} && \int_{{{\Bbb R}} ^N}\left[|\nabla u|^2+|\nabla (|u|^{2\alpha})|^2\right]{\rm d}x\\ &\leq& C_0+C_1\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N}{p(2\alpha N-N+2)}}+M(u_0)\cdot{C}_{\varepsilon}\\ &\leq &C_0+M(u_0)\cdot{C}_{\varepsilon}+C_{\varepsilon_1}\cdot C_1^{\frac{p(2\alpha N-N+2)}{p(2\alpha N-N+2)-N}}+\frac{1}{2}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x, \end{eqnarray} $

因此

(SA2)  $ p>1 $, $ s_n\leq r_m< \frac{4\alpha N-N+4}{N} $.则有$ \frac{N}{p(2\alpha N-N+2)}<1 $, $ \frac{4p}{2p-1}<2\alpha \cdot 2^* $,

从而得到

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^N}\left[|\nabla u|^2+|\nabla (|u|^{2\alpha})|^2\right]{\rm d}x\\ &\leq& C_0+C_1\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N}{p(2\alpha N-N+2)}}+M(u_0)\cdot{C}_{\varepsilon} +C_2\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N(r_m-1)}{4\alpha N-2N+4}}\\ &\leq& C'(u_0, p, \alpha)+\frac{1}{4}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x+C_{\varepsilon_2}\cdot C_2^{\frac{4\alpha N-2N+4}{(4\alpha-r_m-1)N+4}}+\frac{1}{4}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x, \end{eqnarray} $

这意味着

(SA3)  $ p>1 $, $ s_n\leq r_m( = \frac{4\alpha N-N+4}{N}) $.因此$ \frac{N}{p(2\alpha N-N+2)}<1 $, $ \frac{4p}{2p-1}<2\alpha \cdot 2^* $, $ \frac{N(r_m-1)}{4\alpha N-2N+4} = 1, $$ 1<r_m<2\alpha \cdot 2^*-1 $.

若初值$ u_0 \in \Lambda $满足$ C_2\leq\frac{1}{4} $,则

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^N}\left[|\nabla u|^2+|\nabla (|u|^{2\alpha})|^2\right]{\rm d}x\\ &\leq& C_0+C_1\left(\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\right)^{\frac{N}{p(2\alpha N-N+2)}}+M(u_0)\cdot{C}_{\varepsilon}+C_2\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\\ &\leq &C'(u_0, p, \alpha)+\frac{1}{4}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x+\frac{1}{4}\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x, \end{eqnarray} $

从而

定理1.1证毕.

4 解的有限时刻爆破

本节将给出定理1.2的证明,并建立方程(1.1)解的有限时刻爆破的充分性条件.

 假设$ u(x, t) $为方程(1.1)的解, $ u_0\in \Lambda $,满足条件(CD1), (CD2),并且

$ \begin{eqnarray} (x\cdot {\nabla V})+(2\alpha N-N+2)V\leq0, \quad (x\cdot {\nabla W})+(2\alpha N-N+2)W\leq0. \end{eqnarray} $

$ u $存在的时间区间内,令

由引理2.1(2)能量守恒得

$ \begin{eqnarray} \frac{\partial}{\partial t}F(t)& = &-2\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x-\left[({2\alpha}-1)N+2\right]\int_{{{\Bbb R}} ^N}|\nabla (|u|^{2\alpha})|^2{\rm d}x\\ &\quad&-\int_{{{\Bbb R}} ^N}(x\cdot {\nabla V})|u|^2{\rm d}x-\frac{1}{2}\int_{{{\Bbb R}} ^N}\left[(x\cdot {\nabla W})*|u|^2\right]|u|^2{\rm d}x\\ &\quad&+\int_{{{\Bbb R}} ^N}\left[\frac{NA_1(r_1-1)}{r_1+1}|u|^{r_1+1}+\cdots+\frac{NA_m(r_m-1)}{r_m+1}|u|^{r_m+1}\right]{\rm d}x\\ &\quad &-\int_{{{\Bbb R}} ^N}\left[\frac{NB_1(s_1-1)}{s_1+1}|u|^{s_1+1}+\cdots+\frac{NB_n(s_n-1)}{s_n+1}|u|^{s_n+1}\right]{\rm d}x\\ & = &\left(-2\left[(2\alpha-1)N+2\right]E(u_0)+(2\alpha-1)N\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x\right.\\ &&\left.-\int_{{{\Bbb R}} ^N}\left[x\cdot {\nabla V}+(2\alpha N-N+2)V\right]|u|^2{\rm d}x\right.\\ &&\left.-\frac{1}{2}\int_{{{\Bbb R}} ^N}\left[(x\cdot {\nabla W}+(2\alpha N-N+2)W)*|u|^2\right]|u|^2{\rm d}x\right)\\ &&+\left(\int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\right.\\ &&\left.-\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\right)\\ &: = &(I)+(II). \end{eqnarray} $

据假设(4.1)得

$ \begin{eqnarray} (I)& = &-2\left[(2\alpha-1)N+2\right]E(u_0)+(2\alpha-1)N\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x\\ &\quad&-\int_{{{\Bbb R}} ^N}\left[x\cdot {\nabla V}+(2\alpha N-N+2)V\right]|u|^2{\rm d}x\\ &\quad &-\frac{1}{2}\int_{{{\Bbb R}} ^N}\left[(x\cdot {\nabla W}+(2\alpha N-N+2)W)*|u|^2\right]|u|^2{\rm d}x\\ &\geq &-2\left[(2\alpha-1)N+2\right]E(u_0)+(2\alpha-1)N\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x. \end{eqnarray} $

而(4.2)式中的(II)式需分为以下三种情况讨论.

(SA1)  $ r_m>s_n $, $ r_m\geq4\alpha-1+\frac{4}{N} $.取常数$ 0\leq k\leq m-1 $, $ 0\leq l\leq n $ ($ k, \ l\in N $)满足条件

假设

则由Young不等式得

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ &&-\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\\ &\geq& \int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_k(1-\frac{4\alpha+\frac{4}{N}}{r_k+1})|u|^{r_k+1}\right]{\rm d}x\\ &&+\int_{{{\Bbb R}} ^N}NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}{\rm d}x\\ &&-\int_{{{\Bbb R}} ^N}\left[NB_{l+1}(1-\frac{4\alpha+\frac{4}{N}}{s_{l+1}+1})|u|^{s_{l+1}+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\\ &\geq& NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(r_m-r_1)}{r_m-1}}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{\frac{(r_1+1)(r_m-1)-2(r_m-r_1)}{r_m-1}}\\ && +\cdots+NA_k(1-\frac{4\alpha+\frac{4}{N}}{r_k+1})\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(r_m-r_k)}{r_m-1}}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{\frac{(r_k+1)(r_m-1)-2(r_m-r_k)}{r_m-1}}\\ &&+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\\ &&-NB_{l+1}(1-\frac{4\alpha+\frac{4}{N}}{s_{l+1}+1})\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(r_m-s_{l+1})}{r_m-1}}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{\frac{(s_{l+1}+1)(r_m-1)-2(r_m-s_{l+1})}{r_m-1}}\\ && -\cdots-NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})\|u\|_{L^2({{\Bbb R}} ^N)}^{\frac{2(r_m-s_n)}{r_m-1}}\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{\frac{(s_n+1)(r_m-1)-2(r_m-s_n)}{r_m-1}}\\ & = &-\tilde{C}_{\varepsilon_1}\|u\|_{L^2({{\Bbb R}} ^N)}^2-\tilde{\varepsilon}_1\cdot NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}-\cdots-\tilde{C}_{\varepsilon_k}\|u\|_{L^2({{\Bbb R}} ^N)}^2\\ &&-\tilde{\varepsilon}_k\cdot NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\\ && -\tilde{C}_{\varepsilon_{k+1}}\|u\|_{L^2({{\Bbb R}} ^N)}^2-\tilde{\varepsilon}_{k+1}\cdot NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\\ && -\cdots-\tilde{C}_{\varepsilon_{n+k-l}}\|u\|_{L^2({{\Bbb R}} ^N)}^2-\tilde{\varepsilon}_{n+k-l}\cdot NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}\\ & = &-\|u_0\|_{L^2({{\Bbb R}} ^N)}^2\cdot\tilde{C}_{\varepsilon}+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}(1-\tilde{\varepsilon}_1-\cdots-\tilde{\varepsilon}_{n+k-l})\\ &\geq&-M(u_0)\cdot \tilde{C}_\varepsilon, \end{eqnarray} $

其中$ \tilde{C}_\varepsilon = \tilde{C}_{\varepsilon_1}+\cdots+\tilde{C}_{\varepsilon_{n+k-l}} $.

(SA2)  $ r_m = s_n $, $ r_m\geq4\alpha-1+\frac{4}{N} $, $ A_m\geq B_n $.取常数$ 0\leq k\leq m-1 $, $ 0\leq l\leq n-1 $ ($ k, \ l\in N $)满足条件

参考(SA1)的结果,有

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ && -\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\\ & = &\int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+N(A_m-B_n)(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ &&-\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_{n-1}(1-\frac{4\alpha+\frac{4}{N}}{s_{n-1}+1})|u|^{s_{n-1}+1}\right]{\rm d}x\\ &\geq& -\|u_0\|_{L^2({{\Bbb R}} ^N)}^2\cdot\hat{C}_{\varepsilon}+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})\|u\|_{L^{r_m+1}({{\Bbb R}} ^N)}^{r_m+1}(1-\hat{\varepsilon}_1-\cdots-\hat{\varepsilon}_{n+k-l-1})\\ &\geq&-M(u_0)\cdot \hat{C}_\varepsilon, \end{eqnarray} $

其中$ \hat{C}_\varepsilon = \hat{C}_{\varepsilon_1}+\cdots+\hat{C}_{\varepsilon_{n+k-l-1}} $.

(SA3)  $ r_m<s_n $, $ s_n\leq4\alpha-1+\frac{4}{N} $.取常数$ 0<\bar{\varepsilon}_1, \cdots, \bar{\varepsilon}_m\leq\frac{1}{m}<1 $,则有

与(SA1)证明类似,有

$ \begin{eqnarray} && \int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ && -\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\\ &\geq &\int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ &&-\int_{{{\Bbb R}} ^N}NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}{\rm d}x\\ &\geq& -\|u_0\|_{L^2({{\Bbb R}} ^N)}^2\cdot\bar{C}_{\varepsilon}-NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})\|u\|_{L^{s_n+1}({{\Bbb R}} ^N)}^{s_n+1}(1-\bar{\varepsilon}_1-\cdots-\bar{\varepsilon}_m)\\ &\geq&-M(u_0)\cdot \bar{C}_\varepsilon, \end{eqnarray} $

其中$ \bar{C}_\varepsilon = \bar{C}_{\varepsilon_1}+\cdots+\bar{C}_{\varepsilon_m} $.

显然在上述三种情况下, (II)式都有

$ \begin{eqnarray} && \int_{{{\Bbb R}} ^N}\left[NA_1(1-\frac{4\alpha+\frac{4}{N}}{r_1+1})|u|^{r_1+1}+\cdots+NA_m(1-\frac{4\alpha+\frac{4}{N}}{r_m+1})|u|^{r_m+1}\right]{\rm d}x\\ && -\int_{{{\Bbb R}} ^N}\left[NB_1(1-\frac{4\alpha+\frac{4}{N}}{s_1+1})|u|^{s_1+1}+\cdots+NB_n(1-\frac{4\alpha+\frac{4}{N}}{s_n+1})|u|^{s_n+1}\right]{\rm d}x\\ &\geq&-M(u_0)\cdot C_\varepsilon, \end{eqnarray} $

其中$ C_\varepsilon = {\rm min}(\tilde{C}_\varepsilon, \ \hat{C}_\varepsilon, \ \bar{C}_\varepsilon) $.

除了假设(4.1)和三种情况(SA1)–(SA3)外,如果下列条件满足

$ \begin{equation} 2\left[(2\alpha-1)N+2\right]E(u_0)+M(u_0)\cdot C_\varepsilon\leq 0, \end{equation} $

则根据(4.3), (4.7)和(4.8)式可得到

$ \begin{eqnarray} \frac{\partial}{\partial t}F(t)&\geq& -2\left[(2\alpha-1)N+2\right]E(u_0)+(2\alpha-1)N\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x-M(u_0)\cdot C_\varepsilon\\ &\geq& (2\alpha-1)N\|\nabla u\|^2_{L^2({{{\Bbb R}} ^N})}\geq 0, \end{eqnarray} $

从而

由引理2.1(3)得

注意到条件$ |x|u_0\in L^2({{\Bbb R}} ^N) $,用Schwarz不等式得到

$ \begin{eqnarray} \quad F(t)& = &\left|\Im \int_{{{\Bbb R}} ^N}\bar{u}(x\cdot \nabla u){\rm d}x\right|\leq \int_{{{\Bbb R}} ^N}\left|\bar{u}(x\cdot \nabla u)\right|{\rm d}x\\ &\leq &\left(\int_{{{\Bbb R}} ^N}x^2|u|^2{\rm d}x\right)^{\frac{1}{2}}\left(\int_{{{\Bbb R}} ^N}|\nabla u|^2{\rm d}x\right)^{\frac{1}{2}}< J^{\frac{1}{2}}(0)\|\nabla u\|_{L^2({{\Bbb R}} ^N)}. \end{eqnarray} $

从而由(4.9)和(4.10)式得到

也就是说

$ \begin{eqnarray} \frac{\partial}{\partial t}F(t)\geq \frac{(2\alpha-1)N}{J(0)}\cdot F^2(t). \end{eqnarray} $

将(4.11)式从$ 0 $$ t $积分,得到

从而

得到

定理1.2证毕.

参考文献

Colin M , Jeanjean L , Squassina M .

Stability and instability results for standing waves of quasilinear Schrödinger equations

Nonlinearity, 2010, 23, 1353- 1385

DOI:10.1088/0951-7715/23/6/006      [本文引用: 1]

Colin M .

On the local well-posedness of quasilinear Schrödinger equations in arbitrary space dimension

Comm Partial Differential Equations, 2002, 27, 325- 354

DOI:10.1081/PDE-120002789     

Kenig C E , Ponce G , Vega L .

The Cauchy problem for quasi-linear Schrödinger equations

Invent Math, 2004, 158, 343- 388

DOI:10.1007/s00222-004-0373-4     

Poppenberg M .

On the local well posedness of quasi-linear Schrödinger equations in arbitrary space dimension

J Differential Equations, 2001, 172, 83- 115

DOI:10.1006/jdeq.2000.3853      [本文引用: 1]

Glassey R T .

On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations

J Math Phys, 1977, 18, 1794- 1797

DOI:10.1063/1.523491     

Cao P .

Global existence and uniqueness for the magnetic Hartree equation

J Evol Equ, 2011, 11, 811- 825

DOI:10.1007/s00028-011-0112-4      [本文引用: 1]

Cho Y , Hajaiej H , Hwang G , Ozawa T .

On the Cauchy problem of fractional Schrödinger equation with Hartree type nonlinearity

Funkcialaj Ekvacioj, 2013, 56, 193- 224

DOI:10.1619/fesi.56.193     

Cho Y .

Short-range scattering of Hartree type fractional NLS

J Differential Equations, 2017, 262, 116- 144

DOI:10.1016/j.jde.2016.09.025     

Ivanov A , Venkov G .

Existence and uniqueness result for the Schrödinger-Poisson system and Hartree equation in Sobolev spaces

J Evol Equ, 2008, 8, 217- 229

DOI:10.1007/s00028-008-0334-2     

Zagatti S .

The Cauchy problem for Hartree-Fock time-dependent equations

Annales de L'I H P Section A, 1992, 56, 357- 374

Cazenave T. Semilinear Schrödinger Equations. New York: Amer Math Soc, 2003

[本文引用: 1]

Bouard A de , Hayashi N , Saut J C .

Global existence of small solutions to a relativistic nonlinear Schrödinger equation

Commun Math Phys, 1997, 189, 73- 105

DOI:10.1007/s002200050191      [本文引用: 1]

Guo B , Chen J , Su F .

The "blow up" problem for a quasilinear Schrödinger equation

J Math Phys, 2005, 46, 073510

DOI:10.1063/1.1941089     

Song X F, Wang Z Q. Global existence and blowup phenomena as well as asymptotic behavior for the solution of quasilinear Schrödinger equation. 2018, arXiv: 1811.05136

[本文引用: 1]

/