数学物理学报, 2020, 40(4): 1053-1060 doi:

论文

分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性

刘健,, 张志信,, 蒋威,

Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay

Liu Jian,, Zhang Zhixin,, Jiang Wei,

通讯作者: 张志信, E-mail: zhang_zhi_x@sina.com

收稿日期: 2019-01-31  

基金资助: 国家自然科学基金.  11371027
国家自然科学基金.  11471015
国家自然科学基金.  11601003
安徽省自然科学基金.  1608085MA12
安徽省自然科学基金.  2008085QA19

Received: 2019-01-31  

Fund supported: the NSFC.  11371027
the NSFC.  11471015
the NSFC.  11601003
the NSF of Anhui Province.  1608085MA12
the NSF of Anhui Province.  2008085QA19

作者简介 About authors

刘健,E-mail:1916869562@qq.com , E-mail:1916869562@qq.com

蒋威,E-mail:jiangwei@ahu.edu.cn , E-mail:jiangwei@ahu.edu.cn

摘要

该文主要研究了含有脉冲和时滞因素的分数阶非线性微分系统的全局Mittag-Leffler稳定性.利用分数阶Lyapunov方法和Mittag-Leffler函数性质,给出了含有脉冲时滞分数阶非线性微分系统全局Mittag-Leffler稳定性的充分条件,然后用具体的例子证明了所得结果的有效性.

关键词: 分数阶非线性微分系统 ; 时滞 ; 全局Mittag-Leffler稳定性 ; 脉冲 ; Lyapunov方法

Abstract

In this paper, the global Mittag-Leffler stability of fractional-order nonlinear differential systems with impulsive and time-delay factors is studied. By using the fractional Lyapunov method and Mittag-Leffler function, sufficient conditions for global Mittag-Leffler stability of fractional-order nonlinear differential systems with impulsive time-delay are given. Finally, an example is given to demonstrate the effectiveness of the results.

Keywords: Fractional-order nonlinear differential system ; Time delay ; Global Mittag-Leffler stability ; Impulse ; Lyapunov method

PDF (322KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘健, 张志信, 蒋威. 分数阶非线性时滞脉冲微分系统的全局Mittag-Leffler稳定性. 数学物理学报[J], 2020, 40(4): 1053-1060 doi:

Liu Jian, Zhang Zhixin, Jiang Wei. Global Mittag-Leffler Stability of Fractional Order Nonlinear Impulsive Differential Systems with Time Delay. Acta Mathematica Scientia[J], 2020, 40(4): 1053-1060 doi:

1 引言

最近几十年,分数阶微积分被应用到许多领域,如:电路系统,流体力学问题,控制理论,人工智能系统等方面[1-7, 24-25].而分数阶微分系统的Mittag-Leffler稳定性问题作为分数阶微分系统研究的核心内容之一,也取得了丰富的成果. Mittag-Leffler稳定性是由李岩及其同事[8-9]提出,他给出了分数阶非线性动力系统的Mittag-Leffler稳定性定义.随后,分数阶微分系统的Mittag-Leffler稳定性引起了国内外学者的广泛关注和深入研究,并取得了很多成果[10-15].文献[10-11]中Liu给出了非线性分数阶中立退化系统和分数阶非线性系统的Mittag-Leffler稳定性的充分条件.文献[12]给出了多变量广义Mittag-Leffler稳定性的定义,并引入多变量分数阶Lyapunov直接法,同时提出了一种新的方法研究多变量分数阶非线性动力系统的广义Mittag-Leffler稳定性.文献[13]讨论了带反馈控制的网络微分方程的分数阶耦合系统的全局Mittag-Leffler稳定性.利用压缩映射原理, Lyapunov方法,图理论方法和不等式技术,给出了平衡点的存在性、唯一性和全局Mittag-Leffler稳定性的条件.文献[14-15]中分析了分数阶基因调控网络的Mittag-Leffler稳定性并且研究了分数阶神经网络的局部Mittag-Leffler稳定性和局部渐近$ \omega $周期性.

在对实际系统的建模中,由于约束条件的存在,时滞和脉冲是必须要考虑的因素.到目前为止,对于脉冲分数阶微分方程的Mittag-Leffler稳定性已经取得了相关的结果[16-20].现在,对于含有脉冲的相关文献主要集中在神经网络方面的研究,如在文献[16-18]中,作者使用Lyapunov方法给出了具有单侧Lipschitz条件的分数阶脉冲神经网络和分数阶脉冲神经网络的全局Mittag-Leffler稳定性的条件及可变时间脉冲分数阶神经网络的Mittag-Leffler稳定性分析.在文献[19]中研究了具有时变时滞分数阶脉冲神经网络的全局Mittag-Leffler稳定性及其同步问题.在非线性分数阶微分系统方面,文献[20]分析了含有脉冲的非线性分数阶微分系统的Mittag-Leffler稳定性的条件.对于分数阶神经网络已经出现了相关的应用,如文献[21]给出了分数阶神经网络模型并分析了分数阶神经网络的混沌行为.文献[22]研究了分数阶神经网络模型的分岔和混沌现象,同时给出了系统的稳定性条件.文献[23]通过对分数阶细胞神经网络和整数阶细胞神经网络的比较分析,说明了分数阶神经网络微分系统更加精确地描述系统的动力学行为.目前对于含有脉冲和时滞分数阶微分系统的Mittag-Leffler稳定性研究较少.受到现有研究成果的启发,在文献[20]的基础上,本文研究同时含有脉冲和时滞因素的分数阶非线性系统的Mittag-Leffler稳定性问题.讨论了含有脉冲的分数阶非线性时滞微分系统的全局Mittag-Leffler稳定性,研究的系统含有脉冲和时滞信息,在处理方法上有一定的改进,对现有结果进行了推广.

2 准备知识

$ {{\Bbb R}} ^{n} $$ n $维欧几里得空间,且$ ||x|| = \sum\limits_{i = 1}^{n}|x_{i}| $定义为$ x\in {{\Bbb R}} ^{n} $的范数.记$ {{\Bbb R}} _{+} = [0, \infty) $$ t_{0}\in {{\Bbb R}} _{+} $.

定义2.1[1]  设可积函数$ f(t)\in C[t_{0}, +\infty), {\rm Re} \alpha>0, $则当$ t>t_{0} $时,记

为函数$ f(t) $$ \alpha $$ \rm Riemann-liouville $分数阶积分.

定义2.2[1]  对任意$ t\geq t_{0} $, $ q $$ \rm Caputo $分数阶导数, $ 0<q<1 $,下限为$ t_{0} $,函数$ f(t)\in C^{1}([t_{0}, b], {{\Bbb R}} ), b>t_{0}, $被定义为

定义2.3[1]  含有一个参数和两个参数的$ \rm Mittag-Leffler $函数分别被定义为

我们考虑下面含有时滞的脉冲分数阶非线性系统

$ \begin{equation} \left\{\begin{array}{ll} { } ^{C}_{t_{0}}D^q_{t}x_{i}(t) = -\sum\limits_{j = 1}^{n}a_{ij}x_{j}(t)+f_{i}(t, x_{i}(t-\tau)), & t\neq t_{k}, t>t_{0}, \\ \Delta x_{i}(t_{k}) = x_{i}(t^{+}_{k})-x_{i}(t_{k}) = P_{ik}(x_{i}(t_{k})), &k = 1, 2, \cdots, i = 1, 2, \cdots, n. \end{array}\right. \end{equation} $

这里$ ^{C}_{t_{0}}D^q_{t} $$ q $阶Caputo分数阶导数, $ 0<q<1 $. $ a_{ij} $是常数, $ x_{i}(t), f_{i}(t, x_{i}(t)) $是状态量. $ t_{k}, k = 1, 2, \cdots, $是脉冲扰动时刻满足: $ t_{0}<t_{1}<t_{2}<\cdots <t_{k}<t_{k+1}<\cdots , $$ \lim\limits_{k\rightarrow\infty}t_{k} = \infty $. $ \tau\geq0 $是时滞.函数$ P_{ik} $表示在脉冲时刻$ t_{k} $状态$ x_{i}(t) $的突变函数.

$ J\subset {{\Bbb R}} $是一个区间.定义下列的函数类: $ PC[J, {{\Bbb R}} ^{n}] = \{\sigma:J\rightarrow {{\Bbb R}} ^{n}:\sigma(t) $$ t_{k}\in J $点以外都是连续的, $ \sigma(t^{-}_{k}) $$ \sigma(t^{+}_{k}) $存在,且$ \sigma(t^{-}_{k}) = \sigma(t_{k})\} $; $ PCB[J, {{\Bbb R}} ^{n}] = \{\sigma\in PC[J, {{\Bbb R}} ^{n}]:\sigma(t) $$ J $上是有界的$ \} $.

$ \varphi_{0}\in PCB[[-\tau, 0], {{\Bbb R}} ^{n}] $.$ x(t) = x(t;t_{0}, \varphi_{0})\in {{\Bbb R}} ^{n} $是系统(2.1)的解满足初值条件

$ \begin{equation} \left\{\begin{array}{ll} x(t;t_{0}, \varphi_{0}) = \varphi_{0}(t-t_{0}), & t_{0}-\tau\leq t\leq t_{0}, \\ x(t^{+}_{0};t_{0}, \varphi_{0}) = \varphi_{0}(0). \end{array}\right. \end{equation} $

并且$ x(t) = x(t;t_{0}, \varphi_{0}) = (x_{1}(t;t_{0}, \varphi_{0}), \cdots, x_{n}(t;t_{0}, \varphi_{0}))^{T} $是有第一类间断点$ t_{k} $的分段连续函数, $ k = 1, 2, \cdots $,这里$ x_{i}(t) $是左连续的,即

作下列的假设

H2.1 对所有$ u, v\in {{\Bbb R}} , u\neq v, $$ f_{i}(t, 0) = 0, i = 1, 2, \cdots, n $. $ \exists $常数$ L_{i}>0, $使得$ |f_{i}(t, u)-f_{i}(t, v)|\leq L_{i}|u-v| $.

H2.2 函数$ P_{ik} $$ {{\Bbb R}} $上是连续的, $ i = 1, 2, \cdots, n, \; k = 1, 2, \cdots $.

H2.3 $ t_{0}<t_{1}<t_{2}<\cdots<t_{k}<t_{k+1}<\cdots $$ t_{k}\rightarrow\infty(k\rightarrow\infty) $.

定义2.4  系统(2.1)的零解是

$ \rm (a) $稳定的,如果$ \forall t_{0}\in {{\Bbb R}} _{+}, \forall\varepsilon>0, \exists\delta = \delta(t_{0}, \varepsilon)>0, $使得$ \forall \varphi_{0}\in PC[[-\tau, 0], {{\Bbb R}} ^{n}]:||\varphi_{0}||_{\tau}<\delta $时,对$ \forall t\geq t_{0}:||x(t;t_{0}, \varphi_{0})||<\varepsilon $;

$ \rm (b) $全局吸引的,如果$ \lim\limits_{t\rightarrow\infty}x(t;t_{0}, \varphi_{0}) = 0 $;

$ \rm (c) $全局渐近稳定,如果零解是稳定且全局吸引.

其中$ \varphi\in PC[[-\tau, 0], {{\Bbb R}} ^{n}] $,定义$ ||\varphi||_{\tau} = \sup\limits_{-\tau\leq s\leq0}||\varphi(s)|| $.$ \tau = \infty $的情况下

定义2.5  系统(2.1)的零解是全局$ \rm Mittag-Leffler $稳定的,如果对$ \varphi_{0}\in PC[[-\tau, 0], {{\Bbb R}} ^{n}], $$ \exists $常数$ c>0 $$ d>0 $,使得

这里$ E_{q} $对应$ \rm Mittag-Leffler $函数, $ m(0) = 0, m(\varphi)\geq0, $$ m(\varphi) $关于$ \varphi\in PC[[-\tau, 0], {{\Bbb R}} ^{n}] $$ \rm Lipschitzian $.

推论2.1[9]  全局$ \rm Mittag-Leffler $稳定是全局渐近稳定的.

进一步我们可以考虑分段连续Lyapunov函数$ V:[t_{0}, \infty)\times {{\Bbb R}} ^{n}\rightarrow {{\Bbb R}} _{+}. $

定义2.6  函数$ V:[t_{0}, \infty]\times {{\Bbb R}} ^{n}\rightarrow {{\Bbb R}} _{+}, $属于$ V_{0} $类,如果下列的条件成立

$ \rm 1) $函数$ V $$ \bigcup\limits^{\infty}\limits_{k = 1}G_{k} $上是连续的且$ V(t, 0) = 0, t\in[t_{0}, \infty) $.

$ \rm 2) $函数$ V $在每个集合$ G_{k} $上关于$ x $满足局部Lipschitz条件.

$ \rm 3) $对每个$ k = 1, 2, \cdots $$ x\in {{\Bbb R}} ^{n} $存在有限极限值,

$ \rm 4) $对每个$ k = 1, 2, \cdots $$ x\in {{\Bbb R}} ^{n} $下列的等式是成立的: $ V(t^{-}_{k}, x) = V(t_{k}, x). $

其中$ G_{k} = (t_{k-1}, t_{k})\times {{\Bbb R}} ^{n}, k = 1, 2, \cdots;G = \bigcup\limits^{\infty}\limits_{k = 1} G_{k}. $

定义2.7  给定一个函数$ V\in V_{0} $.$ t\in[t_{k-1}, t_{k}), k = 1, 2, \cdots, $$ \varphi\in PC[[-\tau, 0], {{\Bbb R}} ^{n}], $$ 0<q<1 $,在$ \rm Caputo $意义下,对于系统(2.1), $ q $阶右上导数定义为

这里$ F(t, \varphi) = (F_{1}, F_{2}, \cdots, F_{n})^{T} $,且$ F_{i}(t, \varphi) = -\sum\limits_{j = 1}^{n}a_{ij}\varphi_{j}(t)+f_{i}(t, \varphi_{i}(t-\tau)), i = 1, 2, \cdots, n. $

定义2.8[19]  假设函数$ V\in V_{0} $满足$ V(t+s, \varphi(s))\leq V(t, \varphi(0)), s\in[-\tau, 0] $时,有

是一个常数.则称函数$ V $满足$ \rm Razumikhin条件$.

引理2.1[11]  记$ x(t)\in {{\Bbb R}} ^{n} $是一个可微函数向量.如果一个连续函数$ V:[t_{0}, \infty]\times {{\Bbb R}} ^{n}\rightarrow {{\Bbb R}} $满足

那么

这里$ 0<\beta<1 $, $ \alpha $是一个正常数.

引理2.2[1]  假设$ 0<\alpha<2, \beta $是一个任意复数且$ \mu $是一个任意实数使得: $ \frac{\pi\alpha}{2}<\mu<{\rm min}\{\pi, \pi\alpha\} $,那么对任意整数$ p\geq1 $,有下列的展开式

3 主要结果

定理3.1  如果条件H2.1–H2.3成立,系统(2.1)满足

且函数$ P_{ik} $满足: $ P_{ik}(x_{i}(t_{k})) = -\sigma_{ik}x_{i}(t_{k}), 0<\sigma_{ik}<2, $$ i = 1, 2, \cdots, n, k = 1, 2, \cdots. $那么系统(2.1)的零解是全局$ \rm Mittag-Leffler $稳定的.

  构造一个Lyapunov函数$ V(t, x(t)) = \sum\limits^{n}\limits_{i = 1}|x_{i}(t)|. $则当$ t\geq t_{0} $$ t = t_{k} $时,由定理的条件,我们得到

$\begin{eqnarray} \label{eq:3.1.3} V(t^{+}_{k}, x(t^{+}_{k}))& = &\sum\limits^{n}\limits_{i = 1}|x_{i}(t^{+}_{k})| = \sum\limits^{n}\limits_{i = 1}|x_{i}(t_{k})+P_{ik}(x_{i}(t_{k}))| \\& = &\sum\limits^{n}\limits_{i = 1}|x_{i}(t_{k})-\sigma_{ik}(x_{i}(t_{k}))| = \sum\limits^{n}\limits_{i = 1}|(1-\sigma_{ik})x_{i}(t_{k})| \\& = &\sum\limits^{n}\limits_{i = 1}|1-\sigma_{ik}||x_{i}(t_{k})| \\&<&\sum\limits^{n}\limits_{i = 1}|x_{i}(t_{k})| = V(t_{k}, x(t_{k})), k = 1, 2, \cdots. \end{eqnarray}$

$ t\geq t_{0} $,且$ t\in[t_{k-1}, t_{k}). $

如果$ x_{i}(t) = 0, i = 1, 2, \cdots, n $,那么$ ^{C}D^{q}_{+}V(t, x(t)) = 0. $

如果$ x_{i}(t)>0, i = 1, 2, \cdots, n $,那么

如果$ x_{i}(t)<0, i = 1, 2, \cdots, n $,那么

因此, $ ^{C}_{t_{0}}D^{q}_{t}|x_{i}(t)| = sgn(x_{i}(t))^{C}_{t_{0}}D^{q}_{t}x_{i}(t). $

那么当$ t\geq t_{0} $,且$ t\in[t_{k-1}, t_{k}) $,沿着系统(2.1)解的右上导数$ ^{C}D^{q}_{+}V(t, x(t)) $,我们得到

这里$ k_{1} = \min\limits_{1\leq i\leq n}(a_{ii}-\sum\limits^{n}\limits_{j = 1, j\neq i}|a_{ji}|)>0, k_{2} = \max\limits_{1\leq i\leq n}L_{i}>0. $

由以上的分析和系统(2.1)的任意解$ x(t) $满足Razumikhin条件,即有

则有$ ^{C}D^{q}_{+}V(t, x(t))\leq-(k_{1}-k_{2})V(t, x(t)) $.

由定理的条件,存在一个实数$ \alpha>0 $,使得:$ k_{1}-k_{2}\geq\alpha $.

$ \begin{eqnarray} ^{C}D^{q}_{+}V(t, x(t))\leq-\alpha V(t, x(t)), t\neq t_{k}, t>t_{0}, \end{eqnarray} $

那么由(3.1)式, (3.2)式和引理2.1得到

因此

$ m = ||\varphi_{0}||_{\tau} $,则$ ||x(t)||\leq mE_{q}(-\alpha(t-t_{0})^{q}), t>t_{0}. $这里$ m\geq0 $,且$ m = 0 $成立只有$ \varphi_{0}(s) = 0, s\in[-\tau, 0]. $

从而系统(2.1)的零解是全局$ \rm Mittag-Leffler $稳定的.证明完成.

定理3.2  如果系统(2.1)满足定理3.1的条件,那么系统(2.1)的零解是全局$ \rm Mittag-Leffler $稳定的,所以这个系统是全局渐近稳定的.

  由于$ E_{\alpha, \beta}(z) = \sum\limits_{k = 0}^{\infty}\frac{z^{k}}{\Gamma(\alpha k+\beta)}, \alpha>0, \beta>0, z\in C. $则在$ \alpha>0, \beta>0 $的情况下,级数$ \sum\limits_{k = 0}^{\infty}\frac{z^{k}}{\Gamma(\alpha k+\beta)} $对于任意的$ z\in C $是收敛的.所以级数$ \sum\limits_{k = 0}^{\infty}\frac{z^{k}}{\Gamma(\alpha k+\beta)} $是有界的,从而$ E_{q}(-\alpha(t-t_{0})^{q}) $是有界的,即$ ||x(t)||\leq C_{1}. $

又知$ 0<q<1, \alpha>0, t>t_{0} $,则$ \arg(-\alpha(t-t_{0})^{q}) = \pi, $由引理2.2有

可知$ \lim\limits_{t\rightarrow +\infty}E_{q}(-\alpha(t-t_{0})^{q}) = 0 $,所以$ \lim\limits_{t\rightarrow +\infty}||x(t)|| = 0 . $

所以这个系统的零解是全局渐近稳定的.证明完成.

4 例子

考虑下面含有时滞的脉冲分数阶非线性微分系统

$ \begin{eqnarray} ^{C}_{0}D^q_{t}x_{i}(t) = -\sum\limits_{j = 1}^{n}a_{ij}x_{j}(t)+f_{i}(t, x_{i}(t-\tau)), t\neq t_{k}, t>0, \end{eqnarray} $

这里$ 0<q<1, n = 2, f_{i}(t, x_{i}(t)) = \frac{1}{2}(|x_{i}+1|-|x_{i}-1|), i = 1, 2, \tau = 1. $

脉冲时刻使得: $ 0<t_{1}<t_{2}<\cdots $,且$ \lim\limits_{k\rightarrow\infty}t_{k} = \infty. $易证$ L_{1} = L_{2} = 1, k_{1} = 1.1, k_{2} = 1 $满足定理3.1的条件.又有$ 0<\sigma_{1k} = \frac{x_{1}(t_{k})-x_{1}(t^{+}_{k})}{x_{1}(t_{k})} = \frac{3}{4}<2, 0<\sigma_{2k} = \frac{x_{2}(t_{k})-x_{2}(t^{+}_{k})}{x_{2}(t_{k})} = \frac{2}{3}<2. $由定理3.1知:系统(4.1)的零解是全局$ \rm Mittag-Leffler $稳定的.

参考文献

Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999

[本文引用: 5]

Oldham K B , Spanier J . The Fractional Calculus. New York: Academic Press, 1974

Samko S G , Killbas A A , Marichev O I . Fractional Integrals and Derivatives:Theory and Applications. Amsterdam: Gordon and Breach Science Publisher, 1993

Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier Science, 2006

Miller K S , Ross B . An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: John Wiley and Sons, 1993

Diethelm V . The Analysis of Fractional Differential Equations. New York: Springer, 2010

Lakshmikantham V , Leela S , Vasundhara D J . Theory of Fractional Dynamic Systems. Cambridge: Cambridge Academic Publishers, 2009

[本文引用: 1]

Li Y , Chen Y Q , Podlubny I .

Mittag-Leffler stability of fractional order nonlinear dynamic systems

Automatica, 2009, 45, 1965- 1969

URL     [本文引用: 1]

Li Y , Chen Y Q , Podlubny I .

Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability

Comput Math Appl, 2010, 59, 1810- 1821

URL     [本文引用: 2]

Liu S , Li X Y , Jiang W , Zhou X F .

Mittag-Leffler stability of nonlinear fractional neutral singular systems

Commun Nonlinear Sci Numer Simul, 2012, 17, 3961- 3966

URL     [本文引用: 2]

Liu S , Jiang W , Li X Y , Zhou X F .

Lyapunov stability analysis of fractional nonlinear systems

Appl Math Lett, 2016, 51, 13- 19

URL     [本文引用: 2]

Yu J M , Hu H , Zhou S B , Lin X R .

Generalized Mittag-Leffler stability of multi-variables fractional order nonlinear systems

Automatica, 2013, 49, 1798- 1803

URL     [本文引用: 1]

Li H L , Hu C , Jiang Y L , et al.

Global Mittag-Leffler stability for a coupled system of fractional-order differential equations on network with feedback controls

Neurocomputing, 2016, 214, 233- 241

URL     [本文引用: 1]

Ren F L , Cao F , Cao J D .

Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene regulatory networks

Neurocomputing, 2015, 160, 185- 190

URL     [本文引用: 1]

Wan L G , Wu A L .

Multiple Mittag-Leffler stability and locally asymptotical ω-periodicity for fractionalorder neural networks

Neurocomputing, 2018, 315, 272- 282

URL     [本文引用: 2]

Zhang X X , Niu P F , Ma Y P , et al.

Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition

Neural Networks, 2017, 94, 67- 75

URL     [本文引用: 2]

Wu H Q , Zhang X X , Xue S H , et al.

LMI conditions to global Mittag-Leffler stability of fractional-order neural networks with impulses

Neurocomputing, 2016, 193, 148- 154

URL    

Yang X J , Li C D , Song Q K , et al.

Mittag-Leffler stability analysis on variable-time impulsive fractionalorder neural networks

Neurocomputing, 2016, 207, 276- 286

[本文引用: 1]

Ivanka S .

Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays

Nonlinear Dyn, 2014, 77, 1251- 1260

URL     [本文引用: 2]

Yang X J , Li C D , Huang T W , Song Q K .

Mittag-Leffler stability analysis of nonlinear fractional-order systems with impulses

Appl Math Comput, 2017, 293, 416- 422

URL     [本文引用: 3]

Arena P , Fortuna L , Porto L .

Chaotic behavior in noninteger-order cellular neural networks

Physical Review E, 2000, 61 (1): 776- 781

URL     [本文引用: 1]

Kaslik E , Sivasundaram S .

Nonlinear dynamics and chaos in fractional-order neural networks

Neural Networks, 2012, 32, 245- 256

URL     [本文引用: 1]

Huang X , Zhao Z , Wang Z , Li Y X .

Chaos and hyperchaos in fractional-order cellular neural networks

Neurocomputing, 2012, 94, 13- 21

URL     [本文引用: 1]

Ben M A , Boucenna D , Hammami M A .

Existence and stability results for generalized fractional differential equations

Acta Mathematica Scientia, 2020, 40B (1): 141- 154

URL     [本文引用: 1]

王春.

一类分数阶系统的稳定性和Laplace变换

数学物理学报, 2019, 39A (1): 49- 58

URL     [本文引用: 1]

Wang C .

Stability and Laplace transformation of a class of fractional systems

Acta Math Sci, 2019, 39A (1): 49- 58

URL     [本文引用: 1]

/