数学物理学报, 2020, 40(4): 1043-1052 doi:

论文

$n$-维分段光滑微分系统的周期轨分支

杨纪华,1, 张二丽2

Bifurcation of Periodic Orbits of an n-Dimensional Piecewise Smooth Differential System

Yang Jihua,1, Zhang Erli2

通讯作者: 杨纪华, E-mail: jihua1113@163.com

收稿日期: 2018-11-9  

基金资助: 宁夏高等学校科学技术研究项目.  NGY2020074
国家自然科学基金.  11701306
宁夏自然科学基金.  2019AAC03247
宁夏高等学校一流学科建设(教育学学科).  NXYLXK2017B11
河南省高等学校青年骨干教师培养计划.  2017GGJS202
河南省高等学校青年骨干教师培养计划.  2016GGJS-190
河南省高等学校重点科研项目.  19A110033
河南省高等学校重点科研项目.  19B110014

Received: 2018-11-9  

Fund supported: the Higher Education Science and Technology Program of Ningxia.  NGY2020074
the NSFC.  11701306
the NSF of Ningxia.  2019AAC03247
the Construction of First-class Disciplines of Higher Education of Ningxia (pedagogy).  NXYLXK2017B11
the Training Plan for Young Scholar of Higher Education of Henan Province.  2017GGJS202
the Training Plan for Young Scholar of Higher Education of Henan Province.  2016GGJS-190
the Key Program of Higher Education of Henan Province.  19A110033
the Key Program of Higher Education of Henan Province.  19B110014

摘要

研究了$n$ -维分段光滑扰动微分系统

其中${\bf x}=(x_1,x_2,\cdots,x_n)^T$, $0<\varepsilon\ll1$,且$g^\pm_i({\bf x})$, $i=1,2,\cdots,n$是关于${\bf x}$$m$次实系数多项式.应用一阶Melnikov向量函数,得到了从其未扰动系统分支出周期轨个数的上界.

关键词: n-维分段光滑微分系统 ; 周期轨 ; Melnikov向量函数

Abstract

In this paper, we study the following $n$-dimensional piecewise smooth differential system

where ${\bf x}=(x_1,x_2,\cdots,x_n)^T$, $0<\varepsilon\ll1$, and $g^\pm_i({\bf x})$, $i=1,2,\cdots,n$ are real polynomials of ${\bf x}$ with degree $m$. By using the first order Melnikov vector function, we obtain the upper bound of the number of periodic orbits bifurcating from the unperturbed system.

Keywords: n-Dimensional piecewise smooth differential system ; Periodic orbit ; Melnikov vector function

PDF (311KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

杨纪华, 张二丽. $n$-维分段光滑微分系统的周期轨分支. 数学物理学报[J], 2020, 40(4): 1043-1052 doi:

Yang Jihua, Zhang Erli. Bifurcation of Periodic Orbits of an n-Dimensional Piecewise Smooth Differential System. Acta Mathematica Scientia[J], 2020, 40(4): 1043-1052 doi:

1 引言及主要结果

由于分段光滑微分系统在实际中有着广泛而重要的应用,它们周期轨(二维微分系统称为极限环,所谓极限环是指系统的一条孤立的周期轨)的个数受到学者们的普遍关注.目前,关于二维分段光滑微分系统的极限环分支的研究文献较多,见文献[1-5].据我们所知,相关的研究方法主要有两种:由韩茂安等建立的Melnikov函数法[1, 6]和由Llibre等建立的平均法[7].但是,文献[7]没有给出极限环个数的上界估计.韩茂安在文献[8]给出了相应的上界估计法.最近,杨纪华和赵丽琴把Picard-Fuchs方程法推广到二维分段光滑微分系统的极限环分支研究中[9].但是,高维分段光滑微分系统的周期轨分支的研究相对较少,而且主要研究方法是平均法,见文献[10-12]. 2017年,田焕欢和韩茂安给出高维分段光滑可积微分系统的一阶Melnikov向量函数公式[13].该公式可以用来研究高维分段光滑微分系统的周期轨的个数.

本文主要应用文献[13]中给出的一阶Melnikov向量函数公式研究如下$ n $ -维分段光滑扰动微分系统

$ \begin{equation} \left\{\begin{array}{ll} \dot{x}_1 = x_2+\varepsilon g^+_1({\bf x}), \\ \dot{x}_2 = -x_1+\varepsilon g^+_2({\bf x}), \\ \dot{x}_3 = \varepsilon g^+_3({\bf x}), \\ \cdots\\ \dot{x}_n = \varepsilon g^+_n({\bf x}), \\ \end{array}\right.x_1\geq0, \quad \quad \left\{\begin{array}{ll} \dot{x}_1 = x_2+\varepsilon g^-_1({\bf x}), \\ \dot{x}_2 = -x_1+\varepsilon g^-_2({\bf x}), \\ \dot{x}_3 = \varepsilon g^-_3({\bf x}), \\ \cdots\\ \dot{x}_n = \varepsilon g^-_n({\bf x}), \\ \end{array}\right.x_1<0, \end{equation} $

其中$ {\bf x} = (x_1, x_2, \cdots, x_n)^T $, $ 0< \varepsilon\ll1 $,

$ \varepsilon = 0 $,系统(1.1)在每个平面$ x_i = h_i $上有一个中心,其中$ i = 3, 4, \cdots, n $.本文将借鉴文献[9]中的方法,应用一阶Melnikov向量函数研究系统(1.1)的周期轨个数的上界.本文的主要结果如下.

定理1.1  用一阶Melnikov向量函数,当$ \varepsilon>0 $充分小时,系统(1.1)最多存在$ m^{n-1} $个周期轨.

注1.1  当$ n = 3, m = 1 $时,本文中定理1.1的结果与文献[13]中定理3的结果相同.

2 预备知识

本小节主要介绍田焕欢和韩茂安在文献[13]中给出的下面$ n $ -维分段光滑微分系统的一阶Melnikov向量函数公式

$ \begin{eqnarray} \left\{\begin{array}{ll} \dot{x} = H_y(x, y, {\bf z})+\varepsilon P(x, y, {\bf z}), \\ \dot{y} = -H_x(x, y, {\bf z})+\varepsilon Q(x, y, {\bf z}), \\ \dot{{\bf z}} = \varepsilon R(x, y, {\bf z}), \\ \end{array}\right. \end{eqnarray} $

其中$ 0< \varepsilon\ll1 $, $ {\bf z} = (z_1, z_2, \cdots, z_{n-2})^T\in{{\Bbb R}} ^{n-2} $, $ n\geq2 $,

其中$ H^\pm, P^\pm, Q^\pm $$ R^\pm = (R^\pm_1, R^\pm_2, \cdots, R^\pm_{n-2})^T $$ C^\infty $函数.易知,当$ \varepsilon = 0 $时,系统(2.1)有$ n-1 $个首次积分$ H $, $ z_1 $, $ z_2 $, $ \cdots $, $ z_{n-2} $.系统(2.1)的前两个方程定义了一个平面Hamiltonian系统

$ \begin{eqnarray} \left\{\begin{array}{ll}\dot{x} = H_y(x, y, {\bf z}), \\ \dot{y} = -H_x(x, y, {\bf z}).\end{array}\right. \end{eqnarray} $

对系统(2.2)做如下假设

(H1)   设$ G\subset {{\Bbb R}} ^{n-2} $是开集.对每个$ \hat{h}\in G $,存在依赖于$ \hat{h} $的开区间$ J_{\hat{h}} $使得

是两条具有公共端点$ A(h_1, \hat{h}) = (0, a(h_1, \hat{h})) $$ B(h_1, \hat{h}) = (0, b(h_1, \hat{h})) $的曲线,且$ a(h_1, \hat{h})>b(h_1, \hat{h}) $.该两条曲线上不含有系统(2.2)的临界点.这样, $ {L}_{h_1, \hat{h}} = {L}^+_{h_1, \hat{h}}\cup {L}^-_{h_1, \hat{h}} $是系统(2.2)的周期轨.

(H2)   曲线$ {L}_{h_1, \hat{h}} $在点$ A $$ B $$ y $ -轴不相切.即对$ \hat{h}\in G $$ h_1\in J_{\hat{h}} $,有

定理2.1[13]  假设系统(2.1)满足(H1)–(H2).则系统(2.1)的一阶Melnikov向量函数公式为

$ \begin{eqnarray} M(h)& = &\left(\begin{array}{cc} M^+_1(h)+N_1(h)+N(h)\big(M^-_1(h)+N_2(h)\big)\\ M^+_2(h)+M^-_2(h)\\ \vdots\\ M^+_{n-1}(h)+M^-_{n-1}(h) \end{array}\right){}\\ &\triangleq&\big(M_1(h), \ M_2(h), \ \cdots, \ M_{n-1}(h)\big)^T, \ h = (h_1, \hat{h})^T, \end{eqnarray} $

其中

并且,如果对某个$ h_0\in G $, $ M(h_0) = 0 $$ {\rm{det}}DM(h_0)\neq0 $,则对充分小的$ \varepsilon>0 $,在$ L_{h_0} $附近存在系统(2.1)的唯一周期轨.

接着,作者又给出了计算公式(2.3)中$ M^\pm_{1, k}(h) $$ M^\pm_{k+1}(h) $的方法.

引理2.1[13]  记

引理2.2[13]  假设系统(2.1)满足(H1)–(H2)且$ H(x, y, {\bf z}) $中不含$ {\bf z} $.则公式(2.3)变为

$ \begin{equation} M(h) = \left(\begin{array}{c} M^+_1(h)+N(h)M^-_1(h)\\ M^+_2(h)+M^-_2(h)\\ \vdots\\ M^+_{n-1}(h)+M^-_{n-1}(h) \end{array}\right), \ h = (h_1, \hat{h})^T. \end{equation} $

下面的引理是韩茂安在文献[14]中给出的,该引理可以估计实系数多项式方程组的根的个数的上界.

引理2.3[14]  设$ f_1, \cdots, f_n\in {{\Bbb R}} [x_1, x_2, \cdots, x_n] $是实系数多项式,且映射$ f = (f_1, \cdots, f_n):{{\Bbb R}} ^n\rightarrow{{\Bbb R}} ^n $只有有限多个零点.则$ f $的零点个数不超过$ \deg f_1\times\cdots\times\deg f_n $,其中$ \deg f_k $表示多项式$ f_k $的次数.

3 Melnikov向量函数$ M(h) $的计算和定理1.1的证明

本节首先计算系统(1.1)的一阶Melnikov向量函数$ M(h) $,然后给出定理1.1的证明.易知当$ \varepsilon = 0 $时,系统(1.1)有首次积分

$ \begin{equation} H^\pm(x_1, x_2) = \frac{1}{2}(x_1^2+x_2^2), \ x_3, \ x_4, \ \cdots, \ x_n. \end{equation} $

所以$ {L}_{h_1, \hat{h}} = {L}^+_{h_1, \hat{h}}\cup {L}^-_{h_1, \hat{h}} $是系统

的周期轨,其中

由于(3.1)式中的$ H^\pm(x_1, x_2) $中不含有$ x_3, x_4, \cdots, x_n $,所以系统(1.1)的一阶Melnikov向量函数公式具有(2.4)式的形式.显然, $ N(h) = 1 $.下面我们计算(2.4)式中的$ M^\pm_i(h) $, $ i = 1, 2, \cdots, n-1 $.

我们首先计算

其中$ h = (h_1, \hat{h})^T = (h_1, h_3, h_4, \cdots, h_n)^T $.

易知

所以,我们只考虑$ I_{k_1, 2j}(h_1) $$ J_{k_1, 2j}(h_1) $.由格林公式可得

$ \begin{eqnarray} \int_{L^\pm_{{h_1, \hat{h}}}}x^{k_1}_1x_2^{k_2}{\rm d}x_1 = -\frac{k_2}{k_1+1}\int_{L^\pm_{{h_1, \hat{h}}}}x_1^{k_1+1}x_2^{k_2-1}{\rm d}x_2. \end{eqnarray} $

因此,由定理2.1和(3.2)式可得

$ \begin{eqnarray} M_1(h)& = &\int_{L^+_{h_1, \hat{h}}}g_1^+(x_1, x_2, h_3, \cdots, h_n){\rm d}x_2-g_2^+(x_1, x_2, h_3, \cdots, h_n){\rm d}x_1{}\\ &&+ \int_{L^-_{h_1, \hat{h}}}g_1^-(x_1, x_2, h_3, \cdots, h_n){\rm d}x_2-g_2^-(x_1, x_2, h_3, \cdots, h_n){\rm d}x_1{}\\ & = &\sum\limits_{k_1+k_2+\cdots+k_n = 0}^mh_3^{k_3}\cdots h_n^{k_n}\Big[a^1_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^+}x_1^{k_1}x_2^{k_2}{\rm d}x_2- a^2_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^+}x_1^{k_1}x_2^{k_2}{\rm d}x_1\Big]{}\\ &&+\sum\limits_{k_1+k_2+\cdots+k_n = 0}^mh_3^{k_3}\cdots h_n^{k_n}\Big[b^1_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^-}x_1^{k_1}x_2^{k_2}{\rm d}x_2- b^2_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^-}x_1^{k_1}x_2^{k_2}{\rm d}x_1\Big]{}\\ & = &\sum\limits_{k_1+k_2+\cdots+k_n = 0}^mh_3^{k_3}\cdots h_n^{k_n}{}\\ &&\times \Big[a^1_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^+}x_1^{k_1}x_2^{k_2}{\rm d}x_2+ \frac{k_2}{k_1+1}a^2_{k_1k_2\cdots k_n}\int_{L^+_{h_1, \hat{h}}}x_1^{k_1+1}x_2^{k_2-1}{\rm d}x_2\Big]{}\\ &&+\sum\limits_{k_1+k_2+\cdots+k_n = 0}^mh_3^{k_3}\cdots h_n^{k_n}{}\\ &&\times \Big[b^1_{k_1k_2\cdots k_n}\int_{L_{h_1, \hat{h}}^-}x_1^{k_1}x_2^{k_2}{\rm d}x_2+ \frac{k_2}{k_1+1}b^2_{k_1k_2\cdots k_n}\int_{L^-_{h_1, \hat{h}}}x_1^{k_1+1}x_2^{k_2-1}{\rm d}x_2\Big]{}\\ &: = &\sum\limits_{k_1+k_2+\cdots+k_n = 0}^mh_3^{k_3}\cdots h_n^{k_n}\Big[\alpha_{k_1k_2\cdots k_n}I_{k_1, k_2}(h_1)+ \beta_{k_1k_2\cdots k_n}J_{k_1, k_2}(h_1)\Big], \end{eqnarray} $

其中$ \alpha_{k_1k_2\cdots k_n} $$ \beta_{k_1k_2\cdots k_n} $是常数.

引理3.1

$ \begin{eqnarray} I_{k_1, k_2}(h_1) = \left\{\begin{array}{ll}\delta_{k_1k_2}^1h_1^{[\frac{k_1+k_2}{2}]}I_{0, 0}(h_1), \ \ \mbox{当$k_1+k_2$是偶数}, \\ \delta_{k_1k_2}^2h_1^{[\frac{k_1+k_2}{2}]}I_{1, 0}(h_1), \ \ \mbox{当$k_1+k_2$是奇数}, \end{array}\right. \end{eqnarray} $

$ \begin{eqnarray} J_{k_1, k_2}(h_1) = \left\{\begin{array}{ll}\delta_{k_1k_2}^3h_1^{[\frac{k_1+k_2}{2}]}J_{0, 0}(h_1), \ \ \mbox{当$k_1+k_2$是偶数}, \\ \delta_{k_1k_2}^4h_1^{[\frac{k_1+k_2}{2}]}J_{1, 0}(h_1), \ \ \mbox{当$k_1+k_2$是奇数}, \end{array}\right. \end{eqnarray} $

其中$ \delta_{k_1k_2}^i $, $ i = 1, 2, 3, 4 $是常数.

  我们只证明(3.4)式. (3.5)式可以类似的证明.对方程

两边同时关于$ x_2 $求偏导数可得

$ \begin{eqnarray} x_2+x_1\frac{\partial x_1}{\partial x_2} = 0. \end{eqnarray} $

(3.6)式两边同乘以$ x_1^{k_1}x_2^{k_2-1}{\rm d}x_2 $,沿着$ L^+_{h_1, \hat{h}} $积分,并注意到(3.2)式可得

$ \begin{eqnarray} I_{k_1, k_2}(h_1) = \frac{k_2-1}{k_1+2}I_{k_1+2, k_2-2}(h_1). \end{eqnarray} $

同样, $ H^+(x_1, x_2) = h_1 $两端同乘以$ x_1^{k_1-2}x_2^{k_2}{\rm d}x_2 $并沿着$ L^+_{h_1, \hat{h}} $积分可得

$ \begin{eqnarray} I_{k_1, k_2}(h_1) = 2h_1I_{k_1-2, k_2}(h_1)-I_{k_1-2, k_2+2}(h_1). \end{eqnarray} $

再由(3.7)和(3.8)式可得

$ \begin{eqnarray} I_{k_1, k_2}(h_1) = \frac{2(k_2-1)}{k_1+k_2+1}h_1I_{k_1, k_2-2}(h_1) \end{eqnarray} $

$ \begin{eqnarray} I_{k_1, k_2}(h_1) = \frac{2k_1}{k_1+k_2+1}h_1I_{k_1-2, k_2}(h_1). \end{eqnarray} $

下面我们用数学归纳法证明(3.4)式.由(3.9)和(3.10)式可得

$ \begin{eqnarray} \left\{\begin{array}{ll} { } I_{0, 2}(h_1) = \frac{2}{3}h_1I_{0, 0}(h_1), \ \ I_{2, 0}(h_1) = \frac{4}{3}h_1I_{0, 0}(h_1), \\ { } I_{1, 2}(h_1) = \frac{1}{2}h_1I_{1, 0}(h_1), \ \ I_{3, 0}(h_1) = \frac{3}{2}h_1I_{1, 0}(h_1). \end{array}\right. \end{eqnarray} $

所以当$ k_1+k_2 = 2, 3 $时, (3.4)式成立.假设当$ k_1+k_2\leq l-1 $时, (3.4)式成立,其中$ l\geq4 $是偶数.在(3.9)式中取$ (k_1, k_2) = (0, l), (2, l-2), (4, l-4), \cdots, (l-2, 2) $,在(3.10)式中取$ (k_1, k_2) = (l, 0) $,我们得到

因此,当$ k_1+k_2 = l $时,我们得到

如果$ k_1+k_2 = l $是奇数,同样可以证明(3.4)式成立.证毕.

引理3.2  $ M_1(h) $可表示为

$ \begin{eqnarray} M_1(h) = h_2\sum\limits_{k_1+k_2+\cdots+k_n = 0}^m\lambda^1_{k_1k_2\cdots k_n}h_2^{k_1+k_2}h_3^{k_3}\cdots h_n^{k_n}, \end{eqnarray} $

其中$ h_2 = \sqrt{h_1} $, $ \lambda^1_{k_1k_2\cdots k_n} $是常数.

  由(3.3)式和引理3.1可得

$ \begin{eqnarray} M_1(h)& = &\sum\limits_{{k_1+k_2+\cdots+k_n = 0, \atop k_1+k_2 = 0\, mod\, 2}}^m\alpha_{k_1k_2\cdots k_n}\delta^1_{k_1k_2}h_3^{k_3}\cdots h_n^{k_n}h_1^{[\frac{k_1+k_2}{2}]}I_{0, 0}(h_1){}\\ &&+\sum\limits_{{k_1+k_2+\cdots+k_n = 0, \atop k_1+k_2 = 1\, mod\, 2}}^m\alpha_{k_1k_2\cdots k_n}\delta^2_{k_1k_2}h_3^{k_3}\cdots h_n^{k_n}h_1^{[\frac{k_1+k_2}{2}]}I_{1, 0}(h_1){}\\ &&+\sum\limits_{{k_1+k_2+\cdots+k_n = 0, \atop k_1+k_2 = 0\, mod\, 2}}^m\beta_{k_1k_2\cdots k_n}\delta^3_{k_1k_2}h_3^{k_3}\cdots h_n^{k_n}h_1^{[\frac{k_1+k_2}{2}]}J_{0, 0}(h_1){}\\ &&+\sum\limits_{{k_1+k_2+\cdots+k_n = 0, \atop k_1+k_2 = 1\, mod\, 2}}^m\beta_{k_1k_2\cdots k_n}\delta^4_{k_1k_2}h_3^{k_3}\cdots h_n^{k_n}h_1^{[\frac{k_1+k_2}{2}]}J_{1, 0}(h_1). \end{eqnarray} $

直接计算可的

把它们代入(3.13)式,并注意到$ h_2 = \sqrt{h_1} $,即可得(3.12)式.证毕.

引理3.3  $ M_i(h) $, $ i = 2, 3, \cdots, n-1 $可表示为

$ \begin{equation} \begin{array}{rl} M_2(h) = &{ }\sum\limits_{k_1+k_2+\cdots+k_n = 0}^m{\lambda}^2_{k_1k_2\cdots k_n}h_2^{k_1+k_2}h_3^{k_3}\cdots h_n^{k_n}, \\ M_3(h) = &{ }\sum\limits_{k_1+k_2+\cdots+k_n = 0}^m{\lambda}^3_{k_1k_2\cdots k_n}h_2^{k_1+k_2}h_3^{k_3}\cdots h_n^{k_n}, \\ &\vdots\\ M_{n-1}(h) = &{ }\sum\limits_{k_1+k_2+\cdots+k_n = 0}^m{\lambda}^{n-1}_{k_1k_2\cdots k_n}h_2^{k_1+k_2}h_3^{k_3}\cdots h_n^{k_n}, \end{array} \end{equation} $

其中$ {\lambda}^i_{k_1k_2\cdots k_n} $, $ i = 2, 3, \cdots, n-1 $是常数.

  不失一般性,我们只证明$ M_2(h) $, $ M_3(h) $, $ \cdots $, $ M_{n-1}(h) $可类似的进行证明.由定理2.1可得

再注意到(3.2)式以及引理3.1可得

其中$ h_2 = \sqrt{h_1} $.所以

同理可得

因此

引理3.3证毕.

定理1.1的证明  由引理3.2和引理3.3可得系统(1.1)的一阶Melnikov向量函数$ M(h) $

$ M_1(h) = h_2\bar{M}_1(h) $,则$ \bar{M}_1(h) $是关于$ h = (h_2, h_3, \cdots, h_n)^T $$ m $次多项式. $ M_i(h) $, $ i = 2, 3, $$ \cdots, n-1 $也是关于$ h = (h_2, h_3, \cdots, h_n)^T $$ m $次多项式.由引理2.3可得, $ M(h) $最多有$ m^{n-1} $个零点.再由定理2.1即得定理1.1成立.

参考文献

Liu X , Han M .

Bifurcation of limit cycles by perturbing piecewise Hamiltonian systems

Internat J Bifur Chaos Appl Sci Engrg, 2010, 20, 1379- 1390

DOI:10.1142/S021812741002654X      [本文引用: 2]

Liang F , Han M , Romanovski V .

Bifurcation of limit cycles by perturbing a piecewise linear Hamiltonian system with a homoclinic loop

Nonlinear Anal, 2012, 75, 4355- 4374

DOI:10.1016/j.na.2012.03.022     

Xiong Y .

Limit cycle bifurcations by perturbing non-smooth Hamiltonian systems with 4 switching lines via multiple parameters

Nonlinear Analysis: Real World Applications, 2018, 41, 384- 400

DOI:10.1016/j.nonrwa.2017.10.020     

Li S , Liu C .

A linear estimate of the number of limit cycles for some planar piecewise smooth quadratic differential system

J Math Anal Appl, 2015, 428, 1354- 1367

DOI:10.1016/j.jmaa.2015.03.074     

Yang J , Zhao L .

Limit cycle bifurcations for piecewise smooth integrable differential systems

Discrete and Continuous Dynamical Systems Series B, 2017, 22, 2417- 2425

DOI:10.3934/dcdsb.2017123      [本文引用: 1]

Han M , Sheng L .

Bifurcation of limit cycles in piecewise smooth systems via Melnikov function

J Appl Anal Comput, 2015, 5, 809- 815

[本文引用: 1]

Llibre J , Mereu A , Novaes D .

Averaging theory for discontinuous piecewise differential systems

J Differential Equations, 2015, 258, 4007- 4032

DOI:10.1016/j.jde.2015.01.022      [本文引用: 2]

Han M .

On the maximum number of periodic solutions of piecewise smooth periodic equations by average method

J Appl Anal Comput, 2017, 7, 788- 794

[本文引用: 1]

Yang J , Zhao L .

Bounding the number of limit cycles of discontinuous differential systems by using Picard-Fuchs equations

J Differential Equations, 2018, 264, 5734- 5757

DOI:10.1016/j.jde.2018.01.017      [本文引用: 2]

Llibre J , Makhlouf A .

Bifurcation of limit cycles from a two-dimensional center inside $\mathbb{R} ^n$

Nonlinear Analysis, 2010, 72, 1387- 1392

DOI:10.1016/j.na.2009.08.022      [本文引用: 1]

Barreira L , Llibre J , Valls C .

Bifurcation of limit cycles from a 4-dimensional center in $\mathbb{R} ^m$ in resonance $1:N$

J Math Anal Appl, 2012, 389, 754- 768

DOI:10.1016/j.jmaa.2011.12.018     

Llibre J , Teixeira M , Zeli I .

Birth of limit cycles for a class of continuous and discontinuous differential systems in $(d+2)$-dimension

Dynamical Systems, 2016, 31 (3): 237- 250

[本文引用: 1]

Tian H , Han M .

Bifurcation of periodic orbits by perturbing high-dimensional piecewise smooth integrable systems

J Differential Equations, 2017, 263, 7448- 7474

DOI:10.1016/j.jde.2017.08.011      [本文引用: 7]

Han M , Sun H , Balanov Z .

Upper estimates for the number of periodic solutions to multi-dimensional systems

J Differential Equations, 2019, 266, 8281- 8293

DOI:10.1016/j.jde.2018.12.034      [本文引用: 2]

/