数学物理学报, 2020, 40(2): 452-459 doi:

论文

分数阶广义扰动热波方程

欧阳成,1, 汪维刚2, 莫嘉琪3

The Fractional Generalized Disturbed Thermal Wave Equation

Ouyang Cheng,1, Wang Weigang2, Mo Jiaqi3

通讯作者: 欧阳成, E-mail: oyc@zjhu.edu.cn

收稿日期: 2017-09-20  

基金资助: 国家自然科学基金.  11771005
浙江省自然科学基金.  LY16A010011
安徽省教育厅自然科学重点基金.  KJ2018A0964
安徽省教育厅自然科学重点基金.  KJ2019A1261

Received: 2017-09-20  

Fund supported: the NSFC.  11771005
the NSF of Zhejiang Province.  LY16A010011
the NSF of the Education Department of Anhui Province.  KJ2018A0964
the NSF of the Education Department of Anhui Province.  KJ2019A1261

摘要

研究了一类分数阶广义非线性扰动热波方程.首先用奇异慑动方法,求出了分数阶广义非线性扰动热波方程初始边值问题的任意次近似解析解.然后利用泛函分析不动点定理证明了它的一致有效性,最后简述了它的物理意义.求得的近似解析解,弥补了单纯用数值方法求模拟解的不足.

关键词: 热波 ; 分数阶 ; 奇异摄动

Abstract

A class of generalized fractional nonlinear disturbed thermal wave equation is considered. Firstly, the arbitrary order approximate analytic solutions for the fractional generalized nonlinear disturbed thermal wave equation initial boundary value problem was constructed by using the singular perturbation method. And the uniformly valid asymptotic expansion was proofed by using the fixed point theory of the functional analysis. The physical sense of the solution was stated simply. The approximate analysis solution makes up not enough the simple numerical simulation solution.

Keywords: Thermal wave ; Fractional order ; Singular perturbation

PDF (389KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

欧阳成, 汪维刚, 莫嘉琪. 分数阶广义扰动热波方程. 数学物理学报[J], 2020, 40(2): 452-459 doi:

Ouyang Cheng, Wang Weigang, Mo Jiaqi. The Fractional Generalized Disturbed Thermal Wave Equation. Acta Mathematica Scientia[J], 2020, 40(2): 452-459 doi:

1 引言

近年来,分数阶微分方程理论已为研究非线性问题的热点,在弹性力学,非牛顿流体力学、振荡、扩散和输运理论、量子力学等领域中都有广泛应用[1-7].例如,钙离子在细胞内扩散的时空分数阶反常扩散模型,带有热流边界条件的抛物型和双曲型生物传热问题,固体表面的超短激光脉冲加热问题,带有体积热源的时间分数阶Cattaneo热波模型等等.本文考虑带有分数阶热流条件的广义非线性扰动热波方程初始-边值问题.

关于非线性问题,近年来,很多近似方法被优化[8-12].作者等也使用了各种渐近方法讨论了一类非线性方程大气物理、尘埃、等离子、孤波等问题[13-32].在上述的背景下,本文进一步利用奇摄动伸长变量方法和泛函分析不动点理论来讨论一类分数阶扩散方程广义非线性扰动热波问题,并得到相关模型的渐近解析解.弥补了单纯用数值模拟方法得到的数值模拟解的不足.

2 分数阶广义Cattaneo热波模型

由分数阶Cattaneo传热方程理论[1]及相应的能量平衡方程可得如下分数阶广义非线性扰动热波方程

$ \begin{align} 0<x<L, \ \ t>0, \ \ 0<\alpha\leq 1, \end{align} $

其中$ u(t, x) = T(t, x)-T_{0}, \ T $为介质的温度函数, $ T_{0} $为初始温度, $ f $为非线性传热扰动项,它在所考虑的变量变化范围内的充分光滑的有界函数,常数$ \kappa $为具有小热波导热速率的介质系数, $ \rho $为密度, $ c $为比热, $ \tau_{1} $为热松弛时间,它近似为$ \tau_{1} = \alpha_{0}/v^{2}_{0} $,其中$ \alpha_{0} $为导热系数, $ v_{0} $为热波的传播速率, $ \alpha $为分数阶的阶数,且$ u(t, x) $关于$ t $$ \alpha $阶分数阶导数定义为

现考虑在分数阶广义非线性扰动热波方程(2.1)下,热物质为常数的介质.假设介质在介质表面$ (x = 0) $瞬间作用一个瞬时热流满足零初值条件,并设介质在$ x = l $处边界保持绝热状态下,讨论方程(2.1)及满足初始-边值条件

$ \begin{align} -\kappa\frac{\partial T(t, 0)}{\partial x} = T(t, 0) +\tau^{\alpha}_{1}\frac{\partial^{\alpha}}{\partial t^{\alpha}}T(t, 0), \ \ \frac{\partial T(t, l)}{\partial x} = 0, \end{align} $

$ \begin{align} T(0, x) = \frac{\partial T(0, x)}{\partial t} = 0 \end{align} $

的分数阶广义非线性扰动热波方程初始-边值问题.

为方便书写,由方程(2.1)–(2.3),分数阶广义非线性扰动热波模型的无量纲形式的模型

$ \begin{align} \varepsilon^{2}\frac{\partial^{2}T(t, x)}{\partial x^{2}} = D\frac{\partial^{\alpha+1}T(t, x)}{\partial t^{\alpha+1}} +\frac{\partial T(t, x)}{\partial t}+f(T(t, x), \varepsilon), \ \ 0<x<l, \ t>0, \end{align} $

$ \begin{align} \varepsilon\frac{\partial T(t, 0)}{\partial x} = -g(t)-D\frac{\partial^{\alpha}}{\partial t^{\alpha}}g(t), \ \ \frac{\partial T(t, l)}{\partial x} = 0, \end{align} $

$ \begin{align} T|_{t = 0} = \frac{\partial T}{\partial t}|_{t = 0} = 0, \end{align} $

其中$ \varepsilon $为小的正参数, $ f(T, x), \ g(t), \ (f(T, 0) = g(0) = 0) $为关于其变量为充分光滑的有界函数.

3 分数阶扰动热波模型外部解

模型(2.4)–(2.6)的退化问题为

$ \begin{align} D\frac{{\rm d}^{\alpha+1}T}{{\rm d}t^{\alpha+1}} +\frac{{\rm d}T}{{\rm d}t} = 0, \end{align} $

$ \begin{align} T|_{t = 0} = \frac{\partial T}{\partial t}|_{t = 0} = 0, \end{align} $

初值问题(3.1)–(3.2),可转化为如下Fredholm型线性微分-积分方程初值问题

$ \begin{align} \int^{t}_{0}\frac{T(s)}{(t-s)^{\alpha}}{\rm d}s+\frac{\Gamma(1-\alpha)}{D}\frac{\rm d}{{\rm d}t}T(t) = 0, \ \ T(0) = \frac{{\rm d}T(0)}{{\rm d}t} = 0, \end{align} $

由Fredholm型线性微分-积分方程初值问题(3.3),可得它的解$ \overline{T}_{0} $.再设分数阶广义非线性扰动热波问题(2.4)–(2.6)的外部解$ \overline{T}(t, x) $

$ \begin{align} \overline{T}(t, x) = \sum^{\infty}_{i = 0}\overline{T}_{i}(t, x)\varepsilon^{i}. \end{align} $

将(3.4)式代入(2.4)和(2.6)式,按$ \varepsilon $展开非线性项,合并$ \varepsilon^{i} $的同次幂项,并令各次幂项的系数为零.由$ \varepsilon^{0} $的系数为零,就是退化问题(3.1), (3.2),其解就是$ \overline{T}_{0} $.$ \varepsilon^{i}\ (i = 1, 2, \cdots) $的系数为零,依次得

$ \begin{align} D\frac{\partial^{\alpha+1}\overline{T}_{i}(t, x)}{\partial t^{\alpha+1}} +\frac{\partial \overline{T}_{i}(t, x)}{\partial t} = -\frac{\partial^{2}\overline{T}_{i-1}(t, x)}{\partial x^{2}}-F_{i}, \ \ i = 1, 2, \cdots, \end{align} $

$ \begin{align} \overline{T}_{i}(0, x) = \frac{\partial \overline{T}_{i}(0, x)}{\partial t} = 0, \ \ i = 1, 2, \cdots, \end{align} $

其中

由分数阶线性非齐次方程初值问题(3.5)–(3.6),能依次地得到解$ \overline{T}_{i}(t, x)\ (i = 1, 2, \cdots) $.将得到的$ \overline{T}_{i}(t, x)\ (i = 1, 2, \cdots) $代入(3.4)式.我们便得到外部解$ \overline{T}(t, x) $.但外部解$ \overline{T}(t, x) $未必满足边界条件(2.5),为此我们尚需构造边界层校正项$ \widetilde{T} $.

4 边界层校正

首先引入一个伸长变量变换

$ \begin{align} \xi = \frac{x}{\varepsilon}. \end{align} $

考虑到变换(4.1),则(2.4)–(2.6)式为

$ \begin{align} \frac{\partial^{2}T}{\partial \xi^{2}} = D\frac{\partial^{\alpha+1}T}{\partial t^{\alpha+1}} +\frac{\partial T}{\partial t}+f(T, \varepsilon), \end{align} $

$ \begin{align} \frac{\partial T(t, 0)}{\partial \xi} = -g(t)-D\frac{\partial^{\alpha}}{\partial t^{\alpha}}g(t), \ \ \frac{\partial T(t, l)}{\partial \xi} = 0, \end{align} $

$ \begin{align} T|_{t = 0} = -\overline{T}|_{t = 0}, \ \ \frac{\partial T}{\partial t}|_{t = 0} = -\frac{\partial \overline{T}}{\partial t}|_{t = 0}. \end{align} $

再设

$ \begin{align} T(t, x) = \overline{T}(t, x)+\widetilde{T}(t, \xi), \end{align} $

其中

$ \begin{align} \widetilde{T}(t, \xi) = \sum^{\infty}_{i = 0}\widetilde{T}_i(t, \xi)\varepsilon^{i}. \end{align} $

将(4.5), (4.6)式代入(4.2)–(4.4)式,按$ \varepsilon $展开非线性项,合并$ \varepsilon^{i} $的同次幂项,并令各次幂项的系数为零.由$ \varepsilon^{i} $的同次幂项的系数为零,依次可得

$ \begin{align} \frac{\partial^{2}\widetilde{T}_{0}}{\partial \xi^{2}}- D\frac{\partial^{\alpha+1}\widetilde{T}_0}{\partial t^{\alpha+1}} -\frac{\partial\widetilde{T}_{0}}{\partial t} = 0, \end{align} $

$ \begin{align} \frac{\partial \widetilde{T}_0(t, 0)}{\partial \xi} = -g(t)-D\frac{\partial^{\alpha}}{\partial t^{\alpha}}g(t), \ \ \frac{\partial \widetilde{T}_0(t, l)}{\partial \xi} = 0, \end{align} $

$ \begin{align} \widetilde{T}_{0}|_{t = 0} = \frac{\partial \widetilde{T}_{0}}{\partial t}|_{t = 0} = 0, \end{align} $

$ \begin{align} \frac{\partial^{2}\widetilde{T}_{i}}{\partial \xi^{2}} -D\frac{\partial^{\alpha+1}\widetilde{T}_{i}}{\partial t^{\alpha+1}} -\frac{\partial \widetilde{T}_{i}}{\partial t} = \widetilde{F}_{i}, \ \ i = 1, 2, \cdots, \end{align} $

$ \begin{align} \frac{\partial \widetilde{T}_{i}(t, 0)}{\partial \xi} = \frac{\partial \widetilde{T}_{i}(t, l)}{\partial \xi} = 0, \ \ i = 1, 2, \cdots, \end{align} $

$ \begin{align} \widetilde{T}_{i}|_{t = 0} = \frac{\partial \widetilde{T}_{i}}{\partial t}|_{t = 0} = 0, \ \ i = 1, 2, \cdots, \end{align} $

其中

由线性分数阶方程初始边值问题(4.7)–(4.9)和(4.10)–(4.12),能依次地得到解$ \widetilde{T}_{i}(t, \xi) $.利用分数阶线性扰动热波方程初始边值问题的定性理论,不难知道$ \widetilde{T}_{i}(t, \xi)\ (i = 0, 1, \cdots) $具有如下渐近性态

$ \begin{align} \widetilde{T}_{i} = O(\exp(-k_{i}\xi)) = O(\exp(-k_{i}\frac{x}{\varepsilon})), \ \ (t, x)\in[0, \infty)\times[0, l], \ \ i = 0, 1, \cdots, \end{align} $

其中$ k_{i} $为正常数.

将得到的$ \widetilde{T}_\varepsilon(t, \xi)\ (i = 0, 1, \cdots) $代入(4.6)式.我们便得到分数阶线性扰动热波方程初始边值问题(2.4)–(2.6)具有边界层校正性态的形式渐近展开式$ T(t, x) $:

$ \begin{align} T(t, x)\sim \overline{T}_{0}(t, x) +\sum^{\infty}_{i = 0}\overline{T}_{i}(t, x)\varepsilon^{i} +\sum^{\infty}_{i = 0}\widetilde{T}_{i}(t, \xi)\varepsilon^{i}, \ \ 0<\varepsilon\ll 1. \end{align} $

5 不动点原理和解的一致有效性

现证明渐近式(4.14)为分数阶非线性扰动热波方程初始边值问题(2.4)–(2.6)在$ (t, x)\in[0, \infty)\times[0, l] $上为一致有效的渐近展开式.

引入如下泛函分析不动点原理[11-12]:

定理5.1  设$ N $为由具有范数$ \|p\| $的元素$ p $组成的一个线性赋范空间, $ B $为一个具有范数$ \|q\| $的元素$ q $的Banach空间.设$ G $为一个由$ N $$ B $的非线性映射, $ G[0] = 0 $.$ G[p] $可分解为$ G[p] = L[p]+\Psi[p] $,其中$ L $为在$ p = 0 $$ F $的线性化的算子.算子$ L $满足如下条件:

(I) $ L^{-1} $$ L $的连续逆映射,且

(II) $ K_{N}(r) $表示球$ \{p|p\in N, \|p\|\leq r\} $,存在一个正数$ \overline{r} $,满足Lipschitz条件: $ \|\Psi[p_{2}]-\Psi[p_{1}\| $$ \leq m(r)\|p_{2}-p_{1}\|, \forall p_{1}, p_{2} \in K_{N}(r) $, $ 0\leq r\leq\overline{r} $,并且当$ r\rightarrow 0 $$ m(r) $单调下降为零: $ { }\lim_{r\rightarrow 0}(r) = 0. $

则对满足$ f\in B, \|f\|\leq \frac{1}{2}lr_{0} $存在$ p\in N $使得$ G[p] = f $$ \|p\|\leq 2l^{-1}\|f\|\leq r_{0} $,其中$ r_{0} = \sup\limits_{r\geq 0}\{r|0\leq r\leq\overline{r}, $$ m(r)\leq\frac{1}{2}l\} $.

现用上述不动点原理来估计分数阶非线性扰动热波方程初始边值问题(2.4)–(2.6)的形式渐近解(4.14)的余项$ R $.

其中

这里$ M $为任意大的正整数.利用(5.1)式和性态(4.13)式,有

设线性化的微分算子$ \overline{L} $

固定$ \varepsilon $,选择线性赋范空间$ N $

且范数$ { }\|q\| = \sup_{t\in(0, \infty), x\in[0, 1]}|q| $.

由不动点假设,成立

其中$ l $独立于$ \varepsilon $, $ \overline{L}^{-1} $$ \overline{L} $的连续逆算子. Lipschitz条件为

其中$ C_{1}, C_{2} $$ C $为独立于$ \varepsilon $的常数,并对任意的$ p_{1}, p_{2} $在球$ K_{N}(r), \|r\|\leq l $中成立.再由定理5.1,分数阶非线性扰动热波方程初始边值问题(2.4)–(2.6)解的渐近展开式(4.14)的余项$ R $满足

于是有如下定理:

定理5.2  在本文开始叙述的假设下,分数阶非线性扰动热波方程初始边值问题(2.4)–(2.6)存在一个解$ T(t, x) $,在$ (t\in(0, \infty), x\in[0, l]) $上关于$ \varepsilon $成立一致有效的渐近展开式(4.14).

6 解的物理意义

由于泛函分析映射方法得到的分数阶广义非线性扰动热波方程初始边值问题的近似解$ T(t, x) $是近似的解析关系式,因此还可以通过解析运算,譬如进行微分、积分等运算继续对传热模型的相关物理量进一步研究,并可得到相应的物理性态.

例如,在本文所研究的参数估计问题中,用通过求解问题获得的真实温度场和随机误差合成仿真实验数据,介质内部温度的测量值,来研究分数阶阶数和热松弛时间的两参数估计.可以通过得到的近似解析解$ T(t, x) $进行参数的仿真实验.得到相应的目标函数的最优化的变化关系.因此本文为分数阶热波模型的参数估计提供了一种有效的方法.

再如,改变分数阶广义非线性扰动方程相应的参量以达到扰动热波问题的理想结果.

7 结论

本文用奇摄动和泛函分析方法,选择合理的初始近似函数,能以较快速度的得到较高精度的近似解析解.

由本文用奇摄动和泛函分析方法得到的分数阶广义非线性扰动热波模型初始边值问题的近似解,它不同于单纯用数值模拟方法得到的模拟解,因为它还可进行微分、积分等运算,继续对非线性扰动热波研究.

参考文献

Podlubny I. Fractional Differential Equations. London:Academic Press, 1999

[本文引用: 2]

Mainardi F. Fractional Calculus and Waves in Linear Viscoelasticity:An Introduction to Mathematical Models. London:Imperial College Press, 2010

Rajneesh K , Vandana G .

Uniqueness, reciprocity theorem, and plane waves in thermoelastic diffusion with fractional order derivative

Chin Phys B, 2013, 22 (7): 074601

DOI:10.1088/1674-1056/22/7/074601     

辛宝贵, 陈通, 刘艳芹.

一类分数阶混沌金融系统的复杂性演化研究

物理学报, 2011, 60 (4): 048901

URL    

Xin B G , Chen T , Liu Y Q .

Complexity evolvement of a chaotic fractional-orderfinancial system

Acta Phys Sin, 2011, 60 (4): 048901

URL    

蔚涛, 罗懋康, 华云.

分数阶质量涨落谐振子的共振行为

物理学报, 2013, 62 (21): 210503

DOI:10.7498/aps.62.210503     

Wei T , Luo M K , Hua Y .

The resonant behavior of fractional harmonic oscillator with fluctuating mass

Acta Phys Sin, 2013, 62 (21): 210503

DOI:10.7498/aps.62.210503     

范文萍, 蒋晓芸.

带有分数阶热流条件的时间分数阶热波方程及其参数估计问题

物理学报, 2014, 63 (14): 140202

DOI:10.7498/aps.63.140202     

Fan W P , Jiang X Y .

Parameters estimation for a one-dimensional time fractional thermal wave equation with fractional heat flux conditions

Acta Phys Sin, 2014, 63 (14): 140202

DOI:10.7498/aps.63.140202     

Yu Y J , Wang Z H .

A fractional-order phase-locked loop with time-delay and its Hopf bifurcation

Chin Phys Lett, 2013, 30 (11): 110201

DOI:10.1088/0256-307X/30/11/110201      [本文引用: 1]

Faye L , Frenod E , Seck D .

Singularly perturbed degenerated parabolic equations and application to seabed morphodynamics in tided environment

Discrete Contin Dyn Syst, 2011, 29 (3): 1001- 1030

DOI:10.3934/dcds.2011.29.1001      [本文引用: 1]

Samusenko P F .

Asymptotic integration of degenerate singularly perturbed systems of parabolic partial differential equations

J Math Sci, 2013, 189 (5): 834- 847

DOI:10.1007/s10958-013-1223-y     

Ge H X , Cheng R J .

A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation

Chin Phys B, 2014, 23 (4): 040203

DOI:10.1088/1674-1056/23/4/040203     

de Jager E M, Jiang F R. The Theory of Singular Perturbation. Amsterdam:North-Holland Publishing Co, 1996

[本文引用: 1]

Barbu L, Morosanu G. Singularly Perturbed Boundary-Value Problem. Basel:Birkhauserm Verlag AG, 2007

[本文引用: 2]

韩祥临, 汪维刚, 莫嘉琪.

流行性病毒传播生态动力学系统

数学物理学报, 2019, 39 (1): 200- 208

DOI:10.3969/j.issn.1003-3998.2019.01.019      [本文引用: 1]

Han X L , Wang W G , Mo J Q .

Bionomics dynamic system for epidemic virus transmission

Acta Math Sci, 2019, 39 (1): 200- 208

DOI:10.3969/j.issn.1003-3998.2019.01.019      [本文引用: 1]

韩祥临, 汪维刚, 莫嘉琪.

一类非线性微分-积分时滞反应扩散系统的广义解

数学物理学报, 2019, 39 (2): 297- 306

DOI:10.3969/j.issn.1003-3998.2019.02.009     

Han X L , Wang W G , Mo J Q .

Generalized solution to a class of nonlinear differential-integral time delay reaction diffusion system

Acta Math Sci, 2019, 39 (2): 297- 306

DOI:10.3969/j.issn.1003-3998.2019.02.009     

Mo J Q .

Singular perturbation for a class of nonlinear reaction diffusion systems

Science in China, 1989, 32 (11): 1306- 1315

URL    

Mo J Q .

Singularly perturbed reaction diffusion problem for nonlinear boundary condition with two parameters

Chin Phys, 2010, 19 (1): 010203

DOI:10.1088/1674-1056/19/1/010203     

Mo J Q , Yao J A , Tang R R .

Approximate analytic solution of solitary wave for a class of nonlinear disturbed long-wave system

Comm Theor Phys, 2010, 54 (1): 27- 30

URL    

Mo J Q , Lin W T .

Generalized variation iteration solution of an atmosphere-ocean oscillator model for global climateplexity

J Sys Sci Complexity, 2011, 24 (2): 271- 276

DOI:10.1007/s11424-011-7153-1     

Mo J Q , Lin W T , Lin Y H .

Asymptotic solution for the Elñino time delay sea-air oscillator model

Chin Phys B, 2011, 20 (7): 070205

DOI:10.1088/1674-1056/20/7/070205     

Mo J Q .

Homotopiv mapping solving method for gain fluency of a laser pulse amplifier

Science in China Ser G, 2009, 52 (7): 1007- 1010

DOI:10.1007/s11433-009-0146-6     

欧阳成, 姚静荪, 石兰芳, 莫嘉琪.

一类尘埃等离子体孤子解

物理学报, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

Ouyang C , Yao J S , Shi L F , Mo J Q .

Solitary wave solution for a class of dusty plasma

Acta Phys Sin, 2014, 63 (11): 110203

DOI:10.7498/aps.63.110203     

欧阳成, 陈贤峰, 莫嘉琪.

广义扰动Nizhnik-Novikov-Veselov系统的孤波解的孤波解

系统科学与数学, 2017, 37 (3): 908- 917

URL    

Ouyang C , Chen X F , Mo J Q .

The solutions to solitary wave for generalized disturbed Nizhnik-Novikov-Vedelov system

J Sys Sci Math, 2017, 37 (3): 908- 917

URL    

欧阳成, 姚静荪, 石兰芳, 莫嘉琪.

一类广义鸭轨迹系统轨线的构造

物理学报, 2012, 61 (3): 030202

URL    

Ouyang C , Yao J S , Shi L F , Mo J Q .

Constructing path curve for a class of generalized phase tracks of canard system

Acta Phys Sin, 2012, 61 (3): 030202

URL    

欧阳成, 林万涛, 程荣军, 莫嘉琪.

一类厄尔尼诺海-气时滞振子的渐近解

物理学报, 2013, 62 (6): 060201

URL    

Ouyang C , Lin W T , Cheng R J , Mo J Q .

A class of asymptotic solution of sea-air time delay oscillator for the Elñino-southern oscillation mechanism

Acta Phys Sin, 2013, 62 (6): 060201

URL    

Ouyang C , Cheng L H , Mo J .

Solving a class of burning disturbed problem with shock layer

Chin Phy B, 2012, 21 (5): 050203

DOI:10.1088/1674-1056/21/5/050203     

Wang W G , Shi L F , Han X L , Mo J Q .

Singular perturbation problem for reaction diffusion tiime delay equation

Chin J Engineering Math, 2015, 32 (2): 291- 297

Wang W G , Shi J R , Shi L F , Mo J Q .

The singularly perturbed solution of nonlinear nonlocal equation for higher order

J Nankai Univ, 2014, 47 (1): 13- 18

URL    

汪维刚, 林万涛, 石兰芳, 莫嘉琪.

非线性扰动时滞长波系统孤波近似解

物理学报, 2014, 63 (11): 110204

DOI:10.7498/aps.63.110204     

Wang W G , Lin W T , Shi L F , Mo J Q .

Approximate solution of solitary wave for nonlinear-disturbed time delay long-wave system

Acta Phys Sin, 2014, 63 (11): 110204

DOI:10.7498/aps.63.110204     

汪维刚, 石兰芳, 韩祥临, 莫嘉琪.

捕食-被捕食微分方程种群模型的研究综述

武汉大学学报, 2015, 61 (4): 299- 307

URL    

Wang W G , Shi J R , Han X L , Mo J Q .

The research summarizes to population model of prey-predator differential equations

J Wuhan Univ, 2015, 61 (4): 299- 307

URL    

Wang W G , Shi L F , Han X L , Mo J Q .

Singular perturbation problem for reaction diffusion time delay equation

Chin J Engineering Math, 2015, 32 (2): 291- 297

URL    

Wang W G , Shi L F , Xu Y H , Mo J Q .

Generalized solution of the singularly perturbed boundary value problems for semilinear elliptic equation of higher order with two parameters

J Nankai Univ, 2014, 47 (2): 47- 81

URL    

Wang W G , Shi J R , Shi L F , Mo J Q .

The singularly perturbed solution of nonlinear nonlocal equation for higher order

J Nankai Univ, 2014, 47 (1): 13- 18

URL     [本文引用: 1]

/